//===- Writer.cpp ---------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Writer.h" #include "Config.h" #include "LinkerScript.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Target.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/Endian.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; namespace { // The writer writes a SymbolTable result to a file. template class Writer { public: typedef typename ELFT::uint uintX_t; typedef typename ELFT::Shdr Elf_Shdr; typedef typename ELFT::Ehdr Elf_Ehdr; typedef typename ELFT::Phdr Elf_Phdr; typedef typename ELFT::Sym Elf_Sym; typedef typename ELFT::SymRange Elf_Sym_Range; typedef typename ELFT::Rela Elf_Rela; Writer(SymbolTable &S) : Symtab(S) {} void run(); private: // This describes a program header entry. // Each contains type, access flags and range of output sections that will be // placed in it. struct Phdr { Phdr(unsigned Type, unsigned Flags) { H.p_type = Type; H.p_flags = Flags; } Elf_Phdr H = {}; OutputSectionBase *First = nullptr; OutputSectionBase *Last = nullptr; }; void copyLocalSymbols(); void addReservedSymbols(); void createSections(); void addPredefinedSections(); bool needsGot(); template void scanRelocs(InputSectionBase &C, ArrayRef Rels); void scanRelocs(InputSection &C); void scanRelocs(InputSectionBase &S, const Elf_Shdr &RelSec); RelExpr adjustExpr(SymbolBody &S, bool IsWrite, RelExpr Expr, uint32_t Type); void createPhdrs(); void assignAddresses(); void assignFileOffsets(); void setPhdrs(); void fixHeaders(); void fixSectionAlignments(); void fixAbsoluteSymbols(); void openFile(); void writeHeader(); void writeSections(); void writeBuildId(); bool isDiscarded(InputSectionBase *IS) const; StringRef getOutputSectionName(InputSectionBase *S) const; bool needsInterpSection() const { return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty(); } bool isOutputDynamic() const { return !Symtab.getSharedFiles().empty() || Config->Pic; } template void scanRelocsForThunks(const elf::ObjectFile &File, ArrayRef Rels); void ensureBss(); void addCommonSymbols(std::vector &Syms); void addCopyRelSymbol(SharedSymbol *Sym); std::unique_ptr Buffer; BumpPtrAllocator Alloc; std::vector *> OutputSections; std::vector>> OwningSections; void addRelIpltSymbols(); void addStartEndSymbols(); void addStartStopSymbols(OutputSectionBase *Sec); SymbolTable &Symtab; std::vector Phdrs; uintX_t FileSize; uintX_t SectionHeaderOff; // Flag to force GOT to be in output if we have relocations // that relies on its address. bool HasGotOffRel = false; }; } // anonymous namespace template void elf::writeResult(SymbolTable *Symtab) { typedef typename ELFT::uint uintX_t; typedef typename ELFT::Ehdr Elf_Ehdr; // Create singleton output sections. DynamicSection Dynamic(*Symtab); EhFrameHeader EhFrameHdr; GotSection Got; InterpSection Interp; PltSection Plt; RelocationSection RelaDyn(Config->Rela ? ".rela.dyn" : ".rel.dyn"); StringTableSection DynStrTab(".dynstr", true); StringTableSection ShStrTab(".shstrtab", false); SymbolTableSection DynSymTab(*Symtab, DynStrTab); VersionTableSection VerSym; VersionNeedSection VerNeed; OutputSectionBase ElfHeader("", 0, SHF_ALLOC); ElfHeader.setSize(sizeof(Elf_Ehdr)); OutputSectionBase ProgramHeaders("", 0, SHF_ALLOC); ProgramHeaders.updateAlign(sizeof(uintX_t)); // Instantiate optional output sections if they are needed. std::unique_ptr> BuildId; std::unique_ptr> GnuHashTab; std::unique_ptr> GotPlt; std::unique_ptr> HashTab; std::unique_ptr> RelaPlt; std::unique_ptr> StrTab; std::unique_ptr> SymTabSec; std::unique_ptr> MipsRldMap; if (Config->BuildId == BuildIdKind::Fnv1) BuildId.reset(new BuildIdFnv1); else if (Config->BuildId == BuildIdKind::Md5) BuildId.reset(new BuildIdMd5); else if (Config->BuildId == BuildIdKind::Sha1) BuildId.reset(new BuildIdSha1); if (Config->GnuHash) GnuHashTab.reset(new GnuHashTableSection); if (Config->SysvHash) HashTab.reset(new HashTableSection); if (Target->UseLazyBinding) { StringRef S = Config->Rela ? ".rela.plt" : ".rel.plt"; GotPlt.reset(new GotPltSection); RelaPlt.reset(new RelocationSection(S)); } if (!Config->StripAll) { StrTab.reset(new StringTableSection(".strtab", false)); SymTabSec.reset(new SymbolTableSection(*Symtab, *StrTab)); } if (Config->EMachine == EM_MIPS && !Config->Shared) { // This is a MIPS specific section to hold a space within the data segment // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry. // See "Dynamic section" in Chapter 5 in the following document: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf MipsRldMap.reset(new OutputSection(".rld_map", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE)); MipsRldMap->setSize(sizeof(uintX_t)); MipsRldMap->updateAlign(sizeof(uintX_t)); } Out::BuildId = BuildId.get(); Out::DynStrTab = &DynStrTab; Out::DynSymTab = &DynSymTab; Out::Dynamic = &Dynamic; Out::EhFrameHdr = &EhFrameHdr; Out::GnuHashTab = GnuHashTab.get(); Out::Got = &Got; Out::GotPlt = GotPlt.get(); Out::HashTab = HashTab.get(); Out::Interp = &Interp; Out::Plt = &Plt; Out::RelaDyn = &RelaDyn; Out::RelaPlt = RelaPlt.get(); Out::ShStrTab = &ShStrTab; Out::StrTab = StrTab.get(); Out::SymTab = SymTabSec.get(); Out::VerSym = &VerSym; Out::VerNeed = &VerNeed; Out::Bss = nullptr; Out::MipsRldMap = MipsRldMap.get(); Out::Opd = nullptr; Out::OpdBuf = nullptr; Out::TlsPhdr = nullptr; Out::ElfHeader = &ElfHeader; Out::ProgramHeaders = &ProgramHeaders; Writer(*Symtab).run(); } // The main function of the writer. template void Writer::run() { if (!Config->DiscardAll) copyLocalSymbols(); addReservedSymbols(); createSections(); if (HasError) return; if (Config->Relocatable) { assignFileOffsets(); } else { createPhdrs(); fixHeaders(); if (ScriptConfig->DoLayout) { Script::X->assignAddresses(OutputSections); } else { fixSectionAlignments(); assignAddresses(); } assignFileOffsets(); setPhdrs(); fixAbsoluteSymbols(); } openFile(); if (HasError) return; writeHeader(); writeSections(); writeBuildId(); if (HasError) return; check(Buffer->commit()); } namespace { template struct SectionKey { typedef typename std::conditional::type uintX_t; StringRef Name; uint32_t Type; uintX_t Flags; uintX_t Alignment; }; } namespace llvm { template struct DenseMapInfo> { static SectionKey getEmptyKey() { return SectionKey{DenseMapInfo::getEmptyKey(), 0, 0, 0}; } static SectionKey getTombstoneKey() { return SectionKey{DenseMapInfo::getTombstoneKey(), 0, 0, 0}; } static unsigned getHashValue(const SectionKey &Val) { return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment); } static bool isEqual(const SectionKey &LHS, const SectionKey &RHS) { return DenseMapInfo::isEqual(LHS.Name, RHS.Name) && LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && LHS.Alignment == RHS.Alignment; } }; } // Returns the number of relocations processed. template static unsigned handleTlsRelocation(uint32_t Type, SymbolBody &Body, InputSectionBase &C, typename ELFT::uint Offset, typename ELFT::uint Addend, RelExpr Expr) { if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC)) return 0; if (!Body.isTls()) return 0; typedef typename ELFT::uint uintX_t; if (Expr == R_TLSLD_PC || Expr == R_TLSLD) { // Local-Dynamic relocs can be