//===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // C Includes // C++ Includes #include #include #include #include #include #include // Other libraries and framework includes #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/MD5.h" #include "llvm/Support/MathExtras.h" #include "clang/AST/ASTContext.h" // Project includes #include "lldb/Core/DataBuffer.h" #include "lldb/Core/DataBufferHeap.h" #include "lldb/Core/DataExtractor.h" #include "lldb/Core/Disassembler.h" #include "lldb/Core/Log.h" #include "lldb/Core/Stream.h" #include "lldb/Core/StreamString.h" #include "lldb/Core/UUID.h" #include "lldb/Core/dwarf.h" #include "lldb/Host/Endian.h" #include "lldb/Symbol/ClangASTContext.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/ExecutionContextScope.h" #include "lldb/Target/SectionLoadList.h" #include "lldb/Target/Target.h" using namespace lldb; using namespace lldb_private; static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) { uint16_t value; memcpy(&value, ptr + offset, 2); return value; } static inline uint32_t ReadInt32(const unsigned char *ptr, offset_t offset = 0) { uint32_t value; memcpy(&value, ptr + offset, 4); return value; } static inline uint64_t ReadInt64(const unsigned char *ptr, offset_t offset = 0) { uint64_t value; memcpy(&value, ptr + offset, 8); return value; } static inline uint16_t ReadInt16(const void *ptr) { uint16_t value; memcpy(&value, ptr, 2); return value; } static inline uint16_t ReadSwapInt16(const unsigned char *ptr, offset_t offset) { uint16_t value; memcpy(&value, ptr + offset, 2); return llvm::ByteSwap_16(value); } static inline uint32_t ReadSwapInt32(const unsigned char *ptr, offset_t offset) { uint32_t value; memcpy(&value, ptr + offset, 4); return llvm::ByteSwap_32(value); } static inline uint64_t ReadSwapInt64(const unsigned char *ptr, offset_t offset) { uint64_t value; memcpy(&value, ptr + offset, 8); return llvm::ByteSwap_64(value); } static inline uint16_t ReadSwapInt16(const void *ptr) { uint16_t value; memcpy(&value, ptr, 2); return llvm::ByteSwap_16(value); } static inline uint32_t ReadSwapInt32(const void *ptr) { uint32_t value; memcpy(&value, ptr, 4); return llvm::ByteSwap_32(value); } static inline uint64_t ReadSwapInt64(const void *ptr) { uint64_t value; memcpy(&value, ptr, 8); return llvm::ByteSwap_64(value); } #define NON_PRINTABLE_CHAR '.' DataExtractor::DataExtractor() : m_start(nullptr), m_end(nullptr), m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)), m_data_sp(), m_target_byte_size(1) {} //---------------------------------------------------------------------- // This constructor allows us to use data that is owned by someone else. // The data must stay around as long as this object is valid. //---------------------------------------------------------------------- DataExtractor::DataExtractor(const void *data, offset_t length, ByteOrder endian, uint32_t addr_size, uint32_t target_byte_size /*=1*/) : m_start(const_cast(reinterpret_cast(data))), m_end(const_cast(reinterpret_cast(data)) + length), m_byte_order(endian), m_addr_size(addr_size), m_data_sp(), m_target_byte_size(target_byte_size) { #ifdef LLDB_CONFIGURATION_DEBUG assert(addr_size == 4 || addr_size == 8); #endif } //---------------------------------------------------------------------- // Make a shared pointer reference to the shared data in "data_sp" and // set the endian swapping setting to "swap", and the address size to // "addr_size". The shared data reference will ensure the data lives // as long as any DataExtractor objects exist that have a reference to // this data. //---------------------------------------------------------------------- DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian, uint32_t addr_size, uint32_t target_byte_size /*=1*/) : m_start(nullptr), m_end(nullptr), m_byte_order(endian), m_addr_size(addr_size), m_data_sp(), m_target_byte_size(target_byte_size) { #ifdef LLDB_CONFIGURATION_DEBUG assert(addr_size == 4 || addr_size == 8); #endif SetData(data_sp); } //---------------------------------------------------------------------- // Initialize this object with a subset of the data bytes in "data". // If "data" contains shared data, then a reference to this shared // data will added and the shared data will stay around as long // as any object contains a reference to that data. The endian // swap and address size settings are copied from "data". //---------------------------------------------------------------------- DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset, offset_t length, uint32_t target_byte_size /*=1*/) : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order), m_addr_size(data.m_addr_size), m_data_sp(), m_target_byte_size(target_byte_size) { #ifdef LLDB_CONFIGURATION_DEBUG assert(m_addr_size == 4 || m_addr_size == 8); #endif if (data.ValidOffset(offset)) { offset_t bytes_available = data.GetByteSize() - offset; if (length > bytes_available) length = bytes_available; SetData(data, offset, length); } } DataExtractor::DataExtractor(const DataExtractor &rhs) : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order), m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp), m_target_byte_size(rhs.m_target_byte_size) { #ifdef LLDB_CONFIGURATION_DEBUG assert(m_addr_size == 4 || m_addr_size == 8); #endif } //---------------------------------------------------------------------- // Assignment operator //---------------------------------------------------------------------- const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) { if (this != &rhs) { m_start = rhs.m_start; m_end = rhs.m_end; m_byte_order = rhs.m_byte_order; m_addr_size = rhs.m_addr_size; m_data_sp = rhs.m_data_sp; } return *this; } DataExtractor::~DataExtractor() = default; //------------------------------------------------------------------ // Clears the object contents back to a default invalid state, and // release any references to shared data that this object may // contain. //------------------------------------------------------------------ void DataExtractor::Clear() { m_start = nullptr; m_end = nullptr; m_byte_order = endian::InlHostByteOrder(); m_addr_size = sizeof(void *); m_data_sp.reset(); } //------------------------------------------------------------------ // If this object contains shared data, this function returns the // offset into that shared data. Else zero is returned. //------------------------------------------------------------------ size_t DataExtractor::GetSharedDataOffset() const { if (m_start != nullptr) { const DataBuffer *data = m_data_sp.get(); if (data != nullptr) { const uint8_t *data_bytes = data->GetBytes(); if (data_bytes != nullptr) { assert(m_start >= data_bytes); return m_start - data_bytes; } } } return 0; } //---------------------------------------------------------------------- // Set the data with which this object will extract from to data // starting at BYTES and set the length of the data to LENGTH bytes // long. The data is externally owned must be around at least as // long as this object points to the data. No copy of the data is // made, this object just refers to this data and can extract from // it. If this object refers to any shared data upon entry, the // reference to that data will be released. Is SWAP