//===- Writer.cpp ---------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Writer.h" #include "AArch64ErrataFix.h" #include "CallGraphSort.h" #include "Config.h" #include "LinkerScript.h" #include "MapFile.h" #include "OutputSections.h" #include "Relocations.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/Filesystem.h" #include "lld/Common/Memory.h" #include "lld/Common/Strings.h" #include "lld/Common/Threads.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/RandomNumberGenerator.h" #include "llvm/Support/SHA1.h" #include "llvm/Support/xxhash.h" #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; namespace { // The writer writes a SymbolTable result to a file. template class Writer { public: Writer() : Buffer(errorHandler().OutputBuffer) {} using Elf_Shdr = typename ELFT::Shdr; using Elf_Ehdr = typename ELFT::Ehdr; using Elf_Phdr = typename ELFT::Phdr; void run(); private: void copyLocalSymbols(); void addSectionSymbols(); void forEachRelSec(llvm::function_ref Fn); void sortSections(); void resolveShfLinkOrder(); void finalizeAddressDependentContent(); void sortInputSections(); void finalizeSections(); void checkExecuteOnly(); void setReservedSymbolSections(); std::vector createPhdrs(Partition &Part); void removeEmptyPTLoad(std::vector &PhdrEntry); void addPhdrForSection(Partition &Part, unsigned ShType, unsigned PType, unsigned PFlags); void assignFileOffsets(); void assignFileOffsetsBinary(); void setPhdrs(Partition &Part); void checkSections(); void fixSectionAlignments(); void openFile(); void writeTrapInstr(); void writeHeader(); void writeSections(); void writeSectionsBinary(); void writeBuildId(); std::unique_ptr &Buffer; void addRelIpltSymbols(); void addStartEndSymbols(); void addStartStopSymbols(OutputSection *Sec); uint64_t FileSize; uint64_t SectionHeaderOff; }; } // anonymous namespace static bool isSectionPrefix(StringRef Prefix, StringRef Name) { return Name.startswith(Prefix) || Name == Prefix.drop_back(); } StringRef elf::getOutputSectionName(const InputSectionBase *S) { if (Config->Relocatable) return S->Name; // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want // to emit .rela.text.foo as .rela.text.bar for consistency (this is not // technically required, but not doing it is odd). This code guarantees that. if (auto *IS = dyn_cast(S)) { if (InputSectionBase *Rel = IS->getRelocatedSection()) { OutputSection *Out = Rel->getOutputSection(); if (S->Type == SHT_RELA) return Saver.save(".rela" + Out->Name); return Saver.save(".rel" + Out->Name); } } // This check is for -z keep-text-section-prefix. This option separates text // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or // ".text.exit". // When enabled, this allows identifying the hot code region (.text.hot) in // the final binary which can be selectively mapped to huge pages or mlocked, // for instance. if (Config->ZKeepTextSectionPrefix) for (StringRef V : {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) if (isSectionPrefix(V, S->Name)) return V.drop_back(); for (StringRef V : {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) if (isSectionPrefix(V, S->Name)) return V.drop_back(); // CommonSection is identified as "COMMON" in linker scripts. // By default, it should go to .bss section. if (S->Name == "COMMON") return ".bss"; return S->Name; } static bool needsInterpSection() { return !SharedFiles.empty() && !Config->DynamicLinker.empty() && Script->needsInterpSection(); } template void elf::writeResult() { Writer().run(); } template void Writer::removeEmptyPTLoad(std::vector &Phdrs) { llvm::erase_if(Phdrs, [&](const PhdrEntry *P) { if (P->p_type != PT_LOAD) return false; if (!P->FirstSec) return true; uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr; return Size == 0; }); } template static void copySectionsIntoPartitions() { std::vector NewSections; for (unsigned Part = 2; Part != Partitions.size() + 1; ++Part) { for (InputSectionBase *S : InputSections) { if (!(S->Flags & SHF_ALLOC) || !S->isLive()) continue; InputSectionBase *Copy; if (S->Type == SHT_NOTE) Copy = make(cast(*S)); else if (auto *ES = dyn_cast(S)) Copy = make(*ES); else continue; Copy->Partition = Part; NewSections.push_back(Copy); } } InputSections.insert(InputSections.end(), NewSections.begin(), NewSections.end()); } template static void combineEhSections() { for (InputSectionBase *&S : InputSections) { // Ignore dead sections and the partition end marker (.part.end), // whose partition number is out of bounds. if (!S->isLive() || S->Partition == 255) continue; Partition &Part = S->getPartition(); if (auto *ES = dyn_cast(S)) { Part.EhFrame->addSection(ES); S = nullptr; } else if (S->kind() == SectionBase::Regular && Part.ARMExidx && Part.ARMExidx->addSection(cast(S))) { S = nullptr; } } std::vector &V = InputSections; V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); } static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec, uint64_t Val, uint8_t StOther = STV_HIDDEN, uint8_t Binding = STB_GLOBAL) { Symbol *S = Symtab->find(Name); if (!S || S->isDefined()) return nullptr; S->resolve(Defined{/*File=*/nullptr, Name, Binding, StOther, STT_NOTYPE, Val, /*Size=*/0, Sec}); return cast(S); } static Defined *addAbsolute(StringRef Name) { Symbol *Sym = Symtab->addSymbol(Defined{nullptr, Name, STB_GLOBAL, STV_HIDDEN, STT_NOTYPE, 0, 0, nullptr}); return cast(Sym); } // The linker is expected to define some symbols depending on // the linking result. This function defines such symbols. void elf::addReservedSymbols() { if (Config->EMachine == EM_MIPS) { // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer // so that it points to an absolute address which by default is relative // to GOT. Default offset is 0x7ff0. // See "Global Data Symbols" in Chapter 6 in the following document: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf ElfSym::MipsGp = addAbsolute("_gp"); // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between // start of function and 'gp' pointer into GOT. if (Symtab->find("_gp_disp")) ElfSym::MipsGpDisp = addAbsolute("_gp_disp"); // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' // pointer. This symbol is used in the code generated by .cpload pseudo-op // in case of using -mno-shared option. // https://sourceware.org/ml/binutils/2004-12/msg00094.html if (Symtab->find("__gnu_local_gp")) ElfSym::MipsLocalGp = addAbsolute("__gnu_local_gp"); } else if (Config->EMachine == EM_PPC) { // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't // support Small Data Area, define it arbitrarily as 0. addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); } // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which // combines the typical ELF GOT with the small data sections. It commonly // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to // represent the TOC base which is offset by 0x8000 bytes from the start of // the .got section. // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the // correctness of some relocations depends on its value. StringRef GotSymName = (Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; if (Symbol *S = Symtab->find(GotSymName)) { if (S->isDefined()) { error(toString(S->File) + " cannot redefine linker defined symbol '" + GotSymName + "'"); return; } uint64_t GotOff = 0; if (Config->EMachine == EM_PPC64) GotOff = 0x8000; S->resolve(Defined{/*File=*/nullptr, GotSymName, STB_GLOBAL, STV_HIDDEN, STT_NOTYPE, GotOff, /*Size=*/0, Out::ElfHeader}); ElfSym::GlobalOffsetTable = cast(S); } // __ehdr_start is the location of ELF file headers. Note that we define // this symbol unconditionally even when using a linker script, which // differs from the behavior implemented by GNU linker which only define // this symbol if ELF headers are in the memory mapped segment. addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN); // __executable_start is not documented, but the expectation of at // least the Android libc is that it points to the ELF header. addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN); // __dso_handle symbol is passed to cxa_finalize as a marker to identify // each DSO. The address of the symbol doesn't matter as long as they are // different in different DSOs, so we chose the start address of the DSO. addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN); // If linker script do layout we do not need to create any standart symbols. if (Script->HasSectionsCommand) return; auto Add = [](StringRef S, int64_t Pos) { return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT); }; ElfSym::Bss = Add("__bss_start", 0); ElfSym::End1 = Add("end", -1); ElfSym::End2 = Add("_end", -1); ElfSym::Etext1 = Add("etext", -1); ElfSym::Etext2 = Add("_etext", -1); ElfSym::Edata1 = Add("edata", -1); ElfSym::Edata2 = Add("_edata", -1); } static OutputSection *findSection(StringRef Name, unsigned Partition = 1) { for (BaseCommand *Base : Script->SectionCommands) if (auto *Sec = dyn_cast(Base)) if (Sec->Name == Name && Sec->Partition == Partition) return Sec; return nullptr; } // Initialize Out members. template static void createSyntheticSections() { // Initialize all pointers with NULL. This is needed because // you can call lld::elf::main more than once as a library. memset(&Out::First, 0, sizeof(Out)); auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; In.ShStrTab = make(".shstrtab", false); Out::ProgramHeaders = make("", 0, SHF_ALLOC); Out::ProgramHeaders->Alignment = Config->Wordsize; if (Config->Strip != StripPolicy::All) { In.StrTab = make(".strtab", false); In.SymTab = make>(*In.StrTab); In.SymTabShndx = make(); } In.Bss = make(".bss", 0, 1); Add(In.Bss); // If there is a SECTIONS command and a .data.rel.ro section name use name // .data.rel.ro.bss so that we match in the .data.rel.ro output section. // This makes sure our relro is contiguous. bool HasDataRelRo = Script->HasSectionsCommand && findSection(".data.rel.ro", 0); In.BssRelRo = make(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); Add(In.BssRelRo); // Add MIPS-specific sections. if (Config->EMachine == EM_MIPS) { if (!Config->Shared && Config->HasDynSymTab) { In.MipsRldMap = make(); Add(In.MipsRldMap); } if (auto *Sec = MipsAbiFlagsSection::create()) Add(Sec); if (auto *Sec = MipsOptionsSection::create()) Add(Sec); if (auto *Sec = MipsReginfoSection::create()) Add(Sec); } for (Partition &Part : Partitions) { auto Add = [&](InputSectionBase *Sec) { Sec->Partition = Part.getNumber(); InputSections.push_back(Sec); }; if (!Part.Name.empty()) { Part.ElfHeader = make>(); Part.ElfHeader->Name = Part.Name; Add(Part.ElfHeader); Part.ProgramHeaders = make>(); Add(Part.ProgramHeaders); } if (Config->BuildId != BuildIdKind::None) { Part.BuildId = make(); Add(Part.BuildId); } Part.DynStrTab = make(".dynstr", true); Part.DynSymTab = make>(*Part.DynStrTab); Part.Dynamic = make>(); if (Config->AndroidPackDynRelocs) { Part.RelaDyn = make>( Config->IsRela ? ".rela.dyn" : ".rel.dyn"); } else { Part.RelaDyn = make>( Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); } if (needsInterpSection()) Add(createInterpSection()); if (Config->HasDynSymTab) { Part.DynSymTab = make>(*Part.DynStrTab); Add(Part.DynSymTab); Part.VerSym = make(); Add(Part.VerSym); if (!Config->VersionDefinitions.empty()) { Part.VerDef = make(); Add(Part.VerDef); } Part.VerNeed = make>(); Add(Part.VerNeed); if (Config->GnuHash) { Part.GnuHashTab = make(); Add(Part.GnuHashTab); } if (Config->SysvHash) { Part.HashTab = make(); Add(Part.HashTab); } Add(Part.Dynamic); Add(Part.DynStrTab); Add(Part.RelaDyn); } if (Config->RelrPackDynRelocs) { Part.RelrDyn = make>(); Add(Part.RelrDyn); } if (!Config->Relocatable) { if (Config->EhFrameHdr) { Part.EhFrameHdr = make(); Add(Part.EhFrameHdr); } Part.EhFrame = make(); Add(Part.EhFrame); } if (Config->EMachine == EM_ARM && !Config->Relocatable) { // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx // InputSections. Part.ARMExidx = make(); Add(Part.ARMExidx); } } if (Partitions.size() != 1) { // Create the partition end marker. This needs to be in partition number 255 // so that it is sorted after all other partitions. It also has other // special handling (see createPhdrs() and combineEhSections()). In.PartEnd = make(".part.end", Config->MaxPageSize, 1); In.PartEnd->Partition = 255; Add(In.PartEnd); In.PartIndex = make(); addOptionalRegular("__part_index_begin", In.PartIndex, 0); addOptionalRegular("__part_index_end", In.PartIndex, In.PartIndex->getSize()); Add(In.PartIndex); } // Add .got. MIPS' .got is so different from the other archs, // it has its own class. if (Config->EMachine == EM_MIPS) { In.MipsGot = make(); Add(In.MipsGot); } else { In.Got = make(); Add(In.Got); } if (Config->EMachine == EM_PPC) { In.PPC32Got2 = make(); Add(In.PPC32Got2); } if (Config->EMachine == EM_PPC64) { In.PPC64LongBranchTarget = make(); Add(In.PPC64LongBranchTarget); } if (Config->EMachine == EM_RISCV) { In.RISCVSdata = make(); Add(In.RISCVSdata); } In.GotPlt = make(); Add(In.GotPlt); In.IgotPlt = make(); Add(In.IgotPlt); // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat // it as a relocation and ensure the referenced section is created. if (ElfSym::GlobalOffsetTable && Config->EMachine != EM_MIPS) { if (Target->GotBaseSymInGotPlt) In.GotPlt->HasGotPltOffRel = true; else In.Got->HasGotOffRel = true; } if (Config->GdbIndex) Add(GdbIndexSection::create()); // We always need to add rel[a].plt to output if it has entries. // Even for static linking it can contain R_[*]_IRELATIVE relocations. In.RelaPlt = make>( Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); Add(In.RelaPlt); // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure // that the IRelative relocations are processed last by the dynamic loader. // We cannot place the iplt section in .rel.dyn when Android relocation // packing is enabled because that would cause a section type mismatch. // However, because the Android dynamic loader reads .rel.plt after .rel.dyn, // we can get the desired behaviour by placing the iplt section in .rel.plt. In.RelaIplt = make>( (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs) ? ".rel.dyn" : In.RelaPlt->Name, false /*Sort*/); Add(In.RelaIplt); In.Plt = make(false); Add(In.Plt); In.Iplt = make(true); Add(In.Iplt); if (Config->AndFeatures) Add(make()); // .note.GNU-stack is always added when we are creating a re-linkable // object file. Other linkers are using the presence of this marker // section to control the executable-ness of the stack area, but that // is irrelevant these days. Stack area should always be non-executable // by default. So we emit this section unconditionally. if (Config->Relocatable) Add(make()); if (In.SymTab) Add(In.SymTab); if (In.SymTabShndx) Add(In.SymTabShndx); Add(In.ShStrTab); if (In.StrTab) Add(In.StrTab); } // The main function of the writer. template void Writer::run() { // Make copies of any input sections that need to be copied into each // partition. copySectionsIntoPartitions(); // Create linker-synthesized sections such as .got or .plt. // Such sections are of type input section. createSyntheticSections(); // Some input sections that are used for exception handling need to be moved // into synthetic sections. Do that now so that they aren't assigned to // output sections in the usual way. if (!Config->Relocatable) combineEhSections(); // We want to process linker script commands. When SECTIONS command // is given we let it create sections. Script->processSectionCommands(); // Linker scripts controls how input sections are assigned to output sections. // Input sections that were not handled by scripts are called "orphans", and // they are assigned to output sections by the default rule. Process that. Script->addOrphanSections(); if (Config->Discard != DiscardPolicy::All) copyLocalSymbols(); if (Config->CopyRelocs) addSectionSymbols(); // Now that we have a complete set of output sections. This function // completes section contents. For example, we need to add strings // to the string table, and add entries to .got and .plt. // finalizeSections does that. finalizeSections(); checkExecuteOnly(); if (errorCount()) return; Script->assignAddresses(); // If -compressed-debug-sections is specified, we need to compress // .debug_* sections. Do it right now because it changes the size of // output sections. for (OutputSection *Sec : OutputSections) Sec->maybeCompress(); Script->allocateHeaders(Main->Phdrs); // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a // 0 sized region. This has to be done late since only after assignAddresses // we know the size of the sections. for (Partition &Part : Partitions) removeEmptyPTLoad(Part.Phdrs); if (!Config->OFormatBinary) assignFileOffsets(); else assignFileOffsetsBinary(); for (Partition &Part : Partitions) setPhdrs(Part); if (Config->Relocatable) for (OutputSection *Sec : OutputSections) Sec->Addr = 0; if (Config->CheckSections) checkSections(); // It does not make sense try to open the file if we have error already. if (errorCount()) return; // Write the result down to a file. openFile(); if (errorCount()) return; if (!Config->OFormatBinary) { writeTrapInstr(); writeHeader(); writeSections(); } else { writeSectionsBinary(); } // Backfill .note.gnu.build-id section content. This is done at last // because the content is usually a hash value of the entire output file. writeBuildId(); if (errorCount()) return; // Handle -Map and -cref options. writeMapFile(); writeCrossReferenceTable(); if (errorCount()) return; if (auto E = Buffer->commit()) error("failed to write to the output file: " + toString(std::move(E))); } static bool shouldKeepInSymtab(const Defined &Sym) { if (Sym.isSection()) return false; if (Config->Discard == DiscardPolicy::None) return true; // If -emit-reloc is given, all symbols including local ones need to be // copied because they may be referenced by relocations. if (Config->EmitRelocs) return true; // In ELF assembly .L symbols are normally discarded by the assembler. // If the assembler fails to do so, the linker discards them if // * --discard-locals is used. // * The symbol is in a SHF_MERGE section, which is normally the reason for // the assembler keeping the .L symbol. StringRef Name = Sym.getName(); bool IsLocal = Name.startswith(".L") || Name.empty(); if (!IsLocal) return true; if (Config->Discard == DiscardPolicy::Locals) return false; SectionBase *Sec = Sym.Section; return !Sec || !(Sec->Flags & SHF_MERGE); } static bool includeInSymtab(const Symbol &B) { if (!B.isLocal() && !B.IsUsedInRegularObj) return false; if (auto *D = dyn_cast(&B)) { // Always include absolute symbols. SectionBase *Sec = D->Section; if (!Sec) return true; Sec = Sec->Repl; // Exclude symbols pointing to garbage-collected sections. if (isa(Sec) && !Sec->isLive()) return false; if (auto *S = dyn_cast(Sec)) if (!S->getSectionPiece(D->Value)->Live) return false; return true; } return B.Used; } // Local symbols are not in the linker's symbol table. This function scans // each object file's symbol table to copy local symbols to the output. template void Writer::copyLocalSymbols() { if (!In.SymTab) return; for (InputFile *File : ObjectFiles) { ObjFile *F = cast>(File); for (Symbol *B : F->getLocalSymbols()) { if (!B->isLocal()) fatal(toString(F) + ": broken object: getLocalSymbols returns a non-local symbol"); auto *DR = dyn_cast(B); // No reason to keep local undefined symbol in symtab. if (!DR) continue; if (!includeInSymtab(*B)) continue; if (!shouldKeepInSymtab(*DR)) continue; In.SymTab->addSymbol(B); } } } // Create a section symbol for each output section so that we can represent // relocations that point to the section. If we know that no relocation is // referring to a section (that happens if the section is a synthetic one), we // don't create a section symbol for that section. template void Writer::addSectionSymbols() { for (BaseCommand *Base : Script->SectionCommands) { auto *Sec = dyn_cast(Base); if (!Sec) continue; auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) { if (auto *ISD = dyn_cast(Base)) return !ISD->Sections.empty(); return false; }); if (I == Sec->SectionCommands.end()) continue; InputSection *IS = cast(*I)->Sections[0]; // Relocations are not using REL[A] section symbols. if (IS->Type == SHT_REL || IS->Type == SHT_RELA) continue; // Unlike other synthetic sections, mergeable output sections contain data // copied from input sections, and there may be a relocation pointing to its // contents if -r or -emit-reloc are given. if (isa(IS) && !