//===- Writer.cpp ---------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Writer.h" #include "Config.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Target.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/StringSaver.h" using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace lld; using namespace lld::elf2; namespace { // The writer writes a SymbolTable result to a file. template class Writer { public: typedef typename ELFFile::uintX_t uintX_t; typedef typename ELFFile::Elf_Shdr Elf_Shdr; typedef typename ELFFile::Elf_Ehdr Elf_Ehdr; typedef typename ELFFile::Elf_Phdr Elf_Phdr; typedef typename ELFFile::Elf_Sym Elf_Sym; typedef typename ELFFile::Elf_Sym_Range Elf_Sym_Range; typedef typename ELFFile::Elf_Rela Elf_Rela; Writer(SymbolTable &S) : Symtab(S) {} void run(); private: void copyLocalSymbols(); void createSections(); template void scanRelocs(InputSectionBase &C, iterator_range *> Rels); void scanRelocs(InputSection &C); void scanRelocs(InputSectionBase &S, const Elf_Shdr &RelSec); void assignAddresses(); void openFile(StringRef OutputPath); void writeHeader(); void writeSections(); bool needsInterpSection() const { return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty(); } bool isOutputDynamic() const { return !Symtab.getSharedFiles().empty() || Config->Shared; } uintX_t getEntryAddr() const; int getPhdrsNum() const; OutputSection *getBSS(); void addCommonSymbols(std::vector *> &Syms); void addSharedCopySymbols(std::vector *> &Syms); std::unique_ptr Buffer; SpecificBumpPtrAllocator> SecAlloc; SpecificBumpPtrAllocator> MSecAlloc; SpecificBumpPtrAllocator> EHSecAlloc; BumpPtrAllocator Alloc; std::vector *> OutputSections; unsigned getNumSections() const { return OutputSections.size() + 1; } void addStartStopSymbols(OutputSectionBase *Sec); void setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags, uintX_t FileOff, uintX_t VA, uintX_t Size, uintX_t Align); void copyPhdr(Elf_Phdr *PH, OutputSectionBase *From); SymbolTable &Symtab; std::vector Phdrs; uintX_t FileSize; uintX_t SectionHeaderOff; }; } // anonymous namespace template void lld::elf2::writeResult(SymbolTable *Symtab) { // Initialize output sections that are handled by Writer specially. // Don't reorder because the order of initialization matters. InterpSection Interp; Out::Interp = &Interp; StringTableSection ShStrTab(".shstrtab", false); Out::ShStrTab = &ShStrTab; StringTableSection StrTab(".strtab", false); if (!Config->StripAll) Out::StrTab = &StrTab; StringTableSection DynStrTab(".dynstr", true); Out::DynStrTab = &DynStrTab; GotSection Got; Out::Got = &Got; GotPltSection GotPlt; if (Target->supportsLazyRelocations()) Out::GotPlt = &GotPlt; PltSection Plt; Out::Plt = &Plt; std::unique_ptr> SymTab; if (!Config->StripAll) { SymTab.reset(new SymbolTableSection(*Symtab, *Out::StrTab)); Out::SymTab = SymTab.get(); } SymbolTableSection DynSymTab(*Symtab, *Out::DynStrTab); Out::DynSymTab = &DynSymTab; HashTableSection HashTab; if (Config->SysvHash) Out::HashTab = &HashTab; GnuHashTableSection GnuHashTab; if (Config->GnuHash) Out::GnuHashTab = &GnuHashTab; bool IsRela = Symtab->shouldUseRela(); RelocationSection RelaDyn(IsRela ? ".rela.dyn" : ".rel.dyn", IsRela); Out::RelaDyn = &RelaDyn; RelocationSection RelaPlt(IsRela ? ".rela.plt" : ".rel.plt", IsRela); if (Target->supportsLazyRelocations()) Out::RelaPlt = &RelaPlt; DynamicSection