is set to true, // any data extracted will be endian swapped. //---------------------------------------------------------------------- lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length, ByteOrder endian) { m_byte_order = endian; m_data_sp.reset(); if (bytes == nullptr || length == 0) { m_start = nullptr; m_end = nullptr; } else { m_start = const_cast(reinterpret_cast(bytes)); m_end = m_start + length; } return GetByteSize(); } //---------------------------------------------------------------------- // Assign the data for this object to be a subrange in "data" // starting "data_offset" bytes into "data" and ending "data_length" // bytes later. If "data_offset" is not a valid offset into "data", // then this object will contain no bytes. If "data_offset" is // within "data" yet "data_length" is too large, the length will be // capped at the number of bytes remaining in "data". If "data" // contains a shared pointer to other data, then a ref counted // pointer to that data will be made in this object. If "data" // doesn't contain a shared pointer to data, then the bytes referred // to in "data" will need to exist at least as long as this object // refers to those bytes. The address size and endian swap settings // are copied from the current values in "data". //---------------------------------------------------------------------- lldb::offset_t DataExtractor::SetData(const DataExtractor &data, offset_t data_offset, offset_t data_length) { m_addr_size = data.m_addr_size; #ifdef LLDB_CONFIGURATION_DEBUG assert(m_addr_size == 4 || m_addr_size == 8); #endif // If "data" contains shared pointer to data, then we can use that if (data.m_data_sp) { m_byte_order = data.m_byte_order; return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset, data_length); } // We have a DataExtractor object that just has a pointer to bytes if (data.ValidOffset(data_offset)) { if (data_length > data.GetByteSize() - data_offset) data_length = data.GetByteSize() - data_offset; return SetData(data.GetDataStart() + data_offset, data_length, data.GetByteOrder()); } return 0; } //---------------------------------------------------------------------- // Assign the data for this object to be a subrange of the shared // data in "data_sp" starting "data_offset" bytes into "data_sp" // and ending "data_length" bytes later. If "data_offset" is not // a valid offset into "data_sp", then this object will contain no // bytes. If "data_offset" is within "data_sp" yet "data_length" is // too large, the length will be capped at the number of bytes // remaining in "data_sp". A ref counted pointer to the data in // "data_sp" will be made in this object IF the number of bytes this // object refers to in greater than zero (if at least one byte was // available starting at "data_offset") to ensure the data stays // around as long as it is needed. The address size and endian swap // settings will remain unchanged from their current settings. //---------------------------------------------------------------------- lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp, offset_t data_offset, offset_t data_length) { m_start = m_end = nullptr; if (data_length > 0) { m_data_sp = data_sp; if (data_sp) { const size_t data_size = data_sp->GetByteSize(); if (data_offset < data_size) { m_start = data_sp->GetBytes() + data_offset; const size_t bytes_left = data_size - data_offset; // Cap the length of we asked for too many if (data_length <= bytes_left) m_end = m_start + data_length; // We got all the bytes we wanted else m_end = m_start + bytes_left; // Not all the bytes requested were // available in the shared data } } } size_t new_size = GetByteSize(); // Don't hold a shared pointer to the data buffer if we don't share // any valid bytes in the shared buffer. if (new_size == 0) m_data_sp.reset(); return new_size; } //---------------------------------------------------------------------- // Extract a single unsigned char from the binary data and update // the offset pointed to by "offset_ptr". // // RETURNS the byte that was extracted, or zero on failure. //---------------------------------------------------------------------- uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const { const uint8_t *data = (const uint8_t *)GetData(offset_ptr, 1); if (data) return *data; return 0; } //---------------------------------------------------------------------- // Extract "count" unsigned chars from the binary data and update the // offset pointed to by "offset_ptr". The extracted data is copied into // "dst". // // RETURNS the non-nullptr buffer pointer upon successful extraction of // all the requested bytes, or nullptr when the data is not available in // the buffer due to being out of bounds, or insufficient data. //---------------------------------------------------------------------- void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst, uint32_t count) const { const uint8_t *data = (const uint8_t *)GetData(offset_ptr, count); if (data) { // Copy the data into the buffer memcpy(dst, data, count); // Return a non-nullptr pointer to the converted data as an indicator of // success return dst; } return nullptr; } //---------------------------------------------------------------------- // Extract a single uint16_t from the data and update the offset // pointed to by "offset_ptr". // // RETURNS the uint16_t that was extracted, or zero on failure. //---------------------------------------------------------------------- uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const { uint16_t val = 0; const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val)); if (data) { if (m_byte_order != endian::InlHostByteOrder()) val = ReadSwapInt16(data); else val = ReadInt16(data); } return val; } uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const { uint16_t val; if (m_byte_order == endian::InlHostByteOrder()) val = ReadInt16(m_start, *offset_ptr); else val = ReadSwapInt16(m_start, *offset_ptr); *offset_ptr += sizeof(val); return val; } uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const { uint32_t val; if (m_byte_order == endian::InlHostByteOrder()) val = ReadInt32(m_start, *offset_ptr); else val = ReadSwapInt32(m_start, *offset_ptr); *offset_ptr += sizeof(val); return val; } uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const { uint64_t val; if (m_byte_order == endian::InlHostByteOrder()) val = ReadInt64(m_start, *offset_ptr); else val = ReadSwapInt64(m_start, *offset_ptr); *offset_ptr += sizeof(val); return val; } //---------------------------------------------------------------------- // Extract "count" uint16_t values from the binary data and update // the offset pointed to by "offset_ptr". The extracted data is // copied into "dst". // // RETURNS the non-nullptr buffer pointer upon successful extraction of // all the requested bytes, or nullptr when the data is not available // in the buffer due to being out of bounds, or insufficient data. //---------------------------------------------------------------------- void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst, uint32_t count) const { const size_t src_size = sizeof(uint16_t) * count; const uint16_t *src = (const uint16_t *)GetData(offset_ptr, src_size); if (src) { if (m_byte_order != endian::InlHostByteOrder()) { uint16_t *dst_pos = (uint16_t *)void_dst; uint16_t *dst_end = dst_pos + count; const uint16_t *src_pos = src; while (dst_pos < dst_end) { *dst_pos = ReadSwapInt16(src_pos); ++dst_pos; ++src_pos; } } else { memcpy(void_dst, src, src_size); } // Return a non-nullptr pointer to the converted data as an indicator of // success return void_dst; } return nullptr; } //---------------------------------------------------------------------- // Extract a single uint32_t from the data and update the offset // pointed to by "offset_ptr". // // RETURNS the uint32_t that was extracted, or zero on failure. //---------------------------------------------------------------------- uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const { uint32_t val = 0; const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val)); if (data) { if (m_byte_order != endian::InlHostByteOrder()) { val = ReadSwapInt32(data); } else { memcpy(&val, data, 4); } } return val; } //---------------------------------------------------------------------- // Extract "count" uint32_t values from the binary data and update // the offset pointed to by "offset_ptr". The extracted data is // copied into "dst". // // RETURNS the non-nullptr buffer pointer upon successful extraction of // all the requested bytes, or nullptr when the data is not available // in the buffer due to being out of bounds, or insufficient data. //---------------------------------------------------------------------- void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst, uint32_t count) const { const size_t src_size = sizeof(uint32_t) * count; const uint32_t *src = (const uint32_t *)GetData(offset_ptr, src_size); if (src) { if (m_byte_order != endian::InlHostByteOrder()) { uint32_t *dst_pos = (uint32_t *)void_dst; uint32_t *dst_end = dst_pos + count; const uint32_t *src_pos = src; while (dst_pos < dst_end) { *dst_pos = ReadSwapInt32(src_pos); ++dst_pos; ++src_pos; } } else { memcpy(void_dst, src, src_size); } // Return a non-nullptr pointer to the converted data as an indicator of // success return void_dst; } return nullptr; } //---------------------------------------------------------------------- // Extract a single uint64_t from the data and update the offset // pointed to by "offset_ptr". // // RETURNS the uint64_t that was extracted, or zero on failure. //---------------------------------------------------------------------- uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const { uint64_t val = 0; const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val)); if (data) { if (m_byte_order != endian::InlHostByteOrder()) { val = ReadSwapInt64(data); } else { memcpy(&val, data, 8); } } return val; } //---------------------------------------------------------------------- // GetU64 // // Get multiple consecutive 64 bit values. Return true if the entire // read succeeds and increment the offset pointed to by offset_ptr, else // return false and leave the offset pointed to by offset_ptr unchanged. //---------------------------------------------------------------------- void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst, uint32_t count) const { const size_t src_size = sizeof(uint64_t) * count; const uint64_t *src = (const uint64_t *)GetData(offset_ptr, src_size); if (src) { if (m_byte_order != endian::InlHostByteOrder()) { uint64_t *dst_pos = (uint64_t *)void_dst; uint64_t *dst_end = dst_pos + count; const uint64_t *src_pos = src; while (dst_pos < dst_end) { *dst_pos = ReadSwapInt64(src_pos); ++dst_pos; ++src_pos; } } else { memcpy(void_dst, src, src_size); } // Return a non-nullptr pointer to the converted data as an indicator of // success return void_dst; } return nullptr; } //---------------------------------------------------------------------- // Extract a single integer value from the data and update the offset // pointed to by "offset_ptr". The size of the extracted integer // is specified by the "byte_size" argument. "byte_size" should have // a value between 1 and 4 since the return value is only 32 bits // wide. Any "byte_size" values less than 1 or greater than 4 will // result in nothing being extracted, and zero being returned. // // RETURNS the integer value that was extracted, or zero on failure. //---------------------------------------------------------------------- uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr, size_t byte_size) const { switch (byte_size) { case 1: return GetU8(offset_ptr); break; case 2: return GetU16(offset_ptr); break; case 4: return GetU32(offset_ptr); break; default: assert(false && "GetMaxU32 unhandled case!"); break; } return 0; } //---------------------------------------------------------------------- // Extract a single integer value from the data and update the offset // pointed to by "offset_ptr". The size of the extracted integer // is specified by the "byte_size" argument. "byte_size" should have // a value >= 1 and <= 8 since the return value is only 64 bits // wide. Any "byte_size" values less than 1 or greater than 8 will // result in nothing being extracted, and zero being returned. // // RETURNS the integer value that was extracted, or zero on failure. //---------------------------------------------------------------------- uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr, size_t size) const { switch (size) { case 1: return GetU8(offset_ptr); break; case 2: return GetU16(offset_ptr); break; case 4: return GetU32(offset_ptr); break; case 8: return GetU64(offset_ptr); break; default: assert(false && "GetMax64 unhandled case!"); break; } return 0; } uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr, size_t size) const { switch (size) { case 1: return GetU8_unchecked(offset_ptr); break; case 2: return GetU16_unchecked(offset_ptr); break; case 4: return GetU32_unchecked(offset_ptr); break; case 8: return GetU64_unchecked(offset_ptr); break; default: assert(false && "GetMax64 unhandled case!"); break; } return 0; } int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t size) const { switch (size) { case 1: return (int8_t)GetU8(offset_ptr); break; case 2: return (int16_t)GetU16(offset_ptr); break; case 4: return (int32_t)GetU32(offset_ptr); break; case 8: return (int64_t)GetU64(offset_ptr); break; default: assert(false && "GetMax64 unhandled case!"); break; } return 0; } uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const { uint64_t uval64 = GetMaxU64(offset_ptr, size); if (bitfield_bit_size > 0) { int32_t lsbcount = bitfield_bit_offset; if (m_byte_order == eByteOrderBig) lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; if (lsbcount > 0) uval64 >>= lsbcount; uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1); if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64) return uval64; uval64 &= bitfield_mask; } return uval64; } int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const { int64_t sval64 = GetMaxS64(offset_ptr, size); if (bitfield_bit_size > 0) { int32_t lsbcount = bitfield_bit_offset; if (m_byte_order == eByteOrderBig) lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; if (lsbcount > 0) sval64 >>= lsbcount; uint64_t bitfield_mask = (((uint64_t)1) << bitfield_bit_size) - 1; sval64 &= bitfield_mask; // sign extend if needed if (sval64 & (((uint64_t)1) << (bitfield_bit_size - 1))) sval64 |= ~bitfield_mask; } return sval64; } float DataExtractor::GetFloat(offset_t *offset_ptr) const { typedef float float_type; float_type val = 0.0; const size_t src_size = sizeof(float_type); const float_type *src = (const float_type *)GetData(offset_ptr, src_size); if (src) { if (m_byte_order != endian::InlHostByteOrder()) { const uint8_t *src_data = (const uint8_t *)src; uint8_t *dst_data = (uint8_t *)&val; for (size_t i = 0; i < sizeof(float_type); ++i) dst_data[sizeof(float_type) - 1 - i] = src_data[i]; } else { val = *src; } } return val; } double DataExtractor::GetDouble(offset_t *offset_ptr) const { typedef double float_type; float_type val = 0.0; const size_t src_size = sizeof(float_type); const float_type *src = (const float_type *)GetData(offset_ptr, src_size); if (src) { if (m_byte_order != endian::InlHostByteOrder()) { const uint8_t *src_data = (const uint8_t *)src; uint8_t *dst_data = (uint8_t *)&val; for (size_t i = 0; i < sizeof(float_type); ++i) dst_data[sizeof(float_type) - 1 - i] = src_data[i]; } else { val = *src; } } return val; } long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const { long double val = 0.0; #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \ defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64) *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val), endian::InlHostByteOrder()); #else *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val, sizeof(val), endian::InlHostByteOrder()); #endif return val; } //------------------------------------------------------------------ // Extract a single address from the data and update the offset // pointed to by "offset_ptr". The size of the extracted address // comes from the "this->m_addr_size" member variable and should be // set correctly prior to extracting any address values. // // RETURNS the address that was extracted, or zero on failure. //------------------------------------------------------------------ uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const { #ifdef LLDB_CONFIGURATION_DEBUG assert(m_addr_size == 4 || m_addr_size == 8); #endif return GetMaxU64(offset_ptr, m_addr_size); } uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const { #ifdef LLDB_CONFIGURATION_DEBUG assert(m_addr_size == 4 || m_addr_size == 8); #endif return GetMaxU64_unchecked(offset_ptr, m_addr_size); } //------------------------------------------------------------------ // Extract a single pointer from the data and update the offset // pointed to by "offset_ptr". The size of the extracted pointer // comes from the "this->m_addr_size" member variable and should be // set correctly prior to extracting any pointer values. // // RETURNS the pointer that was extracted, or zero on failure. //------------------------------------------------------------------ uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const { #ifdef LLDB_CONFIGURATION_DEBUG assert(m_addr_size == 4 || m_addr_size == 8); #endif return GetMaxU64(offset_ptr, m_addr_size); } //---------------------------------------------------------------------- // GetDwarfEHPtr // // Used for calls when the value type is specified by a DWARF EH Frame // pointer encoding. //---------------------------------------------------------------------- uint64_t DataExtractor::GetGNUEHPointer( offset_t *offset_ptr, uint32_t eh_ptr_enc, lldb::addr_t pc_rel_addr, lldb::addr_t text_addr, lldb::addr_t data_addr) //, BSDRelocs *data_relocs) const { if (eh_ptr_enc == DW_EH_PE_omit) return ULLONG_MAX; // Value isn't in the buffer... uint64_t baseAddress = 0; uint64_t addressValue = 0; const uint32_t addr_size = GetAddressByteSize(); #ifdef LLDB_CONFIGURATION_DEBUG assert(addr_size == 4 || addr_size == 8); #endif bool signExtendValue = false; // Decode the base part or adjust our offset switch (eh_ptr_enc & 0x70) { case DW_EH_PE_pcrel: signExtendValue = true; baseAddress = *offset_ptr; if (pc_rel_addr != LLDB_INVALID_ADDRESS) baseAddress += pc_rel_addr; // else // Log::GlobalWarning ("PC relative pointer encoding found with // invalid pc relative address."); break; case DW_EH_PE_textrel: signExtendValue = true; if (text_addr != LLDB_INVALID_ADDRESS) baseAddress = text_addr; // else // Log::GlobalWarning ("text relative pointer encoding being // decoded with invalid text section address, setting base address // to zero."); break; case DW_EH_PE_datarel: signExtendValue = true; if (data_addr != LLDB_INVALID_ADDRESS) baseAddress = data_addr; // else // Log::GlobalWarning ("data relative pointer encoding being // decoded with invalid data section address, setting base address // to zero."); break; case DW_EH_PE_funcrel: signExtendValue = true; break; case DW_EH_PE_aligned: { // SetPointerSize should be called prior to extracting these so the // pointer size is cached assert(addr_size != 0); if (addr_size) { // Align to a address size boundary first uint32_t alignOffset = *offset_ptr % addr_size; if (alignOffset) offset_ptr += addr_size - alignOffset; } } break; default: break; } // Decode the value part switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) { case DW_EH_PE_absptr: { addressValue = GetAddress(offset_ptr); // if (data_relocs) // addressValue = data_relocs->Relocate(*offset_ptr - // addr_size, *this, addressValue); } break; case DW_EH_PE_uleb128: addressValue = GetULEB128(offset_ptr); break; case DW_EH_PE_udata2: addressValue = GetU16(offset_ptr); break; case DW_EH_PE_udata4: addressValue = GetU32(offset_ptr); break; case DW_EH_PE_udata8: addressValue = GetU64(offset_ptr); break; case DW_EH_PE_sleb128: addressValue = GetSLEB128(offset_ptr); break; case DW_EH_PE_sdata2: addressValue = (int16_t)GetU16(offset_ptr); break; case DW_EH_PE_sdata4: addressValue = (int32_t)GetU32(offset_ptr); break; case DW_EH_PE_sdata8: addressValue = (int64_t)GetU64(offset_ptr); break; default: // Unhandled encoding type assert(eh_ptr_enc); break; } // Since we promote everything to 64 bit, we may need to sign extend if (signExtendValue && addr_size < sizeof(baseAddress)) { uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull); if (sign_bit & addressValue) { uint64_t mask = ~sign_bit + 1; addressValue |= mask; } } return baseAddress + addressValue; } size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length, ByteOrder dst_byte_order, void *dst) const { const uint8_t *src = PeekData(offset, length); if (src) { if (dst_byte_order != GetByteOrder()) { // Validate that only a word- or register-sized dst is byte swapped assert(length == 1 || length == 2 || length == 4 || length == 8 || length == 10 || length == 16 || length == 32); for (uint32_t i = 0; i < length; ++i) ((uint8_t *)dst)[i] = src[length - i - 1]; } else ::memcpy(dst, src, length); return length; } return 0; } // Extract data as it exists in target memory lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length, void *dst) const { const uint8_t *src = PeekData(offset, length); if (src) { ::memcpy(dst, src, length); return length; } return 0; } // Extract data and swap if needed when doing the copy lldb::offset_t DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len, void *dst_void_ptr, offset_t dst_len, ByteOrder dst_byte_order) const { // Validate the source info if (!ValidOffsetForDataOfSize(src_offset, src_len)) assert(ValidOffsetForDataOfSize(src_offset, src_len)); assert(src_len > 0); assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle); // Validate the destination info assert(dst_void_ptr != nullptr); assert(dst_len > 0); assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle); // Validate that only a word- or register-sized dst is byte swapped assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 || dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 || dst_len == 32); // Must have valid byte orders set in this object and for destination if (!(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle) || !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle)) return 0; uint8_t *dst = (uint8_t *)dst_void_ptr; const uint8_t *src = (const uint8_t *)PeekData(src_offset, src_len); if (src) { if (dst_len >= src_len) { // We are copying the entire value from src into dst. // Calculate how many, if any, zeroes we need for the most // significant bytes if "dst_len" is greater than "src_len"... const size_t num_zeroes = dst_len - src_len; if (dst_byte_order == eByteOrderBig) { // Big endian, so we lead with zeroes... if (num_zeroes > 0) ::memset(dst, 0, num_zeroes); // Then either copy or swap the rest if (m_byte_order == eByteOrderBig) { ::memcpy(dst + num_zeroes, src, src_len); } else { for (uint32_t i = 0; i < src_len; ++i) dst[i + num_zeroes] = src[src_len - 1 - i]; } } else { // Little endian destination, so we lead the value bytes if (m_byte_order == eByteOrderBig) { for (uint32_t i = 0; i < src_len; ++i) dst[i] = src[src_len - 1 - i]; } else { ::memcpy(dst, src, src_len); } // And zero the rest... if (num_zeroes > 0) ::memset(dst + src_len, 0, num_zeroes); } return src_len; } else { // We are only copying some of the value from src into dst.. if (dst_byte_order == eByteOrderBig) { // Big endian dst if (m_byte_order == eByteOrderBig) { // Big endian dst, with big endian src ::memcpy(dst, src + (src_len - dst_len), dst_len); } else { // Big endian dst, with little endian src for (uint32_t i = 0; i < dst_len; ++i) dst[i] = src[dst_len - 1 - i]; } } else { // Little endian dst if (m_byte_order == eByteOrderBig) { // Little endian dst, with big endian src for (uint32_t i = 0; i < dst_len; ++i) dst[i] = src[src_len - 1 - i]; } else { // Little endian dst, with big endian src ::memcpy(dst, src, dst_len); } } return dst_len; } } return 0; } //---------------------------------------------------------------------- // Extracts a variable length NULL terminated C string from // the data at the offset pointed to by "offset_ptr". The // "offset_ptr" will be updated with the offset of the byte that // follows the NULL terminator byte. // // If the offset pointed to by "offset_ptr" is out of bounds, or if // "length" is non-zero and there aren't enough available // bytes, nullptr will be returned and "offset_ptr" will not be // updated. //---------------------------------------------------------------------- const char *DataExtractor::GetCStr(offset_t *offset_ptr) const { const char *cstr = (const char *)PeekData(*offset_ptr, 1); if (cstr) { const char *cstr_end = cstr; const char *end = (const char *)m_end; while (cstr_end < end && *cstr_end) ++cstr_end; // Now we are either at the end of the data or we point to the // NULL C string terminator with cstr_end... if (*cstr_end == '\0') { // Advance the offset with one extra byte for the NULL terminator *offset_ptr += (cstr_end - cstr + 1); return cstr; } // We reached the end of the data without finding a NULL C string // terminator. Fall through and return nullptr otherwise anyone that // would have used the result as a C string can wander into // unknown memory... } return nullptr; } //---------------------------------------------------------------------- // Extracts a NULL terminated C string from the fixed length field of // length "len" at the offset pointed to by "offset_ptr". // The "offset_ptr" will be updated with the offset of the byte that // follows the fixed length field. // // If the offset pointed to by "offset_ptr" is out of bounds, or if // the offset plus the length of the field is out of bounds, or if the // field does not contain a NULL terminator byte, nullptr will be returned // and "offset_ptr" will not be updated. //---------------------------------------------------------------------- const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const { const char *cstr = (const char *)PeekData(*offset_ptr, len); if (cstr != nullptr) { if (memchr(cstr, '\0', len) == nullptr) { return nullptr; } *offset_ptr += len; return cstr; } return nullptr; } //------------------------------------------------------------------ // Peeks at a string in the contained data. No verification is done // to make sure the entire string lies within the bounds of this // object's data, only "offset" is verified to be a valid offset. // // Returns a valid C string pointer if "offset" is a valid offset in // this object's data, else nullptr is returned. //------------------------------------------------------------------ const char *DataExtractor::PeekCStr(offset_t offset) const { return (const char *)PeekData(offset, 1); } //---------------------------------------------------------------------- // Extracts an unsigned LEB128 number from this object's data // starting at the offset pointed to by "offset_ptr". The offset // pointed to by "offset_ptr" will be updated with the offset of the // byte following the last extracted byte. // // Returned the extracted integer value. //---------------------------------------------------------------------- uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const { const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1); if (src == nullptr) return 0; const uint8_t *end = m_end; if (src < end) { uint64_t result = *src++; if (result >= 0x80) { result &= 0x7f; int shift = 7; while (src < end) { uint8_t byte = *src++; result |= (uint64_t)(byte & 0x7f) << shift; if ((byte & 0x80) == 0) break; shift += 7; } } *offset_ptr = src - m_start; return result; } return 0; } //---------------------------------------------------------------------- // Extracts an signed LEB128 number from this object's data // starting at the offset pointed to by "offset_ptr". The offset // pointed to by "offset_ptr" will be updated with the offset of the // byte following the last extracted byte. // // Returned the extracted integer value. //---------------------------------------------------------------------- int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const { const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1); if (src == nullptr) return 0; const uint8_t *end = m_end; if (src < end) { int64_t result = 0; int shift = 0; int size = sizeof(int64_t) * 8; uint8_t byte = 0; int bytecount = 0; while (src < end) { bytecount++; byte = *src++; result |= (int64_t)(byte & 0x7f) << shift; shift += 7; if ((byte & 0x80) == 0) break; } // Sign bit of byte is 2nd high order bit (0x40) if (shift < size && (byte & 0x40)) result |= -(1 << shift); *offset_ptr += bytecount; return result; } return 0; } //---------------------------------------------------------------------- // Skips a ULEB128 number (signed or unsigned) from this object's // data starting at the offset pointed to by "offset_ptr". The // offset pointed to by "offset_ptr" will be updated with the offset // of the byte following the last extracted byte. // // Returns the number of bytes consumed during the extraction. //---------------------------------------------------------------------- uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const { uint32_t bytes_consumed = 0; const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1); if (src == nullptr) return 0; const uint8_t *end = m_end; if (src < end) { const uint8_t *src_pos = src; while ((src_pos < end) && (*src_pos++ & 0x80)) ++bytes_consumed; *offset_ptr += src_pos - src; } return bytes_consumed; } static bool GetAPInt(const DataExtractor &data, lldb::offset_t *offset_ptr, lldb::offset_t byte_size, llvm::APInt &result) { llvm::SmallVector uint64_array; lldb::offset_t bytes_left = byte_size; uint64_t u64; const lldb::ByteOrder byte_order = data.GetByteOrder(); if (byte_order == lldb::eByteOrderLittle) { while (bytes_left > 0) { if (bytes_left >= 8) { u64 = data.GetU64(offset_ptr); bytes_left -= 8; } else { u64 = data.GetMaxU64(offset_ptr, (uint32_t)bytes_left); bytes_left = 0; } uint64_array.push_back(u64); } result = llvm::APInt(byte_size * 8, llvm::ArrayRef(uint64_array)); return true; } else if (byte_order == lldb::eByteOrderBig) { lldb::offset_t be_offset = *offset_ptr + byte_size; lldb::offset_t temp_offset; while (bytes_left > 0) { if (bytes_left >= 8) { be_offset -= 8; temp_offset = be_offset; u64 = data.GetU64(&temp_offset); bytes_left -= 8; } else { be_offset -= bytes_left; temp_offset = be_offset; u64 = data.GetMaxU64(&temp_offset, (uint32_t)bytes_left); bytes_left = 0; } uint64_array.push_back(u64); } *offset_ptr += byte_size; result = llvm::APInt(byte_size * 8, llvm::ArrayRef(uint64_array)); return true; } return false; } static lldb::offset_t DumpAPInt(Stream *s, const DataExtractor &data, lldb::offset_t offset, lldb::offset_t byte_size, bool is_signed, unsigned radix) { llvm::APInt apint; if (GetAPInt(data, &offset, byte_size, apint)) { std::string apint_str(apint.toString(radix, is_signed)); switch (radix) { case 2: s->Write("0b", 2); break; case 8: s->Write("0", 1); break; case 10: break; } s->Write(apint_str.c_str(), apint_str.size()); } return offset; } static float half2float(uint16_t half) { union { float f; uint32_t u; } u; int32_t v = (int16_t)half; if (0 == (v & 0x7c00)) { u.u = v & 0x80007FFFU; return u.f * ldexpf(1, 125); } v <<= 13; u.u = v | 0x70000000U; return u.f * ldexpf(1, -112); } lldb::offset_t DataExtractor::Dump( Stream *s, offset_t start_offset, lldb::Format item_format, size_t item_byte_size, size_t item_count, size_t num_per_line, uint64_t base_addr, uint32_t item_bit_size, // If zero, this is not a bitfield value, if // non-zero, the value is a bitfield uint32_t item_bit_offset, // If "item_bit_size" is non-zero, this is the // shift amount to apply to a bitfield ExecutionContextScope *exe_scope) const { if (s == nullptr) return start_offset; if (item_format == eFormatPointer) { if (item_byte_size != 4 && item_byte_size != 8) item_byte_size = s->GetAddressByteSize(); } offset_t offset = start_offset; if (item_format == eFormatInstruction) { TargetSP target_sp; if (exe_scope) target_sp = exe_scope->CalculateTarget(); if (target_sp) { DisassemblerSP disassembler_sp(Disassembler::FindPlugin( target_sp->GetArchitecture(), nullptr, nullptr)); if (disassembler_sp) { lldb::addr_t addr = base_addr + start_offset; lldb_private::Address so_addr; bool data_from_file = true; if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) { data_from_file = false; } else { if (target_sp->GetSectionLoadList().IsEmpty() || !target_sp->GetImages().ResolveFileAddress(addr, so_addr)) so_addr.SetRawAddress(addr); } size_t bytes_consumed = disassembler_sp->DecodeInstructions( so_addr, *this, start_offset, item_count, false, data_from_file); if (bytes_consumed) { offset += bytes_consumed; const bool show_address = base_addr != LLDB_INVALID_ADDRESS; const bool show_bytes = true; ExecutionContext exe_ctx; exe_scope->CalculateExecutionContext(exe_ctx); disassembler_sp->GetInstructionList().Dump(s, show_address, show_bytes, &exe_ctx); } } } else s->Printf("invalid target"); return offset; } if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) && item_byte_size > 8) item_format = eFormatHex; lldb::offset_t line_start_offset = start_offset; for (uint32_t count = 0; ValidOffset(offset) && count < item_count; ++count) { if ((count % num_per_line) == 0) { if (count > 0) { if (item_format == eFormatBytesWithASCII && offset > line_start_offset) { s->Printf("%*s", static_cast( (num_per_line - (offset - line_start_offset)) * 3 + 2), ""); Dump(s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0); } s->EOL(); } if (base_addr != LLDB_INVALID_ADDRESS) s->Printf("0x%8.8" PRIx64 ": ", (uint64_t)(base_addr + (offset - start_offset) / m_target_byte_size)); line_start_offset = offset; } else if (item_format != eFormatChar && item_format != eFormatCharPrintable && item_format != eFormatCharArray && count > 0) { s->PutChar(' '); } switch (item_format) { case eFormatBoolean: if (item_byte_size <= 8) s->Printf("%s", GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset) ? "true" : "false"); else { s->Printf("error: unsupported byte size (%" PRIu64 ") for boolean format", (uint64_t)item_byte_size); return offset; } break; case eFormatBinary: if (item_byte_size <= 8) { uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); // Avoid std::bitset<64>::to_string() since it is missing in // earlier C++ libraries std::string binary_value(64, '0'); std::bitset<64> bits(uval64); for (uint32_t i = 0; i < 64; ++i) if (bits[i]) binary_value[64 - 1 - i] = '1'; if (item_bit_size > 0) s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size); else if (item_byte_size > 0 && item_byte_size <= 8) s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8); } else { const bool is_signed = false; const unsigned radix = 2; offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix); } break; case eFormatBytes: case eFormatBytesWithASCII: for (uint32_t i = 0; i < item_byte_size; ++i) { s->Printf("%2.2x", GetU8(&offset)); } // Put an extra space between the groups of bytes if more than one // is being dumped in a group (item_byte_size is more than 1). if (item_byte_size > 1) s->PutChar(' '); break; case eFormatChar: case eFormatCharPrintable: case eFormatCharArray: { // If we are only printing one character surround it with single // quotes if (item_count == 1 && item_format == eFormatChar) s->PutChar('\''); const uint64_t ch = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); if (isprint(ch)) s->Printf("%c", (char)ch); else if (item_format != eFormatCharPrintable) { switch (ch) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; case '\0': s->Printf("\\0"); break; default: if (item_byte_size == 1) s->Printf("\\x%2.2x", (uint8_t)ch); else s->Printf("%" PRIu64, ch); break; } } else { s->PutChar(NON_PRINTABLE_CHAR); } // If we are only printing one character surround it with single quotes if (item_count == 1 && item_format == eFormatChar) s->PutChar('\''); } break; case eFormatEnum: // Print enum value as a signed integer when we don't get // the enum type case eFormatDecimal: if (item_byte_size <= 8) s->Printf("%" PRId64, GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = true; const unsigned radix = 10; offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix); } break; case eFormatUnsigned: if (item_byte_size <= 8) s->Printf("%" PRIu64, GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = false; const unsigned radix = 10; offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix); } break; case eFormatOctal: if (item_byte_size <= 8) s->Printf("0%" PRIo64, GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = false; const unsigned radix = 8; offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix); } break; case eFormatOSType: { uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); s->PutChar('\''); for (uint32_t i = 0; i < item_byte_size; ++i) { uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8)); if (isprint(ch)) s->Printf("%c", ch); else { switch (ch) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; case '\0': s->Printf("\\0"); break; default: s->Printf("\\x%2.2x", ch); break; } } } s->PutChar('\''); } break; case eFormatCString: { const char *cstr = GetCStr(&offset); if (!cstr) { s->Printf("NULL"); offset = LLDB_INVALID_OFFSET; } else { s->PutChar('\"'); while (const char c = *cstr) { if (isprint(c)) { s->PutChar(c); } else { switch (c) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; default: s->Printf("\\x%2.2x", c); break; } } ++cstr; } s->PutChar('\"'); } } break; case eFormatPointer: s->Address(GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset), sizeof(addr_t)); break; case eFormatComplexInteger: { size_t complex_int_byte_size = item_byte_size / 2; if (complex_int_byte_size > 0 && complex_int_byte_size <= 8) { s->Printf("%" PRIu64, GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0)); s->Printf(" + %" PRIu64 "i", GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0)); } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for complex integer format", (uint64_t)item_byte_size); return offset; } } break; case eFormatComplex: if (sizeof(float) * 2 == item_byte_size) { float f32_1 = GetFloat(&offset); float f32_2 = GetFloat(&offset); s->Printf("%g + %gi", f32_1, f32_2); break; } else if (sizeof(double) * 2 == item_byte_size) { double d64_1 = GetDouble(&offset); double d64_2 = GetDouble(&offset); s->Printf("%lg + %lgi", d64_1, d64_2); break; } else if (sizeof(long double) * 2 == item_byte_size) { long double ld64_1 = GetLongDouble(&offset); long double ld64_2 = GetLongDouble(&offset); s->Printf("%Lg + %Lgi", ld64_1, ld64_2); break; } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for complex float format", (uint64_t)item_byte_size); return offset; } break; default: case eFormatDefault: case eFormatHex: case eFormatHexUppercase: { bool wantsuppercase = (item_format == eFormatHexUppercase); switch (item_byte_size) { case 1: case 2: case 4: case 8: s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); break; default: { assert(item_bit_size == 0 && item_bit_offset == 0); const uint8_t *bytes = (const uint8_t *)GetData(&offset, item_byte_size); if (bytes) { s->PutCString("0x"); uint32_t idx; if (m_byte_order == eByteOrderBig) { for (idx = 0; idx < item_byte_size; ++idx) s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]); } else { for (idx = 0; idx < item_byte_size; ++idx) s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[item_byte_size - 1 - idx]); } } } break; } } break; case eFormatFloat: { TargetSP target_sp; bool used_apfloat = false; if (exe_scope) target_sp = exe_scope->CalculateTarget(); if (target_sp) { ClangASTContext *clang_ast = target_sp->GetScratchClangASTContext(); if (clang_ast) { clang::ASTContext *ast = clang_ast->getASTContext(); if (ast) { llvm::SmallVector sv; // Show full precision when printing float values const unsigned format_precision = 0; const unsigned format_max_padding = 100; size_t item_bit_size = item_byte_size * 8; if (item_bit_size == ast->getTypeSize(ast->FloatTy)) { llvm::APInt apint(item_bit_size, this->GetMaxU64(&offset, item_byte_size)); llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->FloatTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } else if (item_bit_size == ast->getTypeSize(ast->DoubleTy)) { llvm::APInt apint; if (GetAPInt(*this, &offset, item_byte_size, apint)) { llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->DoubleTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } } else if (item_bit_size == ast->getTypeSize(ast->LongDoubleTy)) { const auto &semantics = ast->getFloatTypeSemantics(ast->LongDoubleTy); const auto byte_size = (llvm::APFloat::getSizeInBits(semantics) + 7) / 8; llvm::APInt apint; if (GetAPInt(*this, &offset, byte_size, apint)) { llvm::APFloat apfloat(semantics, apint); apfloat.toString(sv, format_precision, format_max_padding); } } else if (item_bit_size == ast->getTypeSize(ast->HalfTy)) { llvm::APInt apint(item_bit_size, this->GetU16(&offset)); llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->HalfTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } if (!sv.empty()) { s->Printf("%*.*s", (int)sv.size(), (int)sv.size(), sv.data()); used_apfloat = true; } } } } if (!used_apfloat) { std::ostringstream ss; if (item_byte_size == sizeof(float) || item_byte_size == 2) { float f; if (item_byte_size == 2) { uint16_t half = this->GetU16(&offset); f = half2float(half); } else { f = GetFloat(&offset); } ss.precision(std::numeric_limits::digits10); ss << f; } else if (item_byte_size == sizeof(double)) { ss.precision(std::numeric_limits::digits10); ss << GetDouble(&offset); } else if (item_byte_size == sizeof(long double) || item_byte_size == 10) { ss.precision(std::numeric_limits::digits10); ss << GetLongDouble(&offset); } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for float format", (uint64_t)item_byte_size); return offset; } ss.flush(); s->Printf("%s", ss.str().c_str()); } } break; case eFormatUnicode16: s->Printf("U+%4.4x", GetU16(&offset)); break; case eFormatUnicode32: s->Printf("U+0x%8.8x", GetU32(&offset)); break; case eFormatAddressInfo: { addr_t addr = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), addr); if (exe_scope) { TargetSP target_sp(exe_scope->CalculateTarget()); lldb_private::Address so_addr; if (target_sp) { if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) { s->PutChar(' '); so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedDescription, Address::DumpStyleModuleWithFileAddress); } else { so_addr.SetOffset(addr); so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedPointerDescription); } } } } break; case eFormatHexFloat: if (sizeof(float) == item_byte_size) { char float_cstr[256]; llvm::APFloat ap_float(GetFloat(&offset)); ap_float.convertToHexString(float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven); s->Printf("%s", float_cstr); break; } else if (sizeof(double) == item_byte_size) { char float_cstr[256]; llvm::APFloat ap_float(GetDouble(&offset)); ap_float.convertToHexString(float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven); s->Printf("%s", float_cstr); break; } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for hex float format", (uint64_t)item_byte_size); return offset; } break; // please keep the single-item formats below in sync with // FormatManager::GetSingleItemFormat // if you fail to do so, users will start getting different outputs // depending on internal // implementation details they should not care about || case eFormatVectorOfChar: // || s->PutChar('{'); // \/ offset = Dump(s, offset, eFormatCharArray, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt8: s->PutChar('{'); offset = Dump(s, offset, eFormatDecimal, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt8: s->PutChar('{'); offset = Dump(s, offset, eFormatHex, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt16: s->PutChar('{'); offset = Dump(s, offset, eFormatDecimal, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt16: s->PutChar('{'); offset = Dump(s, offset, eFormatHex, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt32: s->PutChar('{'); offset = Dump(s, offset, eFormatDecimal, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt32: s->PutChar('{'); offset = Dump(s, offset, eFormatHex, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt64: s->PutChar('{'); offset = Dump(s, offset, eFormatDecimal, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt64: s->PutChar('{'); offset = Dump(s, offset, eFormatHex, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat16: s->PutChar('{'); offset = Dump(s, offset, eFormatFloat, 2, item_byte_size / 2, item_byte_size / 2, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat32: s->PutChar('{'); offset = Dump(s, offset, eFormatFloat, 4, item_byte_size / 4, item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat64: s->PutChar('{'); offset = Dump(s, offset, eFormatFloat, 8, item_byte_size / 8, item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt128: s->PutChar('{'); offset = Dump(s, offset, eFormatHex, 16, item_byte_size / 16, item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; } } if (item_format == eFormatBytesWithASCII && offset > line_start_offset) { s->Printf("%*s", static_cast( (num_per_line - (offset - line_start_offset)) * 3 + 2), ""); Dump(s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0); } return offset; // Return the offset at which we ended up } //---------------------------------------------------------------------- // Dumps bytes from this object's data to the stream "s" starting // "start_offset" bytes into this data, and ending with the byte // before "end_offset". "base_addr" will be added to the offset // into the dumped data when showing the offset into the data in the // output information. "num_per_line" objects of type "type" will // be dumped with the option to override the format for each object // with "type_format". "type_format" is a printf style formatting // string. If "type_format" is nullptr, then an appropriate format // string will be used for the supplied "type". If the stream "s" // is nullptr, then the output will be send to Log(). //---------------------------------------------------------------------- lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset, offset_t length, uint64_t base_addr, uint32_t num_per_line, DataExtractor::Type type, const char *format) const { if (log == nullptr) return start_offset; offset_t offset; offset_t end_offset; uint32_t count; StreamString sstr; for (offset = start_offset, end_offset = offset + length, count = 0; ValidOffset(offset) && offset < end_offset; ++count) { if ((count % num_per_line) == 0) { // Print out any previous string if (sstr.GetSize() > 0) { log->Printf("%s", sstr.GetData()); sstr.Clear(); } // Reset string offset and fill the current line string with address: if (base_addr != LLDB_INVALID_ADDRESS) sstr.Printf("0x%8.8" PRIx64 ":", (uint64_t)(base_addr + (offset - start_offset))); } switch (type) { case TypeUInt8: sstr.Printf(format ? format : " %2.2x", GetU8(&offset)); break; case TypeChar: { char ch = GetU8(&offset); sstr.Printf(format ? format : " %c", isprint(ch) ? ch : ' '); } break; case TypeUInt16: sstr.Printf(format ? format : " %4.4x", GetU16(&offset)); break; case TypeUInt32: sstr.Printf(format ? format : " %8.8x", GetU32(&offset)); break; case TypeUInt64: sstr.Printf(format ? format : " %16.16" PRIx64, GetU64(&offset)); break; case TypePointer: sstr.Printf(format ? format : " 0x%" PRIx64, GetAddress(&offset)); break; case TypeULEB128: sstr.Printf(format ? format : " 0x%" PRIx64, GetULEB128(&offset)); break; case TypeSLEB128: sstr.Printf(format ? format : " %" PRId64, GetSLEB128(&offset)); break; } } if (sstr.GetSize() > 0) log->Printf("%s", sstr.GetData()); return offset; // Return the offset at which we ended up } //---------------------------------------------------------------------- // DumpUUID // // Dump out a UUID starting at 'offset' bytes into the buffer //---------------------------------------------------------------------- void DataExtractor::DumpUUID(Stream *s, offset_t offset) const { if (s) { const uint8_t *uuid_data = PeekData(offset, 16); if (uuid_data) { lldb_private::UUID uuid(uuid_data, 16); uuid.Dump(s); } else { s->Printf("", offset); } } } void DataExtractor::DumpHexBytes(Stream *s, const void *src, size_t src_len, uint32_t bytes_per_line, addr_t base_addr) { DataExtractor data(src, src_len, eByteOrderLittle, 4); data.Dump(s, 0, // Offset into "src" eFormatBytes, // Dump as hex bytes 1, // Size of each item is 1 for single bytes src_len, // Number of bytes bytes_per_line, // Num bytes per line base_addr, // Base address 0, 0); // Bitfield info } size_t DataExtractor::Copy(DataExtractor &dest_data) const { if (m_data_sp) { // we can pass along the SP to the data dest_data.SetData(m_data_sp); } else { const uint8_t *base_ptr = m_start; size_t data_size = GetByteSize(); dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size))); } return GetByteSize(); } bool DataExtractor::Append(DataExtractor &rhs) { if (rhs.GetByteOrder() != GetByteOrder()) return false; if (rhs.GetByteSize() == 0) return true; if (GetByteSize() == 0) return (rhs.Copy(*this) > 0); size_t bytes = GetByteSize() + rhs.GetByteSize(); DataBufferHeap *buffer_heap_ptr = nullptr; DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); if (!buffer_sp || buffer_heap_ptr == nullptr) return false; uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); memcpy(bytes_ptr, GetDataStart(), GetByteSize()); memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize()); SetData(buffer_sp); return true; } bool DataExtractor::Append(void *buf, offset_t length) { if (buf == nullptr) return false; if (length == 0) return true; size_t bytes = GetByteSize() + length; DataBufferHeap *buffer_heap_ptr = nullptr; DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); if (!buffer_sp || buffer_heap_ptr == nullptr) return false; uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); if (GetByteSize() > 0) memcpy(bytes_ptr, GetDataStart(), GetByteSize()); memcpy(bytes_ptr + GetByteSize(), buf, length); SetData(buffer_sp); return true; } void DataExtractor::Checksum(llvm::SmallVectorImpl &dest, uint64_t max_data) { if (max_data == 0) max_data = GetByteSize(); else max_data = std::min(max_data, GetByteSize()); llvm::MD5 md5; const llvm::ArrayRef data(GetDataStart(), max_data); md5.update(data); llvm::MD5::MD5Result result; md5.final(result); dest.resize(16); std::copy(result, result + 16, dest.begin()); }