(IS->Flags & SHF_MERGE)) continue; auto *Sym = make(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION, /*Value=*/0, /*Size=*/0, IS); In.SymTab->addSymbol(Sym); } } // Today's loaders have a feature to make segments read-only after // processing dynamic relocations to enhance security. PT_GNU_RELRO // is defined for that. // // This function returns true if a section needs to be put into a // PT_GNU_RELRO segment. static bool isRelroSection(const OutputSection *Sec) { if (!Config->ZRelro) return false; uint64_t Flags = Sec->Flags; // Non-allocatable or non-writable sections don't need RELRO because // they are not writable or not even mapped to memory in the first place. // RELRO is for sections that are essentially read-only but need to // be writable only at process startup to allow dynamic linker to // apply relocations. if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) return false; // Once initialized, TLS data segments are used as data templates // for a thread-local storage. For each new thread, runtime // allocates memory for a TLS and copy templates there. No thread // are supposed to use templates directly. Thus, it can be in RELRO. if (Flags & SHF_TLS) return true; // .init_array, .preinit_array and .fini_array contain pointers to // functions that are executed on process startup or exit. These // pointers are set by the static linker, and they are not expected // to change at runtime. But if you are an attacker, you could do // interesting things by manipulating pointers in .fini_array, for // example. So they are put into RELRO. uint32_t Type = Sec->Type; if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || Type == SHT_PREINIT_ARRAY) return true; // .got contains pointers to external symbols. They are resolved by // the dynamic linker when a module is loaded into memory, and after // that they are not expected to change. So, it can be in RELRO. if (In.Got && Sec == In.Got->getParent()) return true; // .toc is a GOT-ish section for PowerPC64. Their contents are accessed // through r2 register, which is reserved for that purpose. Since r2 is used // for accessing .got as well, .got and .toc need to be close enough in the // virtual address space. Usually, .toc comes just after .got. Since we place // .got into RELRO, .toc needs to be placed into RELRO too. if (Sec->Name.equals(".toc")) return true; // .got.plt contains pointers to external function symbols. They are // by default resolved lazily, so we usually cannot put it into RELRO. // However, if "-z now" is given, the lazy symbol resolution is // disabled, which enables us to put it into RELRO. if (Sec == In.GotPlt->getParent()) return Config->ZNow; // .dynamic section contains data for the dynamic linker, and // there's no need to write to it at runtime, so it's better to put // it into RELRO. if (Sec->Name == ".dynamic") return true; // Sections with some special names are put into RELRO. This is a // bit unfortunate because section names shouldn't be significant in // ELF in spirit. But in reality many linker features depend on // magic section names. StringRef S = Sec->Name; return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || S == ".eh_frame" || S == ".openbsd.randomdata"; } // We compute a rank for each section. The rank indicates where the // section should be placed in the file. Instead of using simple // numbers (0,1,2...), we use a series of flags. One for each decision // point when placing the section. // Using flags has two key properties: // * It is easy to check if a give branch was taken. // * It is easy two see how similar two ranks are (see getRankProximity). enum RankFlags { RF_NOT_ADDR_SET = 1 << 27, RF_NOT_ALLOC = 1 << 26, RF_PARTITION = 1 << 18, // Partition number (8 bits) RF_NOT_PART_EHDR = 1 << 17, RF_NOT_PART_PHDR = 1 << 16, RF_NOT_INTERP = 1 << 15, RF_NOT_NOTE = 1 << 14, RF_WRITE = 1 << 13, RF_EXEC_WRITE = 1 << 12, RF_EXEC = 1 << 11, RF_RODATA = 1 << 10, RF_NOT_RELRO = 1 << 9, RF_NOT_TLS = 1 << 8, RF_BSS = 1 << 7, RF_PPC_NOT_TOCBSS = 1 << 6, RF_PPC_TOCL = 1 << 5, RF_PPC_TOC = 1 << 4, RF_PPC_GOT = 1 << 3, RF_PPC_BRANCH_LT = 1 << 2, RF_MIPS_GPREL = 1 << 1, RF_MIPS_NOT_GOT = 1 << 0 }; static unsigned getSectionRank(const OutputSection *Sec) { unsigned Rank = Sec->Partition * RF_PARTITION; // We want to put section specified by -T option first, so we // can start assigning VA starting from them later. if (Config->SectionStartMap.count(Sec->Name)) return Rank; Rank |= RF_NOT_ADDR_SET; // Allocatable sections go first to reduce the total PT_LOAD size and // so debug info doesn't change addresses in actual code. if (!(Sec->Flags & SHF_ALLOC)) return Rank | RF_NOT_ALLOC; if (Sec->Type == SHT_LLVM_PART_EHDR) return Rank; Rank |= RF_NOT_PART_EHDR; if (Sec->Type == SHT_LLVM_PART_PHDR) return Rank; Rank |= RF_NOT_PART_PHDR; // Put .interp first because some loaders want to see that section // on the first page of the executable file when loaded into memory. if (Sec->Name == ".interp") return Rank; Rank |= RF_NOT_INTERP; // Put .note sections (which make up one PT_NOTE) at the beginning so that // they are likely to be included in a core file even if core file size is // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be // included in a core to match core files with executables. if (Sec->Type == SHT_NOTE) return Rank; Rank |= RF_NOT_NOTE; // Sort sections based on their access permission in the following // order: R, RX, RWX, RW. This order is based on the following // considerations: // * Read-only sections come first such that they go in the // PT_LOAD covering the program headers at the start of the file. // * Read-only, executable sections come next. // * Writable, executable sections follow such that .plt on // architectures where it needs to be writable will be placed // between .text and .data. // * Writable sections come last, such that .bss lands at the very // end of the last PT_LOAD. bool IsExec = Sec->Flags & SHF_EXECINSTR; bool IsWrite = Sec->Flags & SHF_WRITE; if (IsExec) { if (IsWrite) Rank |= RF_EXEC_WRITE; else Rank |= RF_EXEC; } else if (IsWrite) { Rank |= RF_WRITE; } else if (Sec->Type == SHT_PROGBITS) { // Make non-executable and non-writable PROGBITS sections (e.g .rodata // .eh_frame) closer to .text. They likely contain PC or GOT relative // relocations and there could be relocation overflow if other huge sections // (.dynstr .dynsym) were placed in between. Rank |= RF_RODATA; } // Place RelRo sections first. After considering SHT_NOBITS below, the // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), // where | marks where page alignment happens. An alternative ordering is // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may // waste more bytes due to 2 alignment places. if (!isRelroSection(Sec)) Rank |= RF_NOT_RELRO; // If we got here we know that both A and B are in the same PT_LOAD. // The TLS initialization block needs to be a single contiguous block in a R/W // PT_LOAD, so stick TLS sections directly before the other RelRo R/W // sections. Since p_filesz can be less than p_memsz, place NOBITS sections // after PROGBITS. if (!(Sec->Flags & SHF_TLS)) Rank |= RF_NOT_TLS; // Within TLS sections, or within other RelRo sections, or within non-RelRo // sections, place non-NOBITS sections first. if (Sec->Type == SHT_NOBITS) Rank |= RF_BSS; // Some architectures have additional ordering restrictions for sections // within the same PT_LOAD. if (Config->EMachine == EM_PPC64) { // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections // that we would like to make sure appear is a specific order to maximize // their coverage by a single signed 16-bit offset from the TOC base // pointer. Conversely, the special .tocbss section should be first among // all SHT_NOBITS sections. This will put it next to the loaded special // PPC64 sections (and, thus, within reach of the TOC base pointer). StringRef Name = Sec->Name; if (Name != ".tocbss") Rank |= RF_PPC_NOT_TOCBSS; if (Name == ".toc1") Rank |= RF_PPC_TOCL; if (Name == ".toc") Rank |= RF_PPC_TOC; if (Name == ".got") Rank |= RF_PPC_GOT; if (Name == ".branch_lt") Rank |= RF_PPC_BRANCH_LT; } if (Config->EMachine == EM_MIPS) { // All sections with SHF_MIPS_GPREL flag should be grouped together // because data in these sections is addressable with a gp relative address. if (Sec->Flags & SHF_MIPS_GPREL) Rank |= RF_MIPS_GPREL; if (Sec->Name != ".got") Rank |= RF_MIPS_NOT_GOT; } return Rank; } static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { const OutputSection *A = cast(ACmd); const OutputSection *B = cast(BCmd); if (A->SortRank != B->SortRank) return A->SortRank < B->SortRank; if (!(A->SortRank & RF_NOT_ADDR_SET)) return Config->SectionStartMap.lookup(A->Name) < Config->SectionStartMap.lookup(B->Name); return false; } void PhdrEntry::add(OutputSection *Sec) { LastSec = Sec; if (!FirstSec) FirstSec = Sec; p_align = std::max(p_align, Sec->Alignment); if (p_type == PT_LOAD) Sec->PtLoad = this; } // The beginning and the ending of .rel[a].plt section are marked // with __rel[a]_iplt_{start,end} symbols if it is a statically linked // executable. The runtime needs these symbols in order to resolve // all IRELATIVE relocs on startup. For dynamic executables, we don't // need these symbols, since IRELATIVE relocs are resolved through GOT // and PLT. For details, see http://www.airs.com/blog/archives/403. template void Writer::addRelIpltSymbols() { if (Config->Relocatable || needsInterpSection()) return; // By default, __rela_iplt_{start,end} belong to a dummy section 0 // because .rela.plt might be empty and thus removed from output. // We'll override Out::ElfHeader with In.RelaIplt later when we are // sure that .rela.plt exists in output. ElfSym::RelaIpltStart = addOptionalRegular( Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start", Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK); ElfSym::RelaIpltEnd = addOptionalRegular( Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end", Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK); } template void Writer::forEachRelSec( llvm::function_ref Fn) { // Scan all relocations. Each relocation goes through a series // of tests to determine if it needs special treatment, such as // creating GOT, PLT, copy relocations, etc. // Note that relocations for non-alloc sections are directly // processed by InputSection::relocateNonAlloc. for (InputSectionBase *IS : InputSections) if (IS->isLive() && isa(IS) && (IS->Flags & SHF_ALLOC)) Fn(*IS); for (Partition &Part : Partitions) { for (EhInputSection *ES : Part.EhFrame->Sections) Fn(*ES); if (Part.ARMExidx && Part.ARMExidx->isLive()) for (InputSection *Ex : Part.ARMExidx->ExidxSections) Fn(*Ex); } } // This function generates assignments for predefined symbols (e.g. _end or // _etext) and inserts them into the commands sequence to be processed at the // appropriate time. This ensures that the value is going to be correct by the // time any references to these symbols are processed and is equivalent to // defining these symbols explicitly in the linker script. template void Writer::setReservedSymbolSections() { if (ElfSym::GlobalOffsetTable) { // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually // to the start of the .got or .got.plt section. InputSection *GotSection = In.GotPlt; if (!Target->GotBaseSymInGotPlt) GotSection = In.MipsGot ? cast(In.MipsGot) : cast(In.Got); ElfSym::GlobalOffsetTable->Section = GotSection; } // .rela_iplt_{start,end} mark the start and the end of .rela.plt section. if (ElfSym::RelaIpltStart && In.RelaIplt->isNeeded()) { ElfSym::RelaIpltStart->Section = In.RelaIplt; ElfSym::RelaIpltEnd->Section = In.RelaIplt; ElfSym::RelaIpltEnd->Value = In.RelaIplt->getSize(); } PhdrEntry *Last = nullptr; PhdrEntry *LastRO = nullptr; for (Partition &Part : Partitions) { for (PhdrEntry *P : Part.Phdrs) { if (P->p_type != PT_LOAD) continue; Last = P; if (!