Dynamic(*Symtab); Out::Dynamic = &Dynamic; Writer(*Symtab).run(); } // The main function of the writer. template void Writer::run() { if (!Config->DiscardAll) copyLocalSymbols(); createSections(); assignAddresses(); openFile(Config->OutputFile); writeHeader(); writeSections(); error(Buffer->commit()); } namespace { template struct SectionKey { typedef typename std::conditional::type uintX_t; StringRef Name; uint32_t Type; uintX_t Flags; uintX_t EntSize; }; } namespace llvm { template struct DenseMapInfo> { static SectionKey getEmptyKey() { return SectionKey{DenseMapInfo::getEmptyKey(), 0, 0, 0}; } static SectionKey getTombstoneKey() { return SectionKey{DenseMapInfo::getTombstoneKey(), 0, 0, 0}; } static unsigned getHashValue(const SectionKey &Val) { return hash_combine(Val.Name, Val.Type, Val.Flags, Val.EntSize); } static bool isEqual(const SectionKey &LHS, const SectionKey &RHS) { return DenseMapInfo::isEqual(LHS.Name, RHS.Name) && LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && LHS.EntSize == RHS.EntSize; } }; } // The reason we have to do this early scan is as follows // * To mmap the output file, we need to know the size // * For that, we need to know how many dynamic relocs we will have. // It might be possible to avoid this by outputting the file with write: // * Write the allocated output sections, computing addresses. // * Apply relocations, recording which ones require a dynamic reloc. // * Write the dynamic relocations. // * Write the rest of the file. template template void Writer::scanRelocs( InputSectionBase &C, iterator_range *> Rels) { typedef Elf_Rel_Impl RelType; const ObjectFile &File = *C.getFile(); for (const RelType &RI : Rels) { uint32_t SymIndex = RI.getSymbol(Config->Mips64EL); SymbolBody *Body = File.getSymbolBody(SymIndex); uint32_t Type = RI.getType(Config->Mips64EL); if (Type == Target->getTlsLocalDynamicReloc()) { if (Out::LocalModuleTlsIndexOffset == uint32_t(-1)) { Out::LocalModuleTlsIndexOffset = Out::Got->addLocalModuleTlsIndex(); Out::RelaDyn->addReloc({C, RI}); } continue; } // Set "used" bit for --as-needed. if (Body && Body->isUndefined() && !Body->isWeak()) if (auto *S = dyn_cast>(Body->repl())) S->File->IsUsed = true; if (Body) Body = Body->repl(); bool NeedsGot = false; bool NeedsPlt = false; if (Body) { if (auto *E = dyn_cast>(Body)) { if (E->needsCopy()) continue; if (Target->relocNeedsCopy(Type, *Body)) E->OffsetInBSS = 0; } NeedsPlt = Target->relocNeedsPlt(Type, *Body); if (NeedsPlt) { if (Body->isInPlt()) continue; Out::Plt->addEntry(Body); } NeedsGot = Target->relocNeedsGot(Type, *Body); if (NeedsGot) { if (NeedsPlt && Target->supportsLazyRelocations()) { Out::GotPlt->addEntry(Body); } else { if (Body->isInGot()) continue; Out::Got->addEntry(Body); } } } if (Config->EMachine == EM_MIPS && NeedsGot) { // MIPS ABI has special rules to process GOT entries // and doesn't require relocation entries for them. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf Body->setUsedInDynamicReloc(); continue; } bool CBP = canBePreempted(Body, NeedsGot); if (!CBP && (!Config->Shared || Target->isRelRelative(Type))) continue; if (CBP) Body->setUsedInDynamicReloc(); if (NeedsPlt && Target->supportsLazyRelocations()) Out::RelaPlt->addReloc({C, RI}); else Out::RelaDyn->addReloc({C, RI}); } } template void Writer::scanRelocs(InputSection &C) { if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC)) return; for (const Elf_Shdr *RelSec : C.RelocSections) scanRelocs(C, *RelSec); } template void Writer::scanRelocs(InputSectionBase &S, const Elf_Shdr &RelSec) { ELFFile &EObj = S.getFile()->getObj(); if (RelSec.sh_type == SHT_RELA) scanRelocs(S, EObj.relas(&RelSec)); else scanRelocs(S, EObj.rels(&RelSec)); } template static void reportUndefined(const SymbolTable &S, const SymbolBody &Sym) { typedef typename ELFFile::Elf_Sym Elf_Sym; typedef typename ELFFile::Elf_Sym_Range Elf_Sym_Range; if (Config->Shared && !Config->NoUndefined) return; const Elf_Sym &SymE = cast>(Sym).Sym; ELFFileBase *SymFile = nullptr; for (const std::unique_ptr> &File : S.getObjectFiles()) { Elf_Sym_Range Syms = File->getObj().symbols(File->getSymbolTable()); if (&SymE > Syms.begin() && &SymE < Syms.end()) SymFile = File.get(); } std::string Message = "undefined symbol: " + Sym.getName().str(); if (SymFile) Message += " in " + SymFile->getName().str(); if (Config->NoInhibitExec) warning(Message); else error(Message); } // Local symbols are not in the linker's symbol table. This function scans // each object file's symbol table to copy local symbols to the output. template void Writer::copyLocalSymbols() { for (const std::unique_ptr> &F : Symtab.getObjectFiles()) { for (const Elf_Sym &Sym : F->getLocalSymbols()) { ErrorOr SymNameOrErr = Sym.getName(F->getStringTable()); error(SymNameOrErr); StringRef SymName = *SymNameOrErr; if (!shouldKeepInSymtab(*F, SymName, Sym)) continue; if (Out::SymTab) Out::SymTab->addLocalSymbol(SymName); } } } // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that // we would like to make sure appear is a specific order to maximize their // coverage by a single signed 16-bit offset from the TOC base pointer. // Conversely, the special .tocbss section should be first among all SHT_NOBITS // sections. This will put it next to the loaded special PPC64 sections (and, // thus, within reach of the TOC base pointer). static int getPPC64SectionRank(StringRef SectionName) { return StringSwitch(SectionName) .Case(".tocbss", 0) .Case(".branch_lt", 2) .Case(".toc", 3) .Case(".toc1", 4) .Case(".opd", 5) .Default(1); } // Output section ordering is determined by this function. template static bool compareOutputSections(OutputSectionBase *A, OutputSectionBase *B) { typedef typename ELFFile::uintX_t uintX_t; uintX_t AFlags = A->getFlags(); uintX_t BFlags = B->getFlags(); // Allocatable sections go first to reduce the total PT_LOAD size and // so debug info doesn't change addresses in actual code. bool AIsAlloc = AFlags & SHF_ALLOC; bool BIsAlloc = BFlags & SHF_ALLOC; if (AIsAlloc != BIsAlloc) return AIsAlloc; // We don't have any special requirements for the relative order of // two non allocatable sections. if (!AIsAlloc) return false; // We want the read only sections first so that they go in the PT_LOAD // covering the program headers at the start of the file. bool AIsWritable = AFlags & SHF_WRITE; bool BIsWritable = BFlags & SHF_WRITE; if (AIsWritable != BIsWritable) return BIsWritable; // For a corresponding reason, put non exec sections first (the program // header PT_LOAD is not executable). bool AIsExec = AFlags & SHF_EXECINSTR; bool BIsExec = BFlags & SHF_EXECINSTR; if (AIsExec != BIsExec) return BIsExec; // If we got here we know that both A and B are in the same PT_LOAD. // The TLS initialization block needs to be a single contiguous block in a R/W // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS // sections are placed here as they don't take up virtual address space in the // PT_LOAD. bool AIsTLS = AFlags & SHF_TLS; bool BIsTLS = BFlags & SHF_TLS; if (AIsTLS != BIsTLS) return AIsTLS; // The next requirement we have is to put nobits sections last. The // reason is that the only thing the dynamic linker will see about // them is a p_memsz that is larger than p_filesz. Seeing that it // zeros the end of the PT_LOAD, so that has to correspond to the // nobits sections. bool AIsNoBits = A->getType() == SHT_NOBITS; bool BIsNoBits = B->getType() == SHT_NOBITS; if (AIsNoBits != BIsNoBits) return BIsNoBits; // Some architectures have additional ordering restrictions for sections // within the same PT_LOAD. if (Config->EMachine == EM_PPC64) return getPPC64SectionRank(A->getName()) < getPPC64SectionRank(B->getName()); return false; } template OutputSection *Writer::getBSS() { if (!Out::Bss) { Out::Bss = new (SecAlloc.Allocate()) OutputSection(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); OutputSections.push_back(Out::Bss); } return Out::Bss; } // Until this function is called, common symbols do not belong to any section. // This function adds them to end of BSS section. template void Writer::addCommonSymbols(std::vector *> &Syms) { typedef typename ELFFile::uintX_t uintX_t; typedef typename ELFFile::Elf_Sym Elf_Sym; if (Syms.empty()) return; // Sort the common symbols by alignment as an heuristic to pack them better. std::stable_sort( Syms.begin(), Syms.end(), [](const DefinedCommon *A, const DefinedCommon *B) { return A->MaxAlignment > B->MaxAlignment; }); uintX_t Off = getBSS()->getSize(); for (DefinedCommon *C : Syms) { const Elf_Sym &Sym = C->Sym; uintX_t Align = C->MaxAlignment; Off = RoundUpToAlignment(Off, Align); C->OffsetInBSS = Off; Off += Sym.st_size; } Out::Bss->setSize(Off); } template void Writer::addSharedCopySymbols( std::vector *> &Syms) { typedef typename ELFFile::uintX_t uintX_t; typedef typename ELFFile::Elf_Sym Elf_Sym; typedef typename ELFFile::Elf_Shdr Elf_Shdr; if (Syms.empty()) return; uintX_t Off = getBSS()->getSize(); for (SharedSymbol *C : Syms) { const Elf_Sym &Sym = C->Sym; const Elf_Shdr *Sec = C->File->getSection(Sym); uintX_t SecAlign = Sec->sh_addralign; uintX_t Align = Sym.st_value % SecAlign; if (Align == 0) Align = SecAlign; Out::Bss->updateAlign(Align); Off = RoundUpToAlignment(Off, Align); C->OffsetInBSS = Off; Off += Sym.st_size; } Out::Bss->setSize(Off); } static StringRef getOutputName(StringRef S) { if (S.startswith(".text.")) return ".text"; if (S.startswith(".rodata.")) return ".rodata"; if (S.startswith(".data.")) return ".data"; if (S.startswith(".bss.")) return ".bss"; return S; } // Create output section objects and add them to OutputSections. template void Writer::createSections() { // .interp needs to be on the first page in the output file. if (needsInterpSection()) OutputSections.push_back(Out::Interp); SmallDenseMap, OutputSectionBase *> Map; std::vector *> RegularSections; for (const std::unique_ptr> &F : Symtab.getObjectFiles()) { for (InputSectionBase *C : F->getSections()) { if (!C || !C->isLive() || C == &InputSection::Discarded) continue; const Elf_Shdr *H = C->getSectionHdr(); uintX_t OutFlags = H->sh_flags & ~SHF_GROUP; // For SHF_MERGE we create different output sections for each sh_entsize. // This makes each output section simple and keeps a single level // mapping from input to output. typename InputSectionBase::Kind K = C->SectionKind; uintX_t EntSize = K != InputSectionBase::Merge ? 