relaxed to Local-Exec. if (!Config->Shared) { C.Relocations.push_back( {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body}); return 2; } if (Out::Got->addTlsIndex()) Out::RelaDyn->addReloc({Target->TlsModuleIndexRel, Out::Got, Out::Got->getTlsIndexOff(), false, nullptr, 0}); C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); return 1; } // Local-Dynamic relocs can be relaxed to Local-Exec. if (Target->isTlsLocalDynamicRel(Type) && !Config->Shared) { C.Relocations.push_back( {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body}); return 1; } if (Target->isTlsGlobalDynamicRel(Type)) { if (Config->Shared) { if (Out::Got->addDynTlsEntry(Body)) { uintX_t Off = Out::Got->getGlobalDynOffset(Body); Out::RelaDyn->addReloc( {Target->TlsModuleIndexRel, Out::Got, Off, false, &Body, 0}); Out::RelaDyn->addReloc({Target->TlsOffsetRel, Out::Got, Off + (uintX_t)sizeof(uintX_t), false, &Body, 0}); } C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); return 1; } // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec // depending on the symbol being locally defined or not. if (Body.isPreemptible()) { Expr = Expr == R_TLSGD_PC ? R_RELAX_TLS_GD_TO_IE_PC : R_RELAX_TLS_GD_TO_IE; C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); if (!Body.isInGot()) { Out::Got->addEntry(Body); Out::RelaDyn->addReloc({Target->TlsGotRel, Out::Got, Body.getGotOffset(), false, &Body, 0}); } return 2; } C.Relocations.push_back( {R_RELAX_TLS_GD_TO_LE, Type, Offset, Addend, &Body}); return Target->TlsGdToLeSkip; } // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally // defined. if (Target->isTlsInitialExecRel(Type) && !Config->Shared && !Body.isPreemptible()) { C.Relocations.push_back( {R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Body}); return 1; } return 0; } // Some targets might require creation of thunks for relocations. Now we // support only MIPS which requires LA25 thunk to call PIC code from non-PIC // one. Scan relocations to find each one requires thunk. template template void Writer::scanRelocsForThunks(const elf::ObjectFile &File, ArrayRef Rels) { for (const RelTy &RI : Rels) { uint32_t Type = RI.getType(Config->Mips64EL); SymbolBody &Body = File.getRelocTargetSym(RI); if (Body.hasThunk() || !Target->needsThunk(Type, File, Body)) continue; auto *D = cast>(&Body); auto *S = cast>(D->Section); S->addThunk(Body); } } template static int16_t readSignedLo16(const uint8_t *Loc) { return read32(Loc) & 0xffff; } template static uint32_t getMipsPairType(const RelTy *Rel, const SymbolBody &Sym) { switch (Rel->getType(Config->Mips64EL)) { case R_MIPS_HI16: return R_MIPS_LO16; case R_MIPS_GOT16: return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE; case R_MIPS_PCHI16: return R_MIPS_PCLO16; case R_MICROMIPS_HI16: return R_MICROMIPS_LO16; default: return R_MIPS_NONE; } } template static int32_t findMipsPairedAddend(const uint8_t *Buf, const uint8_t *BufLoc, SymbolBody &Sym, const RelTy *Rel, const RelTy *End) { uint32_t SymIndex = Rel->getSymbol(Config->Mips64EL); uint32_t Type = getMipsPairType(Rel, Sym); // Some MIPS relocations use addend calculated from addend of the relocation // itself and addend of paired relocation. ABI requires to compute such // combined addend in case of REL relocation record format only. // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (RelTy::IsRela || Type == R_MIPS_NONE) return 0; for (const RelTy *RI = Rel; RI != End; ++RI) { if (RI->getType(Config->Mips64EL) != Type) continue; if (RI->getSymbol(Config->Mips64EL) != SymIndex) continue; const endianness E = ELFT::TargetEndianness; return ((read32(BufLoc) & 0xffff) << 16) + readSignedLo16(Buf + RI->r_offset); } unsigned OldType = Rel->getType(Config->Mips64EL); StringRef OldName = getELFRelocationTypeName(Config->EMachine, OldType); StringRef NewName = getELFRelocationTypeName(Config->EMachine, Type); warning("can't find matching " + NewName + " relocation for " + OldName); return 0; } // True if non-preemptable symbol always has the same value regardless of where // the DSO is loaded. template static bool isAbsolute(const SymbolBody &Body) { if (Body.isUndefined()) return !Body.isLocal() && Body.symbol()->isWeak(); if (const auto *DR = dyn_cast>(&Body)) return DR->Section == nullptr; // Absolute symbol. return false; } static bool needsPlt(RelExpr Expr) { return Expr == R_PLT_PC || Expr == R_PPC_PLT_OPD || Expr == R_PLT; } template static bool isRelRelative(RelExpr E, uint32_t Type, const SymbolBody &Body) { if (E == R_SIZE) return true; bool AbsVal = (isAbsolute(Body) || Body.isTls()) && !refersToGotEntry(E) && !needsPlt(E); bool RelE = E == R_PC || E == R_PLT_PC || E == R_GOT_PC || E == R_GOTREL || E == R_PAGE_PC; if (AbsVal && !RelE) return true; if (!AbsVal && RelE) return true; return Target->usesOnlyLowPageBits(Type); } static RelExpr toPlt(RelExpr Expr) { if (Expr == R_PPC_OPD) return R_PPC_PLT_OPD; if (Expr == R_PC) return R_PLT_PC; if (Expr == R_ABS) return R_PLT; return Expr; } static RelExpr fromPlt(RelExpr Expr) { // We decided not to use a plt. Optimize a reference to the plt to a // reference to the symbol itself. if (Expr == R_PLT_PC) return R_PC; if (Expr == R_PPC_PLT_OPD) return R_PPC_OPD; if (Expr == R_PLT) return R_ABS; return Expr; } template RelExpr Writer::adjustExpr(SymbolBody &Body, bool IsWrite, RelExpr Expr, uint32_t Type) { if (Body.isGnuIFunc()) return toPlt(Expr); bool Preemptible = Body.isPreemptible(); if (needsPlt(Expr)) { if (Preemptible) return Expr; return fromPlt(Expr); } if (!IsWrite && !refersToGotEntry(Expr) && !needsPlt(Expr) && Preemptible) { // This relocation would require the dynamic linker to write a value // to read only memory. We can hack around it if we are producing an // executable and the refered symbol can be preemepted to refer to the // executable. if (Config->Shared) { StringRef S = getELFRelocationTypeName(Config->EMachine, Type); error("relocation " + S + " cannot be used when making a shared " "object; recompile with -fPIC."); return Expr; } if (Body.getVisibility() != STV_DEFAULT) { error("Cannot preempt symbol"); return Expr; } if (Body.isObject()) { // Produce a copy relocation. auto *B = cast>(&Body); if (!B->needsCopy()) addCopyRelSymbol(B); return Expr; } if (Body.isFunc()) { // This handles a non PIC program call to function in a shared library.In // an ideal world, we could just report an error saying the relocation can // overflow at runtime. In the real world with glibc, crt1.o has a // R_X86_64_PC32 pointing to libc.so. // // The general idea on how to handle such cases is to create a PLT entry // and use that as the function value. // // For the static linking part, we just return a plt expr and everything // else will use the the PLT entry as the address. // // The remaining problem is making sure pointer equality still works. We // need the help of the dynamic linker for that. We let it know that we // have a direct reference to a so symbol by creating an undefined symbol // with a non zero st_value. Seeing that, the dynamic linker resolves the // symbol to the value of the symbol we created. This is true even for got // entries, so pointer equality is maintained. To avoid an infinite loop, // the only entry that points to the real function is a dedicated got // entry used by the plt. That is identified by special relocation types // (R_X86_64_JUMP_SLOT, R_386_JMP_SLOT, etc). Body.NeedsCopyOrPltAddr = true; return toPlt(Expr); } error("Symbol is missing type"); } return Expr; } // The reason we have to do this early scan is as follows // * To mmap the output file, we need to know the size // * For that, we need to know how many dynamic relocs we will have. // It might be possible to avoid this by outputting the file with write: // * Write the allocated output sections, computing addresses. // * Apply relocations, recording which ones require a dynamic reloc. // * Write the dynamic relocations. // * Write the rest of the file. // This would have some drawbacks. For example, we would only know if .rela.dyn // is needed after applying relocations. If it is, it will go after rw and rx // sections. Given that it is ro, we will need an extra PT_LOAD. This // complicates things for the dynamic linker and means we would have to reserve // space for the extra PT_LOAD even if we end up not using it. template template void Writer::scanRelocs(InputSectionBase &C, ArrayRef Rels) { uintX_t Flags = C.getSectionHdr()->sh_flags; bool IsWrite = Flags & SHF_WRITE; auto AddDyn = [=](const DynamicReloc &Reloc) { Out::RelaDyn->addReloc(Reloc); }; const elf::ObjectFile &File = *C.getFile(); ArrayRef SectionData = C.getSectionData(); const uint8_t *Buf = SectionData.begin(); for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) { const RelTy &RI = *I; SymbolBody &Body = File.getRelocTargetSym(RI); uint32_t Type = RI.getType(Config->Mips64EL); // Ignore "hint" relocation because it is for optional code optimization. if (Target->isHintRel(Type)) continue; uintX_t Offset = C.getOffset(RI.r_offset); if (Offset == (uintX_t)-1) continue; RelExpr Expr = Target->getRelExpr(Type, Body); Expr = adjustExpr(Body, IsWrite, Expr, Type); if (HasError) continue; bool Preemptible = Body.isPreemptible(); if (auto *B = dyn_cast>(&Body)) if (B->needsCopy()) Preemptible = false; // This relocation does not require got entry, but it is relative to got and // needs it to be created. Here we request for that. if (Expr == R_GOTONLY_PC || Expr == R_GOTREL || Expr == R_PPC_TOC) HasGotOffRel = true; uintX_t Addend = getAddend(RI); const uint8_t *BufLoc = Buf + RI.r_offset; if (!RelTy::IsRela) Addend += Target->getImplicitAddend(BufLoc, Type); if (Config->EMachine == EM_MIPS) { Addend += findMipsPairedAddend(Buf, BufLoc, Body, &RI, E); if (Type == R_MIPS_LO16 && Expr == R_PC) // R_MIPS_LO16 expression has R_PC type iif the target is _gp_disp // symbol. In that case we should use the following formula for // calculation "AHL + GP - P + 4". Let's add 4 right here. // For details see p. 4-19 at // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf Addend += 4; } if (unsigned Processed = handleTlsRelocation(Type, Body, C, Offset, Addend, Expr)) { I += (Processed - 1); continue; } if (Expr == R_GOT && !isRelRelative(Expr, Type, Body) && Config->Shared) AddDyn({Target->RelativeRel, C.OutSec, Offset, true, &Body, getAddend(RI)}); // If a relocation needs PLT, we create a PLT and a GOT slot // for the symbol. if (needsPlt(Expr)) { C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); if (Body.isInPlt()) continue; Out::Plt->addEntry(Body); uint32_t Rel; if (Body.isGnuIFunc()) Rel = Preemptible ? Target->PltRel : Target->IRelativeRel; else Rel = Target->UseLazyBinding ? Target->PltRel : Target->GotRel; if (Target->UseLazyBinding) { Out::GotPlt->addEntry(Body); Out::RelaPlt->addReloc({Rel, Out::GotPlt, Body.getGotPltOffset(), !Preemptible, &Body, 0}); } else { if (Body.isInGot()) continue; Out::Got->addEntry(Body); AddDyn({Rel, Out::Got, Body.getGotOffset(), !Preemptible, &Body, 0}); } continue; } if (Target->needsThunk(Type, File, Body)) { C.Relocations.push_back({R_THUNK, Type, Offset, Addend, &Body}); continue; } // If a relocation needs GOT, we create a GOT slot for the symbol. if (refersToGotEntry(Expr)) { uint32_t T = Body.isTls() ? Target->getTlsGotRel(Type) : Type; if (Config->EMachine == EM_MIPS && Expr == R_GOT_OFF) Addend -= MipsGPOffset; C.Relocations.push_back({Expr, T, Offset, Addend, &Body}); if (Body.isInGot()) continue; Out::Got->addEntry(Body); if (Config->EMachine == EM_MIPS) // MIPS ABI has special rules to process GOT entries // and doesn't require relocation entries for them. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf continue; if (Preemptible || (Config->Pic && !isAbsolute(Body))) { uint32_t DynType; if (Body.isTls()) DynType = Target->TlsGotRel; else if (Preemptible) DynType = Target->GotRel; else DynType = Target->RelativeRel; AddDyn({DynType, Out::Got, Body.getGotOffset(), !Preemptible, &Body, 0}); } continue; } if (Preemptible) { // We don't know anything about the finaly symbol. Just ask the dynamic // linker to handle the relocation for us. AddDyn({Target->getDynRel(Type), C.OutSec, Offset, false, &Body, Addend}); // MIPS ABI turns using of GOT and dynamic relocations inside out. // While regular ABI uses dynamic relocations to fill up GOT entries // MIPS ABI requires dynamic linker to fills up GOT entries using // specially sorted dynamic symbol table. This affects even dynamic // relocations against symbols which do not require GOT entries // creation explicitly, i.e. do not have any GOT-relocations. So if // a preemptible symbol has a dynamic relocation we anyway have // to create a GOT entry for it. // If a non-preemptible symbol has a dynamic relocation against it, // dynamic linker takes it st_value, adds offset and writes down // result of the dynamic relocation. In case of preemptible symbol // dynamic linker performs symbol resolution, writes the symbol value // to the GOT entry and reads the GOT entry when it needs to perform // a dynamic relocation. // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 if (Config->EMachine == EM_MIPS && !Body.isInGot()) Out::Got->addEntry(Body); continue; } // We know that this is the final symbol. If the program being produced // is position independent, the final value is still not known. // If the relocation depends on the symbol value (not the size or distances // in the output), we still need some help from the dynamic linker. // We can however do better than just copying the incoming relocation. We // can process some of it and and just ask the dynamic linker to add the // load address. if (!Config->Pic || isRelRelative(Expr, Type, Body)) { if (Config->EMachine == EM_MIPS && Body.isLocal() && (Type == R_MIPS_GPREL16 || Type == R_MIPS_GPREL32)) Addend += File.getMipsGp0(); C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); continue; } if (Config->EMachine == EM_PPC64 && Type == R_PPC64_TOC) Addend += getPPC64TocBase(); AddDyn({Target->RelativeRel, C.OutSec, Offset, true, &Body, Addend}); C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); } // Scan relocations for necessary thunks. if (Config->EMachine == EM_MIPS) scanRelocsForThunks(File, Rels); } template void Writer::scanRelocs(InputSection &C) { // Scan all relocations. Each relocation goes through a series // of tests to determine if it needs special treatment, such as // creating GOT, PLT, copy relocations, etc. // Note that relocations for non-alloc sections are directly // processed by InputSection::relocateNative. if (C.getSectionHdr()->sh_flags & SHF_ALLOC) for (const Elf_Shdr *RelSec : C.RelocSections) scanRelocs(C, *RelSec); } template void Writer::scanRelocs(InputSectionBase &S, const Elf_Shdr &RelSec) { ELFFile &EObj = S.getFile()->getObj(); if (RelSec.sh_type == SHT_RELA) scanRelocs(S, EObj.relas(&RelSec)); else scanRelocs(S, EObj.rels(&RelSec)); } template static void reportUndefined(SymbolTable &Symtab, SymbolBody *Sym) { if (!Config->NoUndefined) { if (Config->Relocatable) return; if (Config->Shared) if (Sym->symbol()->Visibility == STV_DEFAULT) return; } std::string Msg = "undefined symbol: " + Sym->getName().str(); if (InputFile *File = Symtab.findFile(Sym)) Msg += " in " + File->getName().str(); if (Config->NoinhibitExec) warning(Msg); else error(Msg); } template static bool shouldKeepInSymtab(InputSectionBase *Sec, StringRef SymName, const SymbolBody &B) { if (B.isFile()) return false; // We keep sections in symtab for relocatable output. if (B.isSection()) return Config->Relocatable; // If sym references a section in a discarded group, don't keep it. if (Sec == &InputSection::Discarded) return false; if (Config->DiscardNone) return true; // In ELF assembly .L symbols are normally discarded by the assembler. // If the assembler fails to do so, the linker discards them if // * --discard-locals is used. // * The symbol is in a SHF_MERGE section, which is normally the reason for // the assembler keeping the .L symbol. if (!SymName.startswith(".L") && !SymName.empty()) return true; if (Config->DiscardLocals) return false; return !(Sec->getSectionHdr()->sh_flags & SHF_MERGE); } // Local symbols are not in the linker's symbol table. This function scans // each object file's symbol table to copy local symbols to the output. template void Writer::copyLocalSymbols() { if (!Out::SymTab) return; for (const std::unique_ptr> &F : Symtab.getObjectFiles()) { const char *StrTab = F->getStringTable().data(); for (SymbolBody *B : F->getLocalSymbols()) { auto *DR = dyn_cast>(B); // No reason to keep local undefined symbol in symtab. if (!DR) continue; StringRef SymName(StrTab + B->getNameOffset()); InputSectionBase *Sec = DR->Section; if (!shouldKeepInSymtab(Sec, SymName, *B)) continue; if (Sec) { if (!Sec->Live) continue; // Garbage collection is normally able to remove local symbols if they // point to gced sections. In the case of SHF_MERGE sections, we want it // to also be able to drop them if part of the section is gced. // We could look at the section offset map to keep some of these // symbols, but almost all local symbols are .L* symbols, so it // is probably not worth the complexity. if (Config->GcSections && isa>(Sec)) continue; } ++Out::SymTab->NumLocals; if (Config->Relocatable) B->DynsymIndex = Out::SymTab->NumLocals; F->KeptLocalSyms.push_back( std::make_pair(DR, Out::SymTab->StrTabSec.addString(SymName))); } } } // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that // we would like to make sure appear is a specific order to maximize their // coverage by a single signed 16-bit offset from the TOC base pointer. // Conversely, the special .tocbss section should be first among all SHT_NOBITS // sections. This will put it next to the loaded special PPC64 sections (and, // thus, within reach of the TOC base pointer). static int getPPC64SectionRank(StringRef SectionName) { return StringSwitch(SectionName) .Case(".tocbss", 0) .Case(".branch_lt", 2) .Case(".toc", 3) .Case(".toc1", 4) .Case(".opd", 5) .Default(1); } template static bool isRelroSection(OutputSectionBase *Sec) { if (!Config->ZRelro) return false; typename ELFT::uint Flags = Sec->getFlags(); if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) return false; if (Flags & SHF_TLS) return true; uint32_t Type = Sec->getType(); if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || Type == SHT_PREINIT_ARRAY) return true; if (Sec == Out::GotPlt) return Config->ZNow; if (Sec == Out::Dynamic || Sec == Out::Got) return true; StringRef S = Sec->getName(); return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || S == ".eh_frame"; } // Output section ordering is determined by this function. template static bool compareSections(OutputSectionBase *A, OutputSectionBase *B) { typedef typename ELFT::uint uintX_t; int Comp = Script::X->compareSections(A->getName(), B->getName()); if (Comp != 0) return Comp < 0; uintX_t AFlags = A->getFlags(); uintX_t BFlags = B->getFlags(); // Allocatable sections go first to reduce the total PT_LOAD size and // so debug info doesn't change addresses in actual code. bool AIsAlloc = AFlags & SHF_ALLOC; bool BIsAlloc = BFlags & SHF_ALLOC; if (AIsAlloc != BIsAlloc) return AIsAlloc; // We don't have any special requirements for the relative order of // two non allocatable sections. if (!AIsAlloc) return false; // We want the read only sections first so that they go in the PT_LOAD // covering the program headers at the start of the file. bool AIsWritable = AFlags & SHF_WRITE; bool BIsWritable = BFlags & SHF_WRITE; if (AIsWritable != BIsWritable) return BIsWritable; // For a corresponding reason, put non exec sections first (the program // header PT_LOAD is not executable). bool AIsExec = AFlags & SHF_EXECINSTR; bool BIsExec = BFlags & SHF_EXECINSTR; if (AIsExec != BIsExec) return BIsExec; // If we got here we know that both A and B are in the same PT_LOAD. // The TLS initialization block needs to be a single contiguous block in a R/W // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS // sections are placed here as they don't take up virtual address space in the // PT_LOAD. bool AIsTls = AFlags & SHF_TLS; bool BIsTls = BFlags & SHF_TLS; if (AIsTls != BIsTls) return AIsTls; // The next requirement we have is to put nobits sections last. The // reason is that the only thing the dynamic linker will see about // them is a p_memsz that is larger than p_filesz. Seeing that it // zeros the end of the PT_LOAD, so that has to correspond to the // nobits sections. bool AIsNoBits = A->getType() == SHT_NOBITS; bool BIsNoBits = B->getType() == SHT_NOBITS; if (AIsNoBits != BIsNoBits) return BIsNoBits; // We place RelRo section before plain r/w ones. bool AIsRelRo = isRelroSection(A); bool BIsRelRo = isRelroSection(B); if (AIsRelRo != BIsRelRo) return AIsRelRo; // Some architectures have additional ordering restrictions for sections // within the same PT_LOAD. if (Config->EMachine == EM_PPC64) return getPPC64SectionRank(A->getName()) < getPPC64SectionRank(B->getName()); return false; } // The .bss section does not exist if no input file has a .bss section. // This function creates one if that's the case. template void Writer::ensureBss() { if (Out::Bss) return; Out::Bss = new OutputSection(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); OwningSections.emplace_back(Out::Bss); OutputSections.push_back(Out::Bss); } // Until this function is called, common symbols do not belong to any section. // This function adds them to end of BSS section. template void Writer::addCommonSymbols(std::vector &Syms) { if (Syms.empty()) return; // Sort the common symbols by alignment as an heuristic to pack them better. std::stable_sort(Syms.begin(), Syms.end(), [](const DefinedCommon *A, const DefinedCommon *B) { return A->Alignment > B->Alignment; }); ensureBss(); uintX_t Off = Out::Bss->getSize(); for (DefinedCommon *C : Syms) { Off = alignTo(Off, C->Alignment); Out::Bss->updateAlign(C->Alignment); C->OffsetInBss = Off; Off += C->Size; } Out::Bss->setSize(Off); } template static uint32_t getAlignment(SharedSymbol *SS) { typedef typename ELFFile::uintX_t uintX_t; uintX_t SecAlign = SS->File->getSection(SS->Sym)->sh_addralign; uintX_t SymValue = SS->Sym.st_value; int TrailingZeros = std::min(countTrailingZeros(SecAlign), countTrailingZeros(SymValue)); return 1 << TrailingZeros; } // Reserve space in .bss for copy relocation. template void Writer::addCopyRelSymbol(SharedSymbol *SS) { ensureBss(); uintX_t Align = getAlignment(SS); uintX_t Off = alignTo(Out::Bss->getSize(), Align); Out::Bss->setSize(Off + SS->template getSize()); Out::Bss->updateAlign(Align); uintX_t Shndx = SS->Sym.st_shndx; uintX_t Value = SS->Sym.st_value; // Look through the DSO's dynamic symbol table for aliases and create a // dynamic symbol for each one. This causes the copy relocation to correctly // interpose any aliases. for (const Elf_Sym &S : SS->File->getElfSymbols(true)) { if (S.st_shndx != Shndx || S.st_value != Value) continue; auto *Alias = dyn_cast_or_null>( Symtab.find(check(S.getName(SS->File->getStringTable())))); if (!Alias) continue; Alias->OffsetInBss = Off; Alias->NeedsCopyOrPltAddr = true; Alias->symbol()->IsUsedInRegularObj = true; } Out::RelaDyn->addReloc( {Target->CopyRel, Out::Bss, SS->OffsetInBss, false, SS, 0}); } template StringRef Writer::getOutputSectionName(InputSectionBase *S) const { StringRef Dest = Script::X->getOutputSection(S); if (!Dest.empty()) return Dest; StringRef Name = S->getSectionName(); for (StringRef V : {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", ".gcc_except_table.", ".tdata."}) if (Name.startswith(V)) return V.drop_back(); return Name; } template void reportDiscarded(InputSectionBase *IS, const std::unique_ptr> &File) { if (!Config->PrintGcSections || !IS || IS->Live) return; llvm::errs() << "removing unused section from '" << IS->getSectionName() << "' in file '" << File->getName() << "'\n"; } template bool Writer::isDiscarded(InputSectionBase *S) const { return !S || S == &InputSection::Discarded || !S->Live || Script::X->isDiscarded(S); } template static Symbol *addOptionalSynthetic(SymbolTable &Table, StringRef Name, OutputSectionBase &Sec, typename ELFT::uint Val) { if (!Table.find(Name)) return nullptr; return Table.addSynthetic(Name, Sec, Val); } // The beginning and the ending of .rel[a].plt section are marked // with __rel[a]_iplt_{start,end} symbols if it is a statically linked // executable. The runtime needs these symbols in order to resolve // all IRELATIVE relocs on startup. For dynamic executables, we don't // need these symbols, since IRELATIVE relocs are resolved through GOT // and PLT. For details, see http://www.airs.com/blog/archives/403. template void Writer::addRelIpltSymbols() { if (isOutputDynamic() || !Out::RelaPlt) return; StringRef S = Config->Rela ? "__rela_iplt_start" : "__rel_iplt_start"; addOptionalSynthetic(Symtab, S, *Out::RelaPlt, 0); S = Config->Rela ? "__rela_iplt_end" : "__rel_iplt_end"; addOptionalSynthetic(Symtab, S, *Out::RelaPlt, DefinedSynthetic::SectionEnd); } template static bool includeInSymtab(const SymbolBody &B) { if (!B.symbol()->IsUsedInRegularObj) return false; if (auto *D = dyn_cast>(&B)) { // Exclude symbols pointing to garbage-collected sections. if (D->Section && !D->Section->Live) return false; } return true; } // This class knows how to create an output section for a given // input section. Output section type is determined by various // factors, including input section's sh_flags, sh_type and // linker scripts. namespace { template class OutputSectionFactory { typedef typename ELFT::Shdr Elf_Shdr; typedef typename ELFT::uint uintX_t; public: std::pair *, bool> create(InputSectionBase *C, StringRef OutsecName); OutputSectionBase *lookup(StringRef Name, uint32_t Type, uintX_t Flags) { return Map.lookup({Name, Type, Flags, 0}); } private: SectionKey createKey(InputSectionBase *C, StringRef OutsecName); SmallDenseMap, OutputSectionBase *> Map; }; } template std::pair *, bool> OutputSectionFactory::create(InputSectionBase *C, StringRef OutsecName) { SectionKey Key = createKey(C, OutsecName); OutputSectionBase *&Sec = Map[Key]; if (Sec) return {Sec, false}; switch (C->SectionKind) { case InputSectionBase::Regular: Sec = new OutputSection(Key.Name, Key.Type, Key.Flags); break; case InputSectionBase::EHFrame: Sec = new EHOutputSection(Key.Name, Key.Type, Key.Flags); break; case InputSectionBase::Merge: Sec = new MergeOutputSection(Key.Name, Key.Type, Key.Flags, Key.Alignment); break; case InputSectionBase::MipsReginfo: Sec = new MipsReginfoOutputSection(); break; } return {Sec, true}; } template SectionKey OutputSectionFactory::createKey(InputSectionBase *C, StringRef OutsecName) { const Elf_Shdr *H = C->getSectionHdr(); uintX_t Flags = H->sh_flags & ~SHF_GROUP; // For SHF_MERGE we create different output sections for each alignment. // This makes each output section simple and keeps a single level mapping from // input to output. uintX_t Alignment = 0; if (isa>(C)) Alignment = std::max(H->sh_addralign, H->sh_entsize); // GNU as can give .eh_frame section type SHT_PROGBITS or SHT_X86_64_UNWIND // depending on the construct. We want to canonicalize it so that // there is only one .eh_frame in the end. uint32_t Type = H->sh_type; if (Type == SHT_PROGBITS && Config->EMachine == EM_X86_64 && isa>(C)) Type = SHT_X86_64_UNWIND; return SectionKey{OutsecName, Type, Flags, Alignment}; } // The linker is expected to define some symbols depending on // the linking result. This function defines such symbols. template void Writer::addReservedSymbols() { if (Config->EMachine == EM_MIPS) { // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer // so that it points to an absolute address which is relative to GOT. // See "Global Data Symbols" in Chapter 6 in the following document: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf Symtab.addSynthetic("_gp", *Out::Got, MipsGPOffset); // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between // start of function and 'gp' pointer into GOT. ElfSym::MipsGpDisp = addOptionalSynthetic(Symtab, "_gp_disp", *Out::Got, MipsGPOffset) ->body(); // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' // pointer. This symbol is used in the code generated by .cpload pseudo-op // in case of using -mno-shared option. // https://sourceware.org/ml/binutils/2004-12/msg00094.html addOptionalSynthetic(Symtab, "__gnu_local_gp", *Out::Got, MipsGPOffset); } // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol // is magical and is used to produce a R_386_GOTPC relocation. // The R_386_GOTPC relocation value doesn't actually depend on the // symbol value, so it could use an index of STN_UNDEF which, according // to the spec, means the symbol value is 0. // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in // the object file. // The situation is even stranger on x86_64 where the assembly doesn't // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as // an undefined symbol in the .o files. // Given that the symbol is effectively unused, we just create a dummy // hidden one to avoid the undefined symbol error. if (!Config->Relocatable) Symtab.addIgnored("_GLOBAL_OFFSET_TABLE_"); // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For // static linking the linker is required to optimize away any references to // __tls_get_addr, so it's not defined anywhere. Create a hidden definition // to avoid the undefined symbol error. if (!isOutputDynamic()) Symtab.addIgnored("__tls_get_addr"); auto Define = [this](StringRef S, DefinedRegular *&Sym1, DefinedRegular *&Sym2) { Sym1 = Symtab.addIgnored(S, STV_DEFAULT); // The name without the underscore is not a reserved name, // so it is defined only when there is a reference against it. assert(S.startswith("_")); S = S.substr(1); if (SymbolBody *B = Symtab.find(S)) if (B->isUndefined()) Sym2 = Symtab.addAbsolute(S, STV_DEFAULT); }; Define("_end", ElfSym::End, ElfSym::End2); Define("_etext", ElfSym::Etext, ElfSym::Etext2); Define("_edata", ElfSym::Edata, ElfSym::Edata2); } // Sort input sections by section name suffixes for // __attribute__((init_priority(N))). template static void sortInitFini(OutputSectionBase *S) { if (S) reinterpret_cast *>(S)->sortInitFini(); } // Sort input sections by the special rule for .ctors and .dtors. template static void sortCtorsDtors(OutputSectionBase *S) { if (S) reinterpret_cast *>(S)->sortCtorsDtors(); } // Create output section objects and add them to OutputSections. template void Writer::createSections() { // Add .interp first because some loaders want to see that section // on the first page of the executable file when loaded into memory. if (needsInterpSection()) OutputSections.push_back(Out::Interp); // A core file does not usually contain unmodified segments except // the first page of the executable. Add the build ID section now // so that the section is included in the first page. if (Out::BuildId) OutputSections.push_back(Out::BuildId); // Create output sections for input object file sections. std::vector *> RegularSections; OutputSectionFactory Factory; for (const std::unique_ptr> &F : Symtab.getObjectFiles()) { for (InputSectionBase *C : F->getSections()) { if (isDiscarded(C)) { reportDiscarded(C, F); continue; } OutputSectionBase *Sec; bool IsNew; std::tie(Sec, IsNew) = Factory.create(C, getOutputSectionName(C)); if (IsNew) { OwningSections.emplace_back(Sec); OutputSections.push_back(Sec); RegularSections.push_back(Sec); } Sec->addSection(C); } } Out::Bss = static_cast *>( Factory.lookup(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE)); // If we have a .opd section (used under PPC64 for function descriptors), // store a pointer to it here so that we can use it later when processing // relocations. Out::Opd = Factory.lookup(".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC); Out::Dynamic->PreInitArraySec = Factory.lookup( ".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC); Out::Dynamic->InitArraySec = Factory.lookup(".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC); Out::Dynamic->FiniArraySec = Factory.lookup(".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC); // Sort section contents for __attribute__((init_priority(N)). sortInitFini(Out::Dynamic->InitArraySec); sortInitFini(Out::Dynamic->FiniArraySec); sortCtorsDtors(Factory.lookup(".ctors", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC)); sortCtorsDtors(Factory.lookup(".dtors", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC)); // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop // symbols for sections, so that the runtime can get the start and end // addresses of each section by section name. Add such symbols. if (!Config->Relocatable) { addStartEndSymbols(); for (OutputSectionBase *Sec : RegularSections) addStartStopSymbols(Sec); } // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. // It should be okay as no one seems to care about the type. // Even the author of gold doesn't remember why gold behaves that way. // https://sourceware.org/ml/binutils/2002-03/msg00360.html if (isOutputDynamic()) Symtab.addSynthetic("_DYNAMIC", *Out::Dynamic, 0); // Define __rel[a]_iplt_{start,end} symbols if needed. addRelIpltSymbols(); if (Out::EhFrameHdr->Sec) Out::EhFrameHdr->Sec->finalize(); // Scan relocations. This must be done after every symbol is declared so that // we can correctly decide if a dynamic relocation is needed. // Check size() each time to guard against .bss being created. for (unsigned I = 0; I < OutputSections.size(); ++I) { OutputSectionBase *Sec = OutputSections[I]; Sec->forEachInputSection([&](InputSectionBase *S) { if (auto *IS = dyn_cast>(S)) { // Set OutSecOff so that scanRelocs can use it. uintX_t Off = alignTo(Sec->getSize(), S->Align); IS->OutSecOff = Off; scanRelocs(*IS); // Now that scan relocs possibly changed the size, update the offset. Sec->setSize(Off + S->getSize()); } else if (auto *EH = dyn_cast>(S)) { if (EH->RelocSection) scanRelocs(*EH, *EH->RelocSection); } }); } // Now that we have defined all possible symbols including linker- // synthesized ones. Visit all symbols to give the finishing touches. std::vector CommonSymbols; for (Symbol *S : Symtab.getSymbols()) { SymbolBody *Body = S->body(); // Set "used" bit for --as-needed. if (S->IsUsedInRegularObj && !S->isWeak()) if (auto *SS = dyn_cast>(Body)) SS->File->IsUsed = true; if (Body->isUndefined() && !S->isWeak()) reportUndefined(Symtab, Body); if (auto *C = dyn_cast(Body)) CommonSymbols.push_back(C); if (!includeInSymtab(*Body)) continue; if (Out::SymTab) Out::SymTab->addSymbol(Body); if (isOutputDynamic() && S->includeInDynsym()) { Out::DynSymTab->addSymbol(Body); if (auto *SS = dyn_cast>(Body)) Out::VerNeed->addSymbol(SS); } } // Do not proceed if there was an undefined symbol. if (HasError) return; addCommonSymbols(CommonSymbols); // So far we have added sections from input object files. // This function adds linker-created Out::* sections. addPredefinedSections(); std::stable_sort(OutputSections.begin(), OutputSections.end(), compareSections); unsigned I = 1; for (OutputSectionBase *Sec : OutputSections) { Sec->SectionIndex = I++; Sec->setSHName(Out::ShStrTab->addString(Sec->getName())); } // Finalizers fix each section's size. // .dynsym is finalized early since that may fill up .gnu.hash. if (isOutputDynamic()) Out::DynSymTab->finalize(); // Fill other section headers. The dynamic table is finalized // at the end because some tags like RELSZ depend on result // of finalizing other sections. The dynamic string table is // finalized once the .dynamic finalizer has added a few last // strings. See DynamicSection::finalize() for (OutputSectionBase *Sec : OutputSections) if (Sec != Out::DynStrTab && Sec != Out::Dynamic) Sec->finalize(); if (isOutputDynamic()) Out::Dynamic->finalize(); } template bool Writer::needsGot() { if (!Out::Got->empty()) return true; // We add the .got section to the result for dynamic MIPS target because // its address and properties are mentioned in the .dynamic section. if (Config->EMachine == EM_MIPS) return true; // If we have a relocation that is relative to GOT (such as GOTOFFREL), // we need to emit a GOT even if it's empty. return HasGotOffRel; } // This function add Out::* sections to OutputSections. template void Writer::addPredefinedSections() { auto Add = [&](OutputSectionBase *C) { if (C) OutputSections.push_back(C); }; // This order is not the same as the final output order // because we sort the sections using their attributes below. Add(Out::SymTab); Add(Out::ShStrTab); Add(Out::StrTab); if (isOutputDynamic()) { Add(Out::DynSymTab); if (Out::VerNeed->getNeedNum() != 0) { Add(Out::VerSym); Add(Out::VerNeed); } Add(Out::GnuHashTab); Add(Out::HashTab); Add(Out::Dynamic); Add(Out::DynStrTab); if (Out::RelaDyn->hasRelocs()) Add(Out::RelaDyn); Add(Out::MipsRldMap); } // We always need to add rel[a].plt to output if it has entries. // Even during static linking it can contain R_[*]_IRELATIVE relocations. if (Out::RelaPlt && Out::RelaPlt->hasRelocs()) { Add(Out::RelaPlt); Out::RelaPlt->Static = !isOutputDynamic(); } if (needsGot()) Add(Out::Got); if (Out::GotPlt && !Out::GotPlt->empty()) Add(Out::GotPlt); if (!Out::Plt->empty()) Add(Out::Plt); if (Out::EhFrameHdr->Live) Add(Out::EhFrameHdr); } // The linker is expected to define SECNAME_start and SECNAME_end // symbols for a few sections. This function defines them. template void Writer::addStartEndSymbols() { auto Define = [&](StringRef Start, StringRef End, OutputSectionBase *OS) { if (OS) { this->Symtab.addSynthetic(Start, *OS, 0); this->Symtab.addSynthetic(End, *OS, DefinedSynthetic::SectionEnd); } else { this->Symtab.addIgnored(Start); this->Symtab.addIgnored(End); } }; Define("__preinit_array_start", "__preinit_array_end", Out::Dynamic->PreInitArraySec); Define("__init_array_start", "__init_array_end", Out::Dynamic->InitArraySec); Define("__fini_array_start", "__fini_array_end", Out::Dynamic->FiniArraySec); } // If a section name is valid as a C identifier (which is rare because of // the leading '.'), linkers are expected to define __start_ and // __stop_ symbols. They are at beginning and end of the section, // respectively. This is not requested by the ELF standard, but GNU ld and // gold provide the feature, and used by many programs. template void Writer::addStartStopSymbols(OutputSectionBase *Sec) { StringRef S = Sec->getName(); if (!isValidCIdentifier(S)) return; StringSaver Saver(Alloc); StringRef Start = Saver.save("__start_" + S); StringRef Stop = Saver.save("__stop_" + S); if (SymbolBody *B = Symtab.find(Start)) if (B->isUndefined()) Symtab.addSynthetic(Start, *Sec, 0); if (SymbolBody *B = Symtab.find(Stop)) if (B->isUndefined()) Symtab.addSynthetic(Stop, *Sec, DefinedSynthetic::SectionEnd); } template static bool needsPtLoad(OutputSectionBase *Sec) { if (!(Sec->getFlags() & SHF_ALLOC)) return false; // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is // responsible for allocating space for them, not the PT_LOAD that // contains the TLS initialization image. if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) return false; return true; } static uint32_t toPhdrFlags(uint64_t Flags) { uint32_t Ret = PF_R; if (Flags & SHF_WRITE) Ret |= PF_W; if (Flags & SHF_EXECINSTR) Ret |= PF_X; return Ret; } // Decide which program headers to create and which sections to include in each // one. template void Writer::createPhdrs() { auto AddHdr = [this](unsigned Type, unsigned Flags) { return &*Phdrs.emplace(Phdrs.end(), Type, Flags); }; auto AddSec = [](Phdr &Hdr, OutputSectionBase *Sec) { Hdr.Last = Sec; if (!Hdr.First) Hdr.First = Sec; Hdr.H.p_align = std::max(Hdr.H.p_align, Sec->getAlign()); }; // The first phdr entry is PT_PHDR which describes the program header itself. Phdr &Hdr = *AddHdr(PT_PHDR, PF_R); AddSec(Hdr, Out::ProgramHeaders); // PT_INTERP must be the second entry if exists. if (needsInterpSection()) { Phdr &Hdr = *AddHdr(PT_INTERP, toPhdrFlags(Out::Interp->getFlags())); AddSec(Hdr, Out::Interp); } // Add the first PT_LOAD segment for regular output sections. uintX_t Flags = PF_R; Phdr *Load = AddHdr(PT_LOAD, Flags); AddSec(*Load, Out::ElfHeader); AddSec(*Load, Out::ProgramHeaders); Phdr TlsHdr(PT_TLS, PF_R); Phdr RelRo(PT_GNU_RELRO, PF_R); Phdr Note(PT_NOTE, PF_R); for (OutputSectionBase *Sec : OutputSections) { if (!(Sec->getFlags() & SHF_ALLOC)) break; // If we meet TLS section then we create TLS header // and put all TLS sections inside for futher use when // assign addresses. if (Sec->getFlags() & SHF_TLS) AddSec(TlsHdr, Sec); if (!needsPtLoad(Sec)) continue; // If flags changed then we want new load segment. uintX_t NewFlags = toPhdrFlags(Sec->getFlags()); if (Flags != NewFlags) { Load = AddHdr(PT_LOAD, NewFlags); Flags = NewFlags; } AddSec(*Load, Sec); if (isRelroSection(Sec)) AddSec(RelRo, Sec); if (Sec->getType() == SHT_NOTE) AddSec(Note, Sec); } // Add the TLS segment unless it's empty. if (TlsHdr.First) Phdrs.push_back(std::move(TlsHdr)); // Add an entry for .dynamic. if (isOutputDynamic()) { Phdr &H = *AddHdr(PT_DYNAMIC, toPhdrFlags(Out::Dynamic->getFlags())); AddSec(H, Out::Dynamic); } // PT_GNU_RELRO includes all sections that should be marked as // read-only by dynamic linker after proccessing relocations. if (RelRo.First) Phdrs.push_back(std::move(RelRo)); // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. if (Out::EhFrameHdr->Live) { Phdr &Hdr = *AddHdr(PT_GNU_EH_FRAME, toPhdrFlags(Out::EhFrameHdr->getFlags())); AddSec(Hdr, Out::EhFrameHdr); } // PT_GNU_STACK is a special section to tell the loader to make the // pages for the stack non-executable. if (!Config->ZExecStack) AddHdr(PT_GNU_STACK, PF_R | PF_W); if (Note.First) Phdrs.push_back(std::move(Note)); Out::ProgramHeaders->setSize(sizeof(Elf_Phdr) * Phdrs.size()); } // The first section of each PT_LOAD and the first section after PT_GNU_RELRO // have to be page aligned so that the dynamic linker can set the permissions. template void Writer::fixSectionAlignments() { for (const Phdr &P : Phdrs) if (P.H.p_type == PT_LOAD) P.First->PageAlign = true; for (const Phdr &P : Phdrs) { if (P.H.p_type != PT_GNU_RELRO) continue; // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we // have to align it to a page. auto End = OutputSections.end(); auto I = std::find(OutputSections.begin(), End, P.Last); if (I == End || (I + 1) == End) continue; OutputSectionBase *Sec = *(I + 1); if (needsPtLoad(Sec)) Sec->PageAlign = true; } } // We should set file offsets and VAs for elf header and program headers // sections. These are special, we do not include them into output sections // list, but have them to simplify the code. template void Writer::fixHeaders() { uintX_t BaseVA = ScriptConfig->DoLayout ? 0 : Target->getVAStart(); Out::ElfHeader->setVA(BaseVA); Out::ElfHeader->setFileOffset(0); uintX_t Off = Out::ElfHeader->getSize(); Out::ProgramHeaders->setVA(Off + BaseVA); Out::ProgramHeaders->setFileOffset(Off); } // Assign VAs (addresses at run-time) to output sections. template void Writer::assignAddresses() { uintX_t VA = Target->getVAStart() + Out::ElfHeader->getSize() + Out::ProgramHeaders->getSize(); uintX_t ThreadBssOffset = 0; for (OutputSectionBase *Sec : OutputSections) { uintX_t Align = Sec->getAlign(); if (Sec->PageAlign) Align = std::max(Align, Target->PageSize); // We only assign VAs to allocated sections. if (needsPtLoad(Sec)) { VA = alignTo(VA, Align); Sec->setVA(VA); VA += Sec->getSize(); } else if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) { uintX_t TVA = VA + ThreadBssOffset; TVA = alignTo(TVA, Align); Sec->setVA(TVA); ThreadBssOffset = TVA - VA + Sec->getSize(); } } } // Adjusts the file alignment for a given output section and returns // its new file offset. The file offset must be the same with its // virtual address (modulo the page size) so that the loader can load // executables without any address adjustment. template static uintX_t getFileAlignment(uintX_t Off, OutputSectionBase *Sec) { uintX_t Align = Sec->getAlign(); if (Sec->PageAlign) Align = std::max(Align, Target->PageSize); Off = alignTo(Off, Align); // Relocatable output does not have program headers // and does not need any other offset adjusting. if (Config->Relocatable || !(Sec->getFlags() & SHF_ALLOC)) return Off; return alignTo(Off, Target->PageSize, Sec->getVA()); } // Assign file offsets to output sections. template void Writer::assignFileOffsets() { uintX_t Off = Out::ElfHeader->getSize() + Out::ProgramHeaders->getSize(); for (OutputSectionBase *Sec : OutputSections) { if (Sec->getType() == SHT_NOBITS) { Sec->setFileOffset(Off); continue; } Off = getFileAlignment(Off, Sec); Sec->setFileOffset(Off); Off += Sec->getSize(); } SectionHeaderOff = alignTo(Off, sizeof(uintX_t)); FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); } // Finalize the program headers. We call this function after we assign // file offsets and VAs to all sections. template void Writer::setPhdrs() { for (Phdr &P : Phdrs) { Elf_Phdr &H = P.H; OutputSectionBase *First = P.First; OutputSectionBase *Last = P.Last; if (First) { H.p_filesz = Last->getFileOff() - First->getFileOff(); if (Last->getType() != SHT_NOBITS) H.p_filesz += Last->getSize(); H.p_memsz = Last->getVA() + Last->getSize() - First->getVA(); H.p_offset = First->getFileOff(); H.p_vaddr = First->getVA(); } if (H.p_type == PT_LOAD) H.p_align = Target->PageSize; else if (H.p_type == PT_GNU_RELRO) H.p_align = 1; H.p_paddr = H.p_vaddr; // The TLS pointer goes after PT_TLS. At least glibc will align it, // so round up the size to make sure the offsets are correct. if (H.p_type == PT_TLS) { Out::TlsPhdr = &H; H.p_memsz = alignTo(H.p_memsz, H.p_align); } } } static uint32_t getMipsEFlags(bool Is64Bits) { // FIXME: In fact ELF flags depends on ELF flags of input object files // and selected emulation. For now just use hard coded values. if (Is64Bits) return EF_MIPS_CPIC | EF_MIPS_PIC | EF_MIPS_ARCH_64R2; uint32_t V = EF_MIPS_CPIC | EF_MIPS_ABI_O32 | EF_MIPS_ARCH_32R2; if (Config->Shared) V |= EF_MIPS_PIC; return V; } template static typename ELFT::uint getEntryAddr() { if (Symbol *S = Config->EntrySym) return S->body()->getVA(); if (Config->EntryAddr != uint64_t(-1)) return Config->EntryAddr; return 0; } template static uint8_t getELFEncoding() { if (ELFT::TargetEndianness == llvm::support::little) return ELFDATA2LSB; return ELFDATA2MSB; } static uint16_t getELFType() { if (Config->Pic) return ET_DYN; if (Config->Relocatable) return ET_REL; return ET_EXEC; } // This function is called after we have assigned address and size // to each section. This function fixes some predefined absolute // symbol values that depend on section address and size. template void Writer::fixAbsoluteSymbols() { auto Set = [](DefinedRegular *&S1, DefinedRegular *&S2, uintX_t V) { if (S1) S1->Value = V; if (S2) S2->Value = V; }; // _etext is the first location after the last read-only loadable segment. // _edata is the first location after the last read-write loadable segment. // _end is the first location after the uninitialized data region. for (Phdr &P : Phdrs) { Elf_Phdr &H = P.H; if (H.p_type != PT_LOAD) continue; Set(ElfSym::End, ElfSym::End2, H.p_vaddr + H.p_memsz); uintX_t Val = H.p_vaddr + H.p_filesz; if (H.p_flags & PF_W) Set(ElfSym::Edata, ElfSym::Edata2, Val); else Set(ElfSym::Etext, ElfSym::Etext2, Val); } } template void Writer::writeHeader() { uint8_t *Buf = Buffer->getBufferStart(); memcpy(Buf, "\177ELF", 4); auto &FirstObj = cast>(*Config->FirstElf); // Write the ELF header. auto *EHdr = reinterpret_cast(Buf); EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; EHdr->e_ident[EI_DATA] = getELFEncoding(); EHdr->e_ident[EI_VERSION] = EV_CURRENT; EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI(); EHdr->e_type = getELFType(); EHdr->e_machine = FirstObj.getEMachine(); EHdr->e_version = EV_CURRENT; EHdr->e_entry = getEntryAddr(); EHdr->e_shoff = SectionHeaderOff; EHdr->e_ehsize = sizeof(Elf_Ehdr); EHdr->e_phnum = Phdrs.size(); EHdr->e_shentsize = sizeof(Elf_Shdr); EHdr->e_shnum = OutputSections.size() + 1; EHdr->e_shstrndx = Out::ShStrTab->SectionIndex; if (Config->EMachine == EM_MIPS) EHdr->e_flags = getMipsEFlags(ELFT::Is64Bits); if (!Config->Relocatable) { EHdr->e_phoff = sizeof(Elf_Ehdr); EHdr->e_phentsize = sizeof(Elf_Phdr); } // Write the program header table. auto *HBuf = reinterpret_cast(Buf + EHdr->e_phoff); for (Phdr &P : Phdrs) *HBuf++ = P.H; // Write the section header table. Note that the first table entry is null. auto *SHdrs = reinterpret_cast(Buf + EHdr->e_shoff); for (OutputSectionBase *Sec : OutputSections) Sec->writeHeaderTo(++SHdrs); } template void Writer::openFile() { ErrorOr> BufferOrErr = FileOutputBuffer::create(Config->OutputFile, FileSize, FileOutputBuffer::F_executable); if (BufferOrErr) Buffer = std::move(*BufferOrErr); else error(BufferOrErr, "failed to open " + Config->OutputFile); } // Write section contents to a mmap'ed file. template void Writer::writeSections() { uint8_t *Buf = Buffer->getBufferStart(); // PPC64 needs to process relocations in the .opd section before processing // relocations in code-containing sections. if (OutputSectionBase *Sec = Out::Opd) { Out::OpdBuf = Buf + Sec->getFileOff(); Sec->writeTo(Buf + Sec->getFileOff()); } for (OutputSectionBase *Sec : OutputSections) if (Sec != Out::Opd) Sec->writeTo(Buf + Sec->getFileOff()); } template void Writer::writeBuildId() { BuildIdSection *S = Out::BuildId; if (!S) return; // Compute a hash of all sections except .debug_* sections. // We skip debug sections because they tend to be very large // and their contents are very likely to be the same as long as // other sections are the same. uint8_t *Start = Buffer->getBufferStart(); uint8_t *Last = Start; std::vector> Regions; for (OutputSectionBase *Sec : OutputSections) { uint8_t *End = Start + Sec->getFileOff(); if (!Sec->getName().startswith(".debug_")) Regions.push_back({Last, End}); Last = End; } Regions.push_back({Last, Start + FileSize}); S->writeBuildId(Regions); } template void elf::writeResult(SymbolTable *Symtab); template void elf::writeResult(SymbolTable *Symtab); template void elf::writeResult(SymbolTable *Symtab); template void elf::writeResult(SymbolTable *Symtab);