(P->p_flags & PF_W)) LastRO = P; } } if (LastRO) { // _etext is the first location after the last read-only loadable segment. if (ElfSym::Etext1) ElfSym::Etext1->Section = LastRO->LastSec; if (ElfSym::Etext2) ElfSym::Etext2->Section = LastRO->LastSec; } if (Last) { // _edata points to the end of the last mapped initialized section. OutputSection *Edata = nullptr; for (OutputSection *OS : OutputSections) { if (OS->Type != SHT_NOBITS) Edata = OS; if (OS == Last->LastSec) break; } if (ElfSym::Edata1) ElfSym::Edata1->Section = Edata; if (ElfSym::Edata2) ElfSym::Edata2->Section = Edata; // _end is the first location after the uninitialized data region. if (ElfSym::End1) ElfSym::End1->Section = Last->LastSec; if (ElfSym::End2) ElfSym::End2->Section = Last->LastSec; } if (ElfSym::Bss) ElfSym::Bss->Section = findSection(".bss"); // Setup MIPS _gp_disp/__gnu_local_gp symbols which should // be equal to the _gp symbol's value. if (ElfSym::MipsGp) { // Find GP-relative section with the lowest address // and use this address to calculate default _gp value. for (OutputSection *OS : OutputSections) { if (OS->Flags & SHF_MIPS_GPREL) { ElfSym::MipsGp->Section = OS; ElfSym::MipsGp->Value = 0x7ff0; break; } } } } // We want to find how similar two ranks are. // The more branches in getSectionRank that match, the more similar they are. // Since each branch corresponds to a bit flag, we can just use // countLeadingZeros. static int getRankProximityAux(OutputSection *A, OutputSection *B) { return countLeadingZeros(A->SortRank ^ B->SortRank); } static int getRankProximity(OutputSection *A, BaseCommand *B) { auto *Sec = dyn_cast(B); return (Sec && Sec->HasInputSections) ? getRankProximityAux(A, Sec) : -1; } // When placing orphan sections, we want to place them after symbol assignments // so that an orphan after // begin_foo = .; // foo : { *(foo) } // end_foo = .; // doesn't break the intended meaning of the begin/end symbols. // We don't want to go over sections since findOrphanPos is the // one in charge of deciding the order of the sections. // We don't want to go over changes to '.', since doing so in // rx_sec : { *(rx_sec) } // . = ALIGN(0x1000); // /* The RW PT_LOAD starts here*/ // rw_sec : { *(rw_sec) } // would mean that the RW PT_LOAD would become unaligned. static bool shouldSkip(BaseCommand *Cmd) { if (auto *Assign = dyn_cast(Cmd)) return Assign->Name != "."; return false; } // We want to place orphan sections so that they share as much // characteristics with their neighbors as possible. For example, if // both are rw, or both are tls. static std::vector::iterator findOrphanPos(std::vector::iterator B, std::vector::iterator E) { OutputSection *Sec = cast(*E); // Find the first element that has as close a rank as possible. auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { return getRankProximity(Sec, A) < getRankProximity(Sec, B); }); if (I == E) return E; // Consider all existing sections with the same proximity. int Proximity = getRankProximity(Sec, *I); for (; I != E; ++I) { auto *CurSec = dyn_cast(*I); if (!CurSec || !CurSec->HasInputSections) continue; if (getRankProximity(Sec, CurSec) != Proximity || Sec->SortRank < CurSec->SortRank) break; } auto IsOutputSecWithInputSections = [](BaseCommand *Cmd) { auto *OS = dyn_cast(Cmd); return OS && OS->HasInputSections; }; auto J = std::find_if(llvm::make_reverse_iterator(I), llvm::make_reverse_iterator(B), IsOutputSecWithInputSections); I = J.base(); // As a special case, if the orphan section is the last section, put // it at the very end, past any other commands. // This matches bfd's behavior and is convenient when the linker script fully // specifies the start of the file, but doesn't care about the end (the non // alloc sections for example). auto NextSec = std::find_if(I, E, IsOutputSecWithInputSections); if (NextSec == E) return E; while (I != E && shouldSkip(*I)) ++I; return I; } // Builds section order for handling --symbol-ordering-file. static DenseMap buildSectionOrder() { DenseMap SectionOrder; // Use the rarely used option -call-graph-ordering-file to sort sections. if (!Config->CallGraphProfile.empty()) return computeCallGraphProfileOrder(); if (Config->SymbolOrderingFile.empty()) return SectionOrder; struct SymbolOrderEntry { int Priority; bool Present; }; // Build a map from symbols to their priorities. Symbols that didn't // appear in the symbol ordering file have the lowest priority 0. // All explicitly mentioned symbols have negative (higher) priorities. DenseMap SymbolOrder; int Priority = -Config->SymbolOrderingFile.size(); for (StringRef S : Config->SymbolOrderingFile) SymbolOrder.insert({S, {Priority++, false}}); // Build a map from sections to their priorities. auto AddSym = [&](Symbol &Sym) { auto It = SymbolOrder.find(Sym.getName()); if (It == SymbolOrder.end()) return; SymbolOrderEntry &Ent = It->second; Ent.Present = true; maybeWarnUnorderableSymbol(&Sym); if (auto *D = dyn_cast(&Sym)) { if (auto *Sec = dyn_cast_or_null(D->Section)) { int &Priority = SectionOrder[cast(Sec->Repl)]; Priority = std::min(Priority, Ent.Priority); } } }; // We want both global and local symbols. We get the global ones from the // symbol table and iterate the object files for the local ones. Symtab->forEachSymbol([&](Symbol *Sym) { if (!Sym->isLazy()) AddSym(*Sym); }); for (InputFile *File : ObjectFiles) for (Symbol *Sym : File->getSymbols()) if (Sym->isLocal()) AddSym(*Sym); if (Config->WarnSymbolOrdering) for (auto OrderEntry : SymbolOrder) if (!OrderEntry.second.Present) warn("symbol ordering file: no such symbol: " + OrderEntry.first); return SectionOrder; } // Sorts the sections in ISD according to the provided section order. static void sortISDBySectionOrder(InputSectionDescription *ISD, const DenseMap &Order) { std::vector UnorderedSections; std::vector> OrderedSections; uint64_t UnorderedSize = 0; for (InputSection *IS : ISD->Sections) { auto I = Order.find(IS); if (I == Order.end()) { UnorderedSections.push_back(IS); UnorderedSize += IS->getSize(); continue; } OrderedSections.push_back({IS, I->second}); } llvm::sort(OrderedSections, [&](std::pair A, std::pair B) { return A.second < B.second; }); // Find an insertion point for the ordered section list in the unordered // section list. On targets with limited-range branches, this is the mid-point // of the unordered section list. This decreases the likelihood that a range // extension thunk will be needed to enter or exit the ordered region. If the // ordered section list is a list of hot functions, we can generally expect // the ordered functions to be called more often than the unordered functions, // making it more likely that any particular call will be within range, and // therefore reducing the number of thunks required. // // For example, imagine that you have 8MB of hot code and 32MB of cold code. // If the layout is: // // 8MB hot // 32MB cold // // only the first 8-16MB of the cold code (depending on which hot function it // is actually calling) can call the hot code without a range extension thunk. // However, if we use this layout: // // 16MB cold // 8MB hot // 16MB cold // // both the last 8-16MB of the first block of cold code and the first 8-16MB // of the second block of cold code can call the hot code without a thunk. So // we effectively double the amount of code that could potentially call into // the hot code without a thunk. size_t InsPt = 0; if (Target->getThunkSectionSpacing() && !OrderedSections.empty()) { uint64_t UnorderedPos = 0; for (; InsPt != UnorderedSections.size(); ++InsPt) { UnorderedPos += UnorderedSections[InsPt]->getSize(); if (UnorderedPos > UnorderedSize / 2) break; } } ISD->Sections.clear(); for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt)) ISD->Sections.push_back(IS); for (std::pair P : OrderedSections) ISD->Sections.push_back(P.first); for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt)) ISD->Sections.push_back(IS); } static void sortSection(OutputSection *Sec, const DenseMap &Order) { StringRef Name = Sec->Name; // Sort input sections by section name suffixes for // __attribute__((init_priority(N))). if (Name == ".init_array" || Name == ".fini_array") { if (!Script->HasSectionsCommand) Sec->sortInitFini(); return; } // Sort input sections by the special rule for .ctors and .dtors. if (Name == ".ctors" || Name == ".dtors") { if (!Script->HasSectionsCommand) Sec->sortCtorsDtors(); return; } // Never sort these. if (Name == ".init" || Name == ".fini") return; // .toc is allocated just after .got and is accessed using GOT-relative // relocations. Object files compiled with small code model have an // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. // To reduce the risk of relocation overflow, .toc contents are sorted so that // sections having smaller relocation offsets are at beginning of .toc if (Config->EMachine == EM_PPC64 && Name == ".toc") { if (Script->HasSectionsCommand) return; assert(Sec->SectionCommands.size() == 1); auto *ISD = cast(Sec->SectionCommands[0]); llvm::stable_sort(ISD->Sections, [](const InputSection *A, const InputSection *B) -> bool { return A->File->PPC64SmallCodeModelTocRelocs && !B->File->PPC64SmallCodeModelTocRelocs; }); return; } // Sort input sections by priority using the list provided // by --symbol-ordering-file. if (!Order.empty()) for (BaseCommand *B : Sec->SectionCommands) if (auto *ISD = dyn_cast(B)) sortISDBySectionOrder(ISD, Order); } // If no layout was provided by linker script, we want to apply default // sorting for special input sections. This also handles --symbol-ordering-file. template void Writer::sortInputSections() { // Build the order once since it is expensive. DenseMap Order = buildSectionOrder(); for (BaseCommand *Base : Script->SectionCommands) if (auto *Sec = dyn_cast(Base)) sortSection(Sec, Order); } template void Writer::sortSections() { Script->adjustSectionsBeforeSorting(); // Don't sort if using -r. It is not necessary and we want to preserve the // relative order for SHF_LINK_ORDER sections. if (Config->Relocatable) return; sortInputSections(); for (BaseCommand *Base : Script->SectionCommands) { auto *OS = dyn_cast(Base); if (!OS) continue; OS->SortRank = getSectionRank(OS); // We want to assign rude approximation values to OutSecOff fields // to know the relative order of the input sections. We use it for // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). uint64_t I = 0; for (InputSection *Sec : getInputSections(OS)) Sec->OutSecOff = I++; } if (!Script->HasSectionsCommand) { // We know that all the OutputSections are contiguous in this case. auto IsSection = [](BaseCommand *Base) { return isa(Base); }; std::stable_sort( llvm::find_if(Script->SectionCommands, IsSection), llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(), compareSections); return; } // Orphan sections are sections present in the input files which are // not explicitly placed into the output file by the linker script. // // The sections in the linker script are already in the correct // order. We have to figuere out where to insert the orphan // sections. // // The order of the sections in the script is arbitrary and may not agree with // compareSections. This means that we cannot easily define a strict weak // ordering. To see why, consider a comparison of a section in the script and // one not in the script. We have a two simple options: // * Make them equivalent (a is not less than b, and b is not less than a). // The problem is then that equivalence has to be transitive and we can // have sections a, b and c with only b in a script and a less than c // which breaks this property. // * Use compareSectionsNonScript. Given that the script order doesn't have // to match, we can end up with sections a, b, c, d where b and c are in the // script and c is compareSectionsNonScript less than b. In which case d // can be equivalent to c, a to b and d < a. As a concrete example: // .a (rx) # not in script // .b (rx) # in script // .c (ro) # in script // .d (ro) # not in script // // The way we define an order then is: // * Sort only the orphan sections. They are in the end right now. // * Move each orphan section to its preferred position. We try // to put each section in the last position where it can share // a PT_LOAD. // // There is some ambiguity as to where exactly a new entry should be // inserted, because Commands contains not only output section // commands but also other types of commands such as symbol assignment // expressions. There's no correct answer here due to the lack of the // formal specification of the linker script. We use heuristics to // determine whether a new output command should be added before or // after another commands. For the details, look at shouldSkip // function. auto I = Script->SectionCommands.begin(); auto E = Script->SectionCommands.end(); auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { if (auto *Sec = dyn_cast(Base)) return Sec->SectionIndex == UINT32_MAX; return false; }); // Sort the orphan sections. std::stable_sort(NonScriptI, E, compareSections); // As a horrible special case, skip the first . assignment if it is before any // section. We do this because it is common to set a load address by starting // the script with ". = 0xabcd" and the expectation is that every section is // after that. auto FirstSectionOrDotAssignment = std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); if (FirstSectionOrDotAssignment != E && isa(**FirstSectionOrDotAssignment)) ++FirstSectionOrDotAssignment; I = FirstSectionOrDotAssignment; while (NonScriptI != E) { auto Pos = findOrphanPos(I, NonScriptI); OutputSection *Orphan = cast(*NonScriptI); // As an optimization, find all sections with the same sort rank // and insert them with one rotate. unsigned Rank = Orphan->SortRank; auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { return cast(Cmd)->SortRank != Rank; }); std::rotate(Pos, NonScriptI, End); NonScriptI = End; } Script->adjustSectionsAfterSorting(); } static bool compareByFilePosition(InputSection *A, InputSection *B) { InputSection *LA = A->getLinkOrderDep(); InputSection *LB = B->getLinkOrderDep(); OutputSection *AOut = LA->getParent(); OutputSection *BOut = LB->getParent(); if (AOut != BOut) return AOut->SectionIndex < BOut->SectionIndex; return LA->OutSecOff < LB->OutSecOff; } template void Writer::resolveShfLinkOrder() { for (OutputSection *Sec : OutputSections) { if (!(Sec->Flags & SHF_LINK_ORDER)) continue; // Link order may be distributed across several InputSectionDescriptions // but sort must consider them all at once. std::vector ScriptSections; std::vector Sections; for (BaseCommand *Base : Sec->SectionCommands) { if (auto *ISD = dyn_cast(Base)) { for (InputSection *&IS : ISD->Sections) { ScriptSections.push_back(&IS); Sections.push_back(IS); } } } // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated // this processing inside the ARMExidxsyntheticsection::finalizeContents(). if (!Config->Relocatable && Config->EMachine == EM_ARM && Sec->Type == SHT_ARM_EXIDX) continue; llvm::stable_sort(Sections, compareByFilePosition); for (int I = 0, N = Sections.size(); I < N; ++I) *ScriptSections[I] = Sections[I]; } } // We need to generate and finalize the content that depends on the address of // InputSections. As the generation of the content may also alter InputSection // addresses we must converge to a fixed point. We do that here. See the comment // in Writer::finalizeSections(). template void Writer::finalizeAddressDependentContent() { ThunkCreator TC; AArch64Err843419Patcher A64P; // For some targets, like x86, this loop iterates only once. for (;;) { bool Changed = false; Script->assignAddresses(); if (Target->NeedsThunks) Changed |= TC.createThunks(OutputSections); if (Config->FixCortexA53Errata843419) { if (Changed) Script->assignAddresses(); Changed |= A64P.createFixes(); } if (In.MipsGot) In.MipsGot->updateAllocSize(); for (Partition &Part : Partitions) { Changed |= Part.RelaDyn->updateAllocSize(); if (Part.RelrDyn) Changed |= Part.RelrDyn->updateAllocSize(); } if (!Changed) return; } } static void finalizeSynthetic(SyntheticSection *Sec) { if (Sec && Sec->isNeeded() && Sec->getParent()) Sec->finalizeContents(); } // In order to allow users to manipulate linker-synthesized sections, // we had to add synthetic sections to the input section list early, // even before we make decisions whether they are needed. This allows // users to write scripts like this: ".mygot : { .got }". // // Doing it has an unintended side effects. If it turns out that we // don't need a .got (for example) at all because there's no // relocation that needs a .got, we don't want to emit .got. // // To deal with the above problem, this function is called after // scanRelocations is called to remove synthetic sections that turn // out to be empty. static void removeUnusedSyntheticSections() { // All input synthetic sections that can be empty are placed after // all regular ones. We iterate over them all and exit at first // non-synthetic. for (InputSectionBase *S : llvm::reverse(InputSections)) { SyntheticSection *SS = dyn_cast(S); if (!SS) return; OutputSection *OS = SS->getParent(); if (!OS || SS->isNeeded()) continue; // If we reach here, then SS is an unused synthetic section and we want to // remove it from corresponding input section description of output section. for (BaseCommand *B : OS->SectionCommands) if (auto *ISD = dyn_cast(B)) llvm::erase_if(ISD->Sections, [=](InputSection *IS) { return IS == SS; }); } } // Returns true if a symbol can be replaced at load-time by a symbol // with the same name defined in other ELF executable or DSO. static bool computeIsPreemptible(const Symbol &B) { assert(!B.isLocal()); // Only symbols that appear in dynsym can be preempted. if (!B.includeInDynsym()) return false; // Only default visibility symbols can be preempted. if (B.Visibility != STV_DEFAULT) return false; // At this point copy relocations have not been created yet, so any // symbol that is not defined locally is preemptible. if (!B.isDefined()) return true; // If we have a dynamic list it specifies which local symbols are preemptible. if (Config->HasDynamicList) return false; if (!Config->Shared) return false; // -Bsymbolic means that definitions are not preempted. if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc())) return false; return true; } // Create output section objects and add them to OutputSections. template void Writer::finalizeSections() { Out::PreinitArray = findSection(".preinit_array"); Out::InitArray = findSection(".init_array"); Out::FiniArray = findSection(".fini_array"); // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop // symbols for sections, so that the runtime can get the start and end // addresses of each section by section name. Add such symbols. if (!Config->Relocatable) { addStartEndSymbols(); for (BaseCommand *Base : Script->SectionCommands) if (auto *Sec = dyn_cast(Base)) addStartStopSymbols(Sec); } // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. // It should be okay as no one seems to care about the type. // Even the author of gold doesn't remember why gold behaves that way. // https://sourceware.org/ml/binutils/2002-03/msg00360.html if (Main->Dynamic->Parent) Symtab->addSymbol(Defined{/*File=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE, /*Value=*/0, /*Size=*/0, Main->Dynamic}); // Define __rel[a]_iplt_{start,end} symbols if needed. addRelIpltSymbols(); // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined. // This symbol should only be defined in an executable. if (Config->EMachine == EM_RISCV && !Config->Shared) ElfSym::RISCVGlobalPointer = addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800, STV_DEFAULT, STB_GLOBAL); if (Config->EMachine == EM_X86_64) { // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a // way that: // // 1) Without relaxation: it produces a dynamic TLSDESC relocation that // computes 0. // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in // the TLS block). // // 2) is special cased in @tpoff computation. To satisfy 1), we define it as // an absolute symbol of zero. This is different from GNU linkers which // define _TLS_MODULE_BASE_ relative to the first TLS section. Symbol *S = Symtab->find("_TLS_MODULE_BASE_"); if (S && S->isUndefined()) { S->resolve(Defined{/*File=*/nullptr, S->getName(), STB_GLOBAL, STV_HIDDEN, STT_TLS, /*Value=*/0, 0, /*Section=*/nullptr}); ElfSym::TlsModuleBase = cast(S); } } // This responsible for splitting up .eh_frame section into // pieces. The relocation scan uses those pieces, so this has to be // earlier. for (Partition &Part : Partitions) finalizeSynthetic(Part.EhFrame); Symtab->forEachSymbol([](Symbol *S) { if (!S->IsPreemptible) S->IsPreemptible = computeIsPreemptible(*S); }); // Scan relocations. This must be done after every symbol is declared so that // we can correctly decide if a dynamic relocation is needed. if (!Config->Relocatable) forEachRelSec(scanRelocations); addIRelativeRelocs(); if (In.Plt && In.Plt->isNeeded()) In.Plt->addSymbols(); if (In.Iplt && In.Iplt->isNeeded()) In.Iplt->addSymbols(); if (!Config->AllowShlibUndefined) { // Error