0 : H->sh_entsize; uint32_t OutType = H->sh_type; if (OutType == SHT_PROGBITS && C->getSectionName() == ".eh_frame" && Config->EMachine == EM_X86_64) OutType = SHT_X86_64_UNWIND; SectionKey Key{getOutputName(C->getSectionName()), OutType, OutFlags, EntSize}; OutputSectionBase *&Sec = Map[Key]; if (!Sec) { switch (K) { case InputSectionBase::Regular: Sec = new (SecAlloc.Allocate()) OutputSection(Key.Name, Key.Type, Key.Flags); break; case InputSectionBase::EHFrame: Sec = new (EHSecAlloc.Allocate()) EHOutputSection(Key.Name, Key.Type, Key.Flags); break; case InputSectionBase::Merge: Sec = new (MSecAlloc.Allocate()) MergeOutputSection(Key.Name, Key.Type, Key.Flags); break; } OutputSections.push_back(Sec); RegularSections.push_back(Sec); } switch (K) { case InputSectionBase::Regular: static_cast *>(Sec) ->addSection(cast>(C)); break; case InputSectionBase::EHFrame: static_cast *>(Sec) ->addSection(cast>(C)); break; case InputSectionBase::Merge: static_cast *>(Sec) ->addSection(cast>(C)); break; } } } Out::Bss = static_cast *>( Map[{".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE, 0}]); Out::Dynamic->PreInitArraySec = Map.lookup( {".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC, 0}); Out::Dynamic->InitArraySec = Map.lookup({".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC, 0}); Out::Dynamic->FiniArraySec = Map.lookup({".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC, 0}); auto AddStartEnd = [&](StringRef Start, StringRef End, OutputSectionBase *OS) { if (OS) { Symtab.addSyntheticSym(Start, *OS, 0); Symtab.addSyntheticSym(End, *OS, OS->getSize()); } else { Symtab.addIgnoredSym(Start); Symtab.addIgnoredSym(End); } }; AddStartEnd("__preinit_array_start", "__preinit_array_end", Out::Dynamic->PreInitArraySec); AddStartEnd("__init_array_start", "__init_array_end", Out::Dynamic->InitArraySec); AddStartEnd("__fini_array_start", "__fini_array_end", Out::Dynamic->FiniArraySec); for (OutputSectionBase *Sec : RegularSections) addStartStopSymbols(Sec); // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For // static linking the linker is required to optimize away any references to // __tls_get_addr, so it's not defined anywhere. Create a hidden definition // to avoid the undefined symbol error. if (!isOutputDynamic()) Symtab.addIgnoredSym("__tls_get_addr"); // Scan relocations. This must be done after every symbol is declared so that // we can correctly decide if a dynamic relocation is needed. for (const std::unique_ptr> &F : Symtab.getObjectFiles()) { for (InputSectionBase *B : F->getSections()) { if (auto *S = dyn_cast_or_null>(B)) { if (S != &InputSection::Discarded && S->isLive()) scanRelocs(*S); } else if (auto *S = dyn_cast_or_null>(B)) { if (S->RelocSection) scanRelocs(*S, *S->RelocSection); } } } std::vector *> CommonSymbols; std::vector *> SharedCopySymbols; for (auto &P : Symtab.getSymbols()) { SymbolBody *Body = P.second->Body; if (auto *U = dyn_cast>(Body)) if (!U->isWeak() && !U->canKeepUndefined()) reportUndefined(Symtab, *Body); if (auto *C = dyn_cast>(Body)) CommonSymbols.push_back(C); if (auto *SC = dyn_cast>(Body)) if (SC->needsCopy()) SharedCopySymbols.push_back(SC); if (!includeInSymtab(*Body)) continue; if (Out::SymTab) Out::SymTab->addSymbol(Body); if (isOutputDynamic() && includeInDynamicSymtab(*Body)) Out::DynSymTab->addSymbol(Body); } addCommonSymbols(CommonSymbols); addSharedCopySymbols(SharedCopySymbols); // This order is not the same as the final output order // because we sort the sections using their attributes below. if (Out::SymTab) OutputSections.push_back(Out::SymTab); OutputSections.push_back(Out::ShStrTab); if (Out::StrTab) OutputSections.push_back(Out::StrTab); if (isOutputDynamic()) { OutputSections.push_back(Out::DynSymTab); if (Out::GnuHashTab) OutputSections.push_back(Out::GnuHashTab); if (Out::HashTab) OutputSections.push_back(Out::HashTab); OutputSections.push_back(Out::Dynamic); OutputSections.push_back(Out::DynStrTab); if (Out::RelaDyn->hasRelocs()) OutputSections.push_back(Out::RelaDyn); if (Out::RelaPlt && Out::RelaPlt->hasRelocs()) OutputSections.push_back(Out::RelaPlt); } if (!Out::Got->empty()) OutputSections.push_back(Out::Got); if (Out::GotPlt && !Out::GotPlt->empty()) OutputSections.push_back(Out::GotPlt); if (!Out::Plt->empty()) OutputSections.push_back(Out::Plt); std::stable_sort(OutputSections.begin(), OutputSections.end(), compareOutputSections); for (unsigned I = 0, N = OutputSections.size(); I < N; ++I) OutputSections[I]->SectionIndex = I + 1; for (OutputSectionBase *Sec : OutputSections) Out::ShStrTab->add(Sec->getName()); // Finalizers fix each section's size. // .dynamic section's finalizer may add strings to .dynstr, // so finalize that early. // Likewise, .dynsym is finalized early since that may fill up .gnu.hash. Out::Dynamic->finalize(); if (isOutputDynamic()) Out::DynSymTab->finalize(); // Fill other section headers. for (OutputSectionBase *Sec : OutputSections) Sec->finalize(); // If we have a .opd section (used under PPC64 for function descriptors), // store a pointer to it here so that we can use it later when processing // relocations. Out::Opd = Map.lookup({".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC, 0}); } static bool isAlpha(char C) { return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z') || C == '_'; } static bool isAlnum(char C) { return isAlpha(C) || ('0' <= C && C <= '9'); } // Returns true if S is valid as a C language identifier. static bool isValidCIdentifier(StringRef S) { if (S.empty() || !isAlpha(S[0])) return false; return std::all_of(S.begin() + 1, S.end(), isAlnum); } // If a section name is valid as a C identifier (which is rare because of // the leading '.'), linkers are expected to define __start_ and // __stop_ symbols. They are at beginning and end of the section, // respectively. This is not requested by the ELF standard, but GNU ld and // gold provide the feature, and used by many programs. template void Writer::addStartStopSymbols(OutputSectionBase *Sec) { StringRef S = Sec->getName(); if (!isValidCIdentifier(S)) return; StringSaver Saver(Alloc); StringRef Start = Saver.save("__start_" + S); StringRef Stop = Saver.save("__stop_" + S); if (Symtab.isUndefined(Start)) Symtab.addSyntheticSym(Start, *Sec, 0); if (Symtab.isUndefined(Stop)) Symtab.addSyntheticSym(Stop, *Sec, Sec->getSize()); } template static bool needsPhdr(OutputSectionBase *Sec) { return Sec->getFlags() & SHF_ALLOC; } static uint32_t toPhdrFlags(uint64_t Flags) { uint32_t Ret = PF_R; if (Flags & SHF_WRITE) Ret |= PF_W; if (Flags & SHF_EXECINSTR) Ret |= PF_X; return Ret; } // Visits all sections to create PHDRs and to assign incremental, // non-overlapping addresses to output sections. template void Writer::assignAddresses() { uintX_t VA = Target->getVAStart() + sizeof(Elf_Ehdr); uintX_t FileOff = sizeof(Elf_Ehdr); // Calculate and reserve the space for the program header first so that // the first section can start right after the program header. Phdrs.resize(getPhdrsNum()); size_t PhdrSize = sizeof(Elf_Phdr) * Phdrs.size(); // The first phdr entry is PT_PHDR which describes the program header itself. setPhdr(&Phdrs[0], PT_PHDR, PF_R, FileOff, VA, PhdrSize, /*Align=*/8); FileOff += PhdrSize; VA += PhdrSize; // PT_INTERP must be the second entry if exists. int PhdrIdx = 0; Elf_Phdr *Interp = nullptr; if (needsInterpSection()) Interp = &Phdrs[++PhdrIdx]; // Add the first PT_LOAD segment for regular output sections. setPhdr(&Phdrs[++PhdrIdx], PT_LOAD, PF_R, 0, Target->getVAStart(), FileOff, Target->getPageSize()); Elf_Phdr TlsPhdr{}; uintX_t ThreadBSSOffset = 0; // Create phdrs as we assign VAs and file offsets to all output sections. for (OutputSectionBase *Sec : OutputSections) { if (needsPhdr(Sec)) { uintX_t Flags = toPhdrFlags(Sec->getFlags()); if (Phdrs[PhdrIdx].p_flags != Flags) { // Flags changed. Create a new PT_LOAD. VA = RoundUpToAlignment(VA, Target->getPageSize()); FileOff = RoundUpToAlignment(FileOff, Target->getPageSize()); Elf_Phdr *PH = &Phdrs[++PhdrIdx]; setPhdr(PH, PT_LOAD, Flags, FileOff, VA, 0, Target->getPageSize()); } if (Sec->getFlags() & SHF_TLS) { if (!TlsPhdr.p_vaddr) setPhdr(&TlsPhdr, PT_TLS, PF_R, FileOff, VA, 0, Sec->getAlign()); if (Sec->getType() != SHT_NOBITS) VA = RoundUpToAlignment(VA, Sec->getAlign()); uintX_t TVA = RoundUpToAlignment(VA + ThreadBSSOffset, Sec->getAlign()); Sec->setVA(TVA); TlsPhdr.p_memsz += Sec->getSize(); if (Sec->getType() == SHT_NOBITS) { ThreadBSSOffset = TVA - VA + Sec->getSize(); } else { TlsPhdr.p_filesz += Sec->getSize(); VA += Sec->getSize(); } TlsPhdr.p_align = std::max(TlsPhdr.p_align, Sec->getAlign()); } else { VA = RoundUpToAlignment(VA, Sec->getAlign()); Sec->setVA(VA); VA += Sec->getSize(); } } FileOff = RoundUpToAlignment(FileOff, Sec->getAlign()); Sec->setFileOffset(FileOff); if (Sec->getType() != SHT_NOBITS) FileOff += Sec->getSize(); if (needsPhdr(Sec)) { Elf_Phdr *Cur = &Phdrs[PhdrIdx]; Cur->p_filesz = FileOff - Cur->p_offset; Cur->p_memsz = VA - Cur->p_vaddr; } } if (TlsPhdr.p_vaddr) { // The TLS pointer goes after PT_TLS. At least glibc will align it, // so round up the size to make sure the offsets are correct. TlsPhdr.p_memsz = RoundUpToAlignment(TlsPhdr.p_memsz, TlsPhdr.p_align); Phdrs[++PhdrIdx] = TlsPhdr; Out::TlsPhdr = &Phdrs[PhdrIdx]; } // Add an entry for .dynamic. if (isOutputDynamic()) { Elf_Phdr *PH = &Phdrs[++PhdrIdx]; PH->p_type = PT_DYNAMIC; copyPhdr(PH, Out::Dynamic); } // Fix up PT_INTERP as we now know the address of .interp section. if (Interp) { Interp->p_type = PT_INTERP; copyPhdr(Interp, Out::Interp); } // Add space for section headers. SectionHeaderOff = RoundUpToAlignment(FileOff, ELFT::Is64Bits ? 8 : 4); FileSize = SectionHeaderOff + getNumSections() * sizeof(Elf_Shdr); // Update MIPS _gp absolute symbol so that it points to the static data. if (Config->EMachine == EM_MIPS) DefinedAbsolute::MipsGp.st_value = getMipsGpAddr(); } // Returns the number of PHDR entries. template int Writer::getPhdrsNum() const { bool Tls = false; int I = 2; // 2 for PT_PHDR and the first PT_LOAD if (needsInterpSection()) ++I; if (isOutputDynamic()) ++I; uintX_t Last = PF_R; for (OutputSectionBase *Sec : OutputSections) { if (!needsPhdr(Sec)) continue; if (Sec->getFlags() & SHF_TLS) Tls = true; uintX_t Flags = toPhdrFlags(Sec->getFlags()); if (Last != Flags) { Last = Flags; ++I; } } if (Tls) ++I; return I; } template void Writer::writeHeader() { uint8_t *Buf = Buffer->getBufferStart(); memcpy(Buf, "\177ELF", 4); // Write the ELF header. auto *EHdr = reinterpret_cast(Buf); EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; EHdr->e_ident[EI_DATA] = ELFT::TargetEndianness == llvm::support::little ? ELFDATA2LSB : ELFDATA2MSB; EHdr->e_ident[EI_VERSION] = EV_CURRENT; auto &FirstObj = cast>(*Config->FirstElf); EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI(); EHdr->e_type = Config->Shared ? ET_DYN : ET_EXEC; EHdr->e_machine = FirstObj.getEMachine(); EHdr->e_version = EV_CURRENT; EHdr->e_entry = getEntryAddr(); EHdr->e_phoff = sizeof(Elf_Ehdr); EHdr->e_shoff = SectionHeaderOff; EHdr->e_ehsize = sizeof(Elf_Ehdr); EHdr->e_phentsize = sizeof(Elf_Phdr); EHdr->e_phnum = Phdrs.size(); EHdr->e_shentsize = sizeof(Elf_Shdr); EHdr->e_shnum = getNumSections(); EHdr->e_shstrndx = Out::ShStrTab->SectionIndex; // Write the program header table. memcpy(Buf + EHdr->e_phoff, &Phdrs[0], Phdrs.size() * sizeof(Phdrs[0])); // Write the section header table. Note that the first table entry is null. auto SHdrs = reinterpret_cast(Buf + EHdr->e_shoff); for (OutputSectionBase *Sec : OutputSections) Sec->writeHeaderTo(++SHdrs); } template void Writer::openFile(StringRef Path) { ErrorOr> BufferOrErr = FileOutputBuffer::create(Path, FileSize, FileOutputBuffer::F_executable); error(BufferOrErr, Twine("failed to open ") + Path); Buffer = std::move(*BufferOrErr); } // Write section contents to a mmap'ed file. template void Writer::writeSections() { uint8_t *Buf = Buffer->getBufferStart(); // PPC64 needs to process relocations in the .opd section before processing // relocations in code-containing sections. if (OutputSectionBase *Sec = Out::Opd) { Out::OpdBuf = Buf + Sec->getFileOff(); Sec->writeTo(Buf + Sec->getFileOff()); } for (OutputSectionBase *Sec : OutputSections) if (Sec != Out::Opd) Sec->writeTo(Buf + Sec->getFileOff()); } template typename ELFFile::uintX_t Writer::getEntryAddr() const { if (Config->EntrySym) { if (auto *E = dyn_cast>(Config->EntrySym->repl())) return getSymVA(*E); return 0; } if (Config->EntryAddr != uint64_t(-1)) return Config->EntryAddr; return 0; } template void Writer::setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags, uintX_t FileOff, uintX_t VA, uintX_t Size, uintX_t Align) { PH->p_type = Type; PH->p_flags = Flags; PH->p_offset = FileOff; PH->p_vaddr = VA; PH->p_paddr = VA; PH->p_filesz = Size; PH->p_memsz = Size; PH->p_align = Align; } template void Writer::copyPhdr(Elf_Phdr *PH, OutputSectionBase *From) { PH->p_flags = toPhdrFlags(From->getFlags()); PH->p_offset = From->getFileOff(); PH->p_vaddr = From->getVA(); PH->p_paddr = From->getVA(); PH->p_filesz = From->getSize(); PH->p_memsz = From->getSize(); PH->p_align = From->getAlign(); } template void lld::elf2::writeResult(SymbolTable *Symtab); template void lld::elf2::writeResult(SymbolTable *Symtab); template void lld::elf2::writeResult(SymbolTable *Symtab); template void lld::elf2::writeResult(SymbolTable *Symtab);