on undefined symbols in a shared object, if all of its DT_NEEDED // entires are seen. These cases would otherwise lead to runtime errors // reported by the dynamic linker. // // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to // catch more cases. That is too much for us. Our approach resembles the one // used in ld.gold, achieves a good balance to be useful but not too smart. for (SharedFile *File : SharedFiles) File->AllNeededIsKnown = llvm::all_of(File->DtNeeded, [&](StringRef Needed) { return Symtab->SoNames.count(Needed); }); Symtab->forEachSymbol([](Symbol *Sym) { if (Sym->isUndefined() && !Sym->isWeak()) if (auto *F = dyn_cast_or_null(Sym->File)) if (F->AllNeededIsKnown) error(toString(F) + ": undefined reference to " + toString(*Sym)); }); } // Now that we have defined all possible global symbols including linker- // synthesized ones. Visit all symbols to give the finishing touches. Symtab->forEachSymbol([](Symbol *Sym) { if (!includeInSymtab(*Sym)) return; if (In.SymTab) In.SymTab->addSymbol(Sym); if (Sym->includeInDynsym()) { Partitions[Sym->Partition - 1].DynSymTab->addSymbol(Sym); if (auto *File = dyn_cast_or_null(Sym->File)) if (File->IsNeeded && !Sym->isUndefined()) addVerneed(Sym); } }); // We also need to scan the dynamic relocation tables of the other partitions // and add any referenced symbols to the partition's dynsym. for (Partition &Part : MutableArrayRef(Partitions).slice(1)) { DenseSet Syms; for (const SymbolTableEntry &E : Part.DynSymTab->getSymbols()) Syms.insert(E.Sym); for (DynamicReloc &Reloc : Part.RelaDyn->Relocs) if (Reloc.Sym && !Reloc.UseSymVA && Syms.insert(Reloc.Sym).second) Part.DynSymTab->addSymbol(Reloc.Sym); } // Do not proceed if there was an undefined symbol. if (errorCount()) return; if (In.MipsGot) In.MipsGot->build(); removeUnusedSyntheticSections(); sortSections(); // Now that we have the final list, create a list of all the // OutputSections for convenience. for (BaseCommand *Base : Script->SectionCommands) if (auto *Sec = dyn_cast(Base)) OutputSections.push_back(Sec); // Prefer command line supplied address over other constraints. for (OutputSection *Sec : OutputSections) { auto I = Config->SectionStartMap.find(Sec->Name); if (I != Config->SectionStartMap.end()) Sec->AddrExpr = [=] { return I->second; }; } // This is a bit of a hack. A value of 0 means undef, so we set it // to 1 to make __ehdr_start defined. The section number is not // particularly relevant. Out::ElfHeader->SectionIndex = 1; for (size_t I = 0, E = OutputSections.size(); I != E; ++I) { OutputSection *Sec = OutputSections[I]; Sec->SectionIndex = I + 1; Sec->ShName = In.ShStrTab->addString(Sec->Name); } // Binary and relocatable output does not have PHDRS. // The headers have to be created before finalize as that can influence the // image base and the dynamic section on mips includes the image base. if (!Config->Relocatable && !Config->OFormatBinary) { for (Partition &Part : Partitions) { Part.Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs(Part); if (Config->EMachine == EM_ARM) { // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME addPhdrForSection(Part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); } if (Config->EMachine == EM_MIPS) { // Add separate segments for MIPS-specific sections. addPhdrForSection(Part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); addPhdrForSection(Part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); addPhdrForSection(Part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); } } Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Main->Phdrs.size(); // Find the TLS segment. This happens before the section layout loop so that // Android relocation packing can look up TLS symbol addresses. We only need // to care about the main partition here because all TLS symbols were moved // to the main partition (see MarkLive.cpp). for (PhdrEntry *P : Main->Phdrs) if (P->p_type == PT_TLS) Out::TlsPhdr = P; } // Some symbols are defined in term of program headers. Now that we // have the headers, we can find out which sections they point to. setReservedSymbolSections(); finalizeSynthetic(In.Bss); finalizeSynthetic(In.BssRelRo); finalizeSynthetic(In.SymTabShndx); finalizeSynthetic(In.ShStrTab); finalizeSynthetic(In.StrTab); finalizeSynthetic(In.Got); finalizeSynthetic(In.MipsGot); finalizeSynthetic(In.IgotPlt); finalizeSynthetic(In.GotPlt); finalizeSynthetic(In.RelaIplt); finalizeSynthetic(In.RelaPlt); finalizeSynthetic(In.Plt); finalizeSynthetic(In.Iplt); finalizeSynthetic(In.PPC32Got2); finalizeSynthetic(In.RISCVSdata); finalizeSynthetic(In.PartIndex); // Dynamic section must be the last one in this list and dynamic // symbol table section (DynSymTab) must be the first one. for (Partition &Part : Partitions) { finalizeSynthetic(Part.ARMExidx); finalizeSynthetic(Part.DynSymTab); finalizeSynthetic(Part.GnuHashTab); finalizeSynthetic(Part.HashTab); finalizeSynthetic(Part.VerDef); finalizeSynthetic(Part.RelaDyn); finalizeSynthetic(Part.RelrDyn); finalizeSynthetic(Part.EhFrameHdr); finalizeSynthetic(Part.VerSym); finalizeSynthetic(Part.VerNeed); finalizeSynthetic(Part.Dynamic); } if (!Script->HasSectionsCommand && !Config->Relocatable) fixSectionAlignments(); // SHFLinkOrder processing must be processed after relative section placements are // known but before addresses are allocated. resolveShfLinkOrder(); // This is used to: // 1) Create "thunks": // Jump instructions in many ISAs have small displacements, and therefore // they cannot jump to arbitrary addresses in memory. For example, RISC-V // JAL instruction can target only +-1 MiB from PC. It is a linker's // responsibility to create and insert small pieces of code between // sections to extend the ranges if jump targets are out of range. Such // code pieces are called "thunks". // // We add thunks at this stage. We couldn't do this before this point // because this is the earliest point where we know sizes of sections and // their layouts (that are needed to determine if jump targets are in // range). // // 2) Update the sections. We need to generate content that depends on the // address of InputSections. For example, MIPS GOT section content or // android packed relocations sections content. // // 3) Assign the final values for the linker script symbols. Linker scripts // sometimes using forward symbol declarations. We want to set the correct // values. They also might change after adding the thunks. finalizeAddressDependentContent(); // finalizeAddressDependentContent may have added local symbols to the static symbol table. finalizeSynthetic(In.SymTab); finalizeSynthetic(In.PPC64LongBranchTarget); // Fill other section headers. The dynamic table is finalized // at the end because some tags like RELSZ depend on result // of finalizing other sections. for (OutputSection *Sec : OutputSections) Sec->finalize(); } // Ensure data sections are not mixed with executable sections when // -execute-only is used. -execute-only is a feature to make pages executable // but not readable, and the feature is currently supported only on AArch64. template void Writer::checkExecuteOnly() { if (!Config->ExecuteOnly) return; for (OutputSection *OS : OutputSections) if (OS->Flags & SHF_EXECINSTR) for (InputSection *IS : getInputSections(OS)) if (!(IS->Flags & SHF_EXECINSTR)) error("cannot place " + toString(IS) + " into " + toString(OS->Name) + ": -execute-only does not support intermingling data and code"); } // The linker is expected to define SECNAME_start and SECNAME_end // symbols for a few sections. This function defines them. template void Writer::addStartEndSymbols() { // If a section does not exist, there's ambiguity as to how we // define _start and _end symbols for an init/fini section. Since // the loader assume that the symbols are always defined, we need to // always define them. But what value? The loader iterates over all // pointers between _start and _end to run global ctors/dtors, so if // the section is empty, their symbol values don't actually matter // as long as _start and _end point to the same location. // // That said, we don't want to set the symbols to 0 (which is // probably the simplest value) because that could cause some // program to fail to link due to relocation overflow, if their // program text is above 2 GiB. We use the address of the .text // section instead to prevent that failure. // // In a rare sitaution, .text section may not exist. If that's the // case, use the image base address as a last resort. OutputSection *Default = findSection(".text"); if (!Default) Default = Out::ElfHeader; auto Define = [=](StringRef Start, StringRef End, OutputSection *OS) { if (OS) { addOptionalRegular(Start, OS, 0); addOptionalRegular(End, OS, -1); } else { addOptionalRegular(Start, Default, 0); addOptionalRegular(End, Default, 0); } }; Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); Define("__init_array_start", "__init_array_end", Out::InitArray); Define("__fini_array_start", "__fini_array_end", Out::FiniArray); if (OutputSection *Sec = findSection(".ARM.exidx")) Define("__exidx_start", "__exidx_end", Sec); } // If a section name is valid as a C identifier (which is rare because of // the leading '.'), linkers are expected to define __start_ and // __stop_ symbols. They are at beginning and end of the section, // respectively. This is not requested by the ELF standard, but GNU ld and // gold provide the feature, and used by many programs. template void Writer::addStartStopSymbols(OutputSection *Sec) { StringRef S = Sec->Name; if (!isValidCIdentifier(S)) return; addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED); addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED); } static bool needsPtLoad(OutputSection *Sec) { if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload) return false; // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is // responsible for allocating space for them, not the PT_LOAD that // contains the TLS initialization image. if ((Sec->Flags & SHF_TLS) && Sec->Type == SHT_NOBITS) return false; return true; } // Linker scripts are responsible for aligning addresses. Unfortunately, most // linker scripts are designed for creating two PT_LOADs only, one RX and one // RW. This means that there is no alignment in the RO to RX transition and we // cannot create a PT_LOAD there. static uint64_t computeFlags(uint64_t Flags) { if (Config->Omagic) return PF_R | PF_W | PF_X; if (Config->ExecuteOnly && (Flags & PF_X)) return Flags & ~PF_R; if (Config->SingleRoRx && !(Flags & PF_W)) return Flags | PF_X; return Flags; } // Decide which program headers to create and which sections to include in each // one. template std::vector Writer::createPhdrs(Partition &Part) { std::vector Ret; auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { Ret.push_back(make(Type, Flags)); return Ret.back(); }; unsigned PartNo = Part.getNumber(); bool IsMain = PartNo == 1; // The first phdr entry is PT_PHDR which describes the program header itself. if (IsMain) AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); else AddHdr(PT_PHDR, PF_R)->add(Part.ProgramHeaders->getParent()); // PT_INTERP must be the second entry if exists. if (OutputSection *Cmd = findSection(".interp", PartNo)) AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd); // Add the first PT_LOAD segment for regular output sections. uint64_t Flags = computeFlags(PF_R); PhdrEntry *Load = nullptr; // Add the headers. We will remove them if they don't fit. // In the other partitions the headers are ordinary sections, so they don't // need to be added here. if (IsMain) { Load = AddHdr(PT_LOAD, Flags); Load->add(Out::ElfHeader); Load->add(Out::ProgramHeaders); } // PT_GNU_RELRO includes all sections that should be marked as // read-only by dynamic linker after proccessing relocations. // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give // an error message if more than one PT_GNU_RELRO PHDR is required. PhdrEntry *RelRo = make(PT_GNU_RELRO, PF_R); bool InRelroPhdr = false; OutputSection *RelroEnd = nullptr; for (OutputSection *Sec : OutputSections) { if (Sec->Partition != PartNo || !needsPtLoad(Sec)) continue; if (isRelroSection(Sec)) { InRelroPhdr = true; if (!RelroEnd) RelRo->add(Sec); else error("section: " + Sec->Name + " is not contiguous with other relro" + " sections"); } else if (InRelroPhdr) { InRelroPhdr = false; RelroEnd = Sec; } } for (OutputSection *Sec : OutputSections) { if (!(Sec->Flags & SHF_ALLOC)) break; if (!needsPtLoad(Sec)) continue; // Normally, sections in partitions other than the current partition are // ignored. But partition number 255 is a special case: it contains the // partition end marker (.part.end). It needs to be added to the main // partition so that a segment is created for it in the main partition, // which will cause the dynamic loader to reserve space for the other // partitions. if (Sec->Partition != PartNo) { if (IsMain && Sec->Partition == 255) AddHdr(PT_LOAD, computeFlags(Sec->getPhdrFlags()))->add(Sec); continue; } // Segments are contiguous memory regions that has the same attributes // (e.g. executable or writable). There is one phdr for each segment. // Therefore, we need to create a new phdr when the next section has // different flags or is loaded at a discontiguous address or memory // region using AT or AT> linker script command, respectively. At the same // time, we don't want to create a separate load segment for the headers, // even if the first output section has an AT or AT> attribute. uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); if (!Load || ((Sec->LMAExpr || (Sec->LMARegion && (Sec->LMARegion != Load->FirstSec->LMARegion))) && Load->LastSec != Out::ProgramHeaders) || Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags || Sec == RelroEnd) { Load = AddHdr(PT_LOAD, NewFlags); Flags = NewFlags; } Load->add(Sec); } // Add a TLS segment if any. PhdrEntry *TlsHdr = make(PT_TLS, PF_R); for (OutputSection *Sec : OutputSections) if (Sec->Partition == PartNo && Sec->Flags & SHF_TLS) TlsHdr->add(Sec); if (TlsHdr->FirstSec) Ret.push_back(TlsHdr); // Add an entry for .dynamic. if (OutputSection *Sec = Part.Dynamic->getParent()) AddHdr(PT_DYNAMIC, Sec->getPhdrFlags())->add(Sec); if (RelRo->FirstSec) Ret.push_back(RelRo); // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. if (Part.EhFrame->isNeeded() && Part.EhFrameHdr && Part.EhFrame->getParent() && Part.EhFrameHdr->getParent()) AddHdr(PT_GNU_EH_FRAME, Part.EhFrameHdr->getParent()->getPhdrFlags()) ->add(Part.EhFrameHdr->getParent()); // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes // the dynamic linker fill the segment with random data. if (OutputSection *Cmd = findSection(".openbsd.randomdata", PartNo)) AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd); // PT_GNU_STACK is a special section to tell the loader to make the // pages for the stack non-executable. If you really want an executable // stack, you can pass -z execstack, but that's not recommended for // security reasons. unsigned Perm = PF_R | PF_W; if (Config->ZExecstack) Perm |= PF_X; AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable // is expected to perform W^X violations, such as calling mprotect(2) or // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on // OpenBSD. if (Config->ZWxneeded) AddHdr(PT_OPENBSD_WXNEEDED, PF_X); // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the // same alignment. PhdrEntry *Note = nullptr; for (OutputSection *Sec : OutputSections) { if (Sec->Partition != PartNo) continue; if (Sec->Type == SHT_NOTE && (Sec->Flags & SHF_ALLOC)) { if (!Note || Sec->LMAExpr || Note->LastSec->Alignment != Sec->Alignment) Note = AddHdr(PT_NOTE, PF_R); Note->add(Sec); } else { Note = nullptr; } } return Ret; } template void Writer::addPhdrForSection(Partition &Part, unsigned ShType, unsigned PType, unsigned PFlags) { unsigned PartNo = Part.getNumber(); auto I = llvm::find_if(OutputSections, [=](OutputSection *Cmd) { return Cmd->Partition == PartNo && Cmd->Type == ShType; }); if (I == OutputSections.end()) return; PhdrEntry *Entry = make(PType, PFlags); Entry->add(*I); Part.Phdrs.push_back(Entry); } // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the // first section after PT_GNU_RELRO have to be page aligned so that the dynamic // linker can set the permissions. template void Writer::fixSectionAlignments() { auto PageAlign = [](OutputSection *Cmd) { if (Cmd && !Cmd->AddrExpr) Cmd->AddrExpr = [=] { return alignTo(Script->getDot(), Config->MaxPageSize); }; }; for (Partition &Part : Partitions) { for (const PhdrEntry *P : Part.Phdrs) if (P->p_type == PT_LOAD && P->FirstSec) PageAlign(P->FirstSec); for (const PhdrEntry *P : Part.Phdrs) { if (P->p_type != PT_GNU_RELRO) continue; if (P->FirstSec) PageAlign(P->FirstSec); // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we // have to align it to a page. auto End = OutputSections.end(); auto I = llvm::find(OutputSections, P->LastSec); if (I == End || (I + 1) == End) continue; OutputSection *Cmd = (*(I + 1)); if (needsPtLoad(Cmd)) PageAlign(Cmd); } } } // Compute an in-file position for a given section. The file offset must be the // same with its virtual address modulo the page size, so that the loader can // load executables without any address adjustment. static uint64_t computeFileOffset(OutputSection *OS, uint64_t Off) { // File offsets are not significant for .bss sections. By convention, we keep // section offsets monotonically increasing rather than setting to zero. if (OS->Type == SHT_NOBITS) return Off; // If the section is not in a PT_LOAD, we just have to align it. if (!OS->PtLoad) return alignTo(Off, OS->Alignment); // The first section in a PT_LOAD has to have congruent offset and address // module the page size. OutputSection *First = OS->PtLoad->FirstSec; if (OS == First) { uint64_t Alignment = std::max(OS->Alignment, Config->MaxPageSize); return alignTo(Off, Alignment, OS->Addr); } // If two sections share the same PT_LOAD the file offset is calculated // using this formula: Off2 = Off1 + (VA2 - VA1). return First->Offset + OS->Addr - First->Addr; } // Set an in-file position to a given section and returns the end position of // the section. static uint64_t setFileOffset(OutputSection *OS, uint64_t Off) { Off = computeFileOffset(OS, Off); OS->Offset = Off; if (OS->Type == SHT_NOBITS) return Off; return Off + OS->Size; } template void Writer::assignFileOffsetsBinary() { uint64_t Off = 0; for (OutputSection *Sec : OutputSections) if (Sec->Flags & SHF_ALLOC) Off = setFileOffset(Sec, Off); FileSize = alignTo(Off, Config->Wordsize); } static std::string rangeToString(uint64_t Addr, uint64_t Len) { return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]"; } // Assign file offsets to output sections. template void Writer::assignFileOffsets() { uint64_t Off = 0; Off = setFileOffset(Out::ElfHeader, Off); Off = setFileOffset(Out::ProgramHeaders, Off); PhdrEntry *LastRX = nullptr; for (Partition &Part : Partitions) for (PhdrEntry *P : Part.Phdrs) if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) LastRX = P; for (OutputSection *Sec : OutputSections) { Off = setFileOffset(Sec, Off); if (Script->HasSectionsCommand) continue; // If this is a last section of the last executable segment and that // segment is the last loadable segment, align the offset of the // following section to avoid loading non-segments parts of the file. if (LastRX && LastRX->LastSec == Sec) Off = alignTo(Off, Config->CommonPageSize); } SectionHeaderOff = alignTo(Off, Config->Wordsize); FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); // Our logic assumes that sections have rising VA within the same segment. // With use of linker scripts it is possible to violate this rule and get file // offset overlaps or overflows. That should never happen with a valid script // which does not move the location counter backwards and usually scripts do // not do that. Unfortunately, there are apps in the wild, for example, Linux // kernel, which control segment distribution explicitly and move the counter // backwards, so we have to allow doing that to support linking them. We // perform non-critical checks for overlaps in checkSectionOverlap(), but here // we want to prevent file size overflows because it would crash the linker. for (OutputSection *Sec : OutputSections) { if (Sec->Type == SHT_NOBITS) continue; if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize)) error("unable to place section " + Sec->Name + " at file offset " + rangeToString(Sec->Offset, Sec->Size) + "; check your linker script for overflows"); } } // Finalize the program headers. We call this function after we assign // file offsets and VAs to all sections. template void Writer::setPhdrs(Partition &Part) { for (PhdrEntry *P : Part.Phdrs) { OutputSection *First = P->FirstSec; OutputSection *Last = P->LastSec; if (First) { P->p_filesz = Last->Offset - First->Offset; if (Last->Type != SHT_NOBITS) P->p_filesz += Last->Size; P->p_memsz = Last->Addr + Last->Size - First->Addr; P->p_offset = First->Offset; P->p_vaddr = First->Addr; // File offsets in partitions other than the main partition are relative // to the offset of the ELF headers. Perform that adjustment now. if (Part.ElfHeader) P->p_offset -= Part.ElfHeader->getParent()->Offset; if (!P->HasLMA) P->p_paddr = First->getLMA(); } if (P->p_type == PT_LOAD) { P->p_align = std::max(P->p_align, Config->MaxPageSize); } else if (P->p_type == PT_GNU_RELRO) { P->p_align = 1; // The glibc dynamic loader rounds the size down, so we need to round up // to protect the last page. This is a no-op on FreeBSD which always // rounds up. P->p_memsz = alignTo(P->p_memsz, Config->CommonPageSize); } } } // A helper struct for checkSectionOverlap. namespace { struct SectionOffset { OutputSection *Sec; uint64_t Offset; }; } // namespace // Check whether sections overlap for a specific address range (file offsets, // load and virtual adresses). static void checkOverlap(StringRef Name, std::vector &Sections, bool IsVirtualAddr) { llvm::sort(Sections, [=](const SectionOffset &A, const SectionOffset &B) { return A.Offset < B.Offset; }); // Finding overlap is easy given a vector is sorted by start position. // If an element starts before the end of the previous element, they overlap. for (size_t I = 1, End = Sections.size(); I < End; ++I) { SectionOffset A = Sections[I - 1]; SectionOffset B = Sections[I]; if (B.Offset >= A.Offset + A.Sec->Size) continue; // If both sections are in OVERLAY we allow the overlapping of virtual // addresses, because it is what OVERLAY was designed for. if (IsVirtualAddr && A.Sec->InOverlay && B.Sec->InOverlay) continue; errorOrWarn("section " + A.Sec->Name + " " + Name + " range overlaps with " + B.Sec->Name + "\n>>> " + A.Sec->Name + " range is " + rangeToString(A.Offset, A.Sec->Size) + "\n>>> " + B.Sec->Name + " range is " + rangeToString(B.Offset, B.Sec->Size)); } } // Check for overlapping sections and address overflows. // // In this function we check that none of the output sections have overlapping // file offsets. For SHF_ALLOC sections we also check that the load address // ranges and the virtual address ranges don't overlap template void Writer::checkSections() { // First, check that section's VAs fit in available address space for target. for (OutputSection *OS : OutputSections) if ((OS->Addr + OS->Size < OS->Addr) || (!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX)) errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) + " of size 0x" + utohexstr(OS->Size) + " exceeds available address space"); // Check for overlapping file offsets. In this case we need to skip any // section marked as SHT_NOBITS. These sections don't actually occupy space in // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat // binary is specified only add SHF_ALLOC sections are added to the output // file so we skip any non-allocated sections in that case. std::vector FileOffs; for (OutputSection *Sec : OutputSections) if (Sec->Size > 0 && Sec->Type != SHT_NOBITS && (!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC))) FileOffs.push_back({Sec, Sec->Offset}); checkOverlap("file", FileOffs, false); // When linking with -r there is no need to check for overlapping virtual/load // addresses since those addresses will only be assigned when the final // executable/shared object is created. if (Config->Relocatable) return; // Checking for overlapping virtual and load addresses only needs to take // into account SHF_ALLOC sections since others will not be loaded. // Furthermore, we also need to skip SHF_TLS sections since these will be // mapped to other addresses at runtime and can therefore have overlapping // ranges in the file. std::vector VMAs; for (OutputSection *Sec : OutputSections) if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) VMAs.push_back({Sec, Sec->Addr}); checkOverlap("virtual address", VMAs, true); // Finally, check that the load addresses don't overlap. This will usually be // the same as the virtual addresses but can be different when using a linker // script with AT(). std::vector LMAs; for (OutputSection *Sec : OutputSections) if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) LMAs.push_back({Sec, Sec->getLMA()}); checkOverlap("load address", LMAs, false); } // The entry point address is chosen in the following ways. // // 1. the '-e' entry command-line option; // 2. the ENTRY(symbol) command in a linker control script; // 3. the value of the symbol _start, if present; // 4. the number represented by the entry symbol, if it is a number; // 5. the address of the first byte of the .text section, if present; // 6. the address 0. static uint64_t getEntryAddr() { // Case 1, 2 or 3 if (Symbol *B = Symtab->find(Config->Entry)) return B->getVA(); // Case 4 uint64_t Addr; if (to_integer(Config->Entry, Addr)) return Addr; // Case 5 if (OutputSection *Sec = findSection(".text")) { if (Config->WarnMissingEntry) warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + utohexstr(Sec->Addr)); return Sec->Addr; } // Case 6 if (Config->WarnMissingEntry) warn("cannot find entry symbol " + Config->Entry + "; not setting start address"); return 0; } static uint16_t getELFType() { if (Config->Pic) return ET_DYN; if (Config->Relocatable) return ET_REL; return ET_EXEC; } template void Writer::writeHeader() { writeEhdr(Out::BufferStart, *Main); writePhdrs(Out::BufferStart + sizeof(Elf_Ehdr), *Main); auto *EHdr = reinterpret_cast(Out::BufferStart); EHdr->e_type = getELFType(); EHdr->e_entry = getEntryAddr(); EHdr->e_shoff = SectionHeaderOff; // Write the section header table. // // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum // and e_shstrndx fields. When the value of one of these fields exceeds // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and // use fields in the section header at index 0 to store // the value. The sentinel values and fields are: // e_shnum = 0, SHdrs[0].sh_size = number of sections. // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. auto *SHdrs = reinterpret_cast(Out::BufferStart + EHdr->e_shoff); size_t Num = OutputSections.size() + 1; if (Num >= SHN_LORESERVE) SHdrs->sh_size = Num; else EHdr->e_shnum = Num; uint32_t StrTabIndex = In.ShStrTab->getParent()->SectionIndex; if (StrTabIndex >= SHN_LORESERVE) { SHdrs->sh_link = StrTabIndex; EHdr->e_shstrndx = SHN_XINDEX; } else { EHdr->e_shstrndx = StrTabIndex; } for (OutputSection *Sec : OutputSections) Sec->writeHeaderTo(++SHdrs); } // Open a result file. template void Writer::openFile() { uint64_t MaxSize = Config->Is64 ? INT64_MAX : UINT32_MAX; if (FileSize != size_t(FileSize) || MaxSize < FileSize) { error("output file too large: " + Twine(FileSize) + " bytes"); return; } unlinkAsync(Config->OutputFile); unsigned Flags = 0; if (!Config->Relocatable) Flags = FileOutputBuffer::F_executable; Expected> BufferOrErr = FileOutputBuffer::create(Config->OutputFile, FileSize, Flags); if (!BufferOrErr) { error("failed to open " + Config->OutputFile + ": " + llvm::toString(BufferOrErr.takeError())); return; } Buffer = std::move(*BufferOrErr); Out::BufferStart = Buffer->getBufferStart(); } template void Writer::writeSectionsBinary() { for (OutputSection *Sec : OutputSections) if (Sec->Flags & SHF_ALLOC) Sec->writeTo(Out::BufferStart + Sec->Offset); } static void fillTrap(uint8_t *I, uint8_t *End) { for (; I + 4 <= End; I += 4) memcpy(I, &Target->TrapInstr, 4); } // Fill the last page of executable segments with trap instructions // instead of leaving them as zero. Even though it is not required by any // standard, it is in general a good thing to do for security reasons. // // We'll leave other pages in segments as-is because the rest will be // overwritten by output sections. template void Writer::writeTrapInstr() { if (Script->HasSectionsCommand) return; for (Partition &Part : Partitions) { // Fill the last page. for (PhdrEntry *P : Part.Phdrs) if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) fillTrap(Out::BufferStart + alignDown(P->FirstSec->Offset + P->p_filesz, Config->CommonPageSize), Out::BufferStart + alignTo(P->FirstSec->Offset + P->p_filesz, Config->CommonPageSize)); // Round up the file size of the last segment to the page boundary iff it is // an executable segment to ensure that other tools don't accidentally // trim the instruction padding (e.g. when stripping the file). PhdrEntry *Last = nullptr; for (PhdrEntry *P : Part.Phdrs) if (P->p_type == PT_LOAD) Last = P; if (Last && (Last->p_flags & PF_X)) Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Config->CommonPageSize); } } // Write section contents to a mmap'ed file. template void Writer::writeSections() { // In -r or -emit-relocs mode, write the relocation sections first as in // ELf_Rel targets we might find out that we need to modify the relocated // section while doing it. for (OutputSection *Sec : OutputSections) if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) Sec->writeTo(Out::BufferStart + Sec->Offset); for (OutputSection *Sec : OutputSections) if (Sec->Type != SHT_REL && Sec->Type != SHT_RELA) Sec->writeTo(Out::BufferStart + Sec->Offset); } // Split one uint8 array into small pieces of uint8 arrays. static std::vector> split(ArrayRef Arr, size_t ChunkSize) { std::vector> Ret; while (Arr.size() > ChunkSize) { Ret.push_back(Arr.take_front(ChunkSize)); Arr = Arr.drop_front(ChunkSize); } if (!Arr.empty()) Ret.push_back(Arr); return Ret; } // Computes a hash value of Data using a given hash function. // In order to utilize multiple cores, we first split data into 1MB // chunks, compute a hash for each chunk, and then compute a hash value // of the hash values. static void computeHash(llvm::MutableArrayRef HashBuf, llvm::ArrayRef Data, std::function Arr)> HashFn) { std::vector> Chunks = split(Data, 1024 * 1024); std::vector Hashes(Chunks.size() * HashBuf.size()); // Compute hash values. parallelForEachN(0, Chunks.size(), [&](size_t I) { HashFn(Hashes.data() + I * HashBuf.size(), Chunks[I]); }); // Write to the final output buffer. HashFn(HashBuf.data(), Hashes); } template void Writer::writeBuildId() { if (!Main->BuildId || !Main->BuildId->getParent()) return; if (Config->BuildId == BuildIdKind::Hexstring) { for (Partition &Part : Partitions) Part.BuildId->writeBuildId(Config->BuildIdVector); return; } // Compute a hash of all sections of the output file. size_t HashSize = Main->BuildId->HashSize; std::vector BuildId(HashSize); llvm::ArrayRef Buf{Out::BufferStart, size_t(FileSize)}; switch (Config->BuildId) { case BuildIdKind::Fast: computeHash(BuildId, Buf, [](uint8_t *Dest, ArrayRef Arr) { write64le(Dest, xxHash64(Arr)); }); break; case BuildIdKind::Md5: computeHash(BuildId, Buf, [&](uint8_t *Dest, ArrayRef Arr) { memcpy(Dest, MD5::hash(Arr).data(), HashSize); }); break; case BuildIdKind::Sha1: computeHash(BuildId, Buf, [&](uint8_t *Dest, ArrayRef Arr) { memcpy(Dest, SHA1::hash(Arr).data(), HashSize); }); break; case BuildIdKind::Uuid: if (auto EC = llvm::getRandomBytes(BuildId.data(), HashSize)) error("entropy source failure: " + EC.message()); break; default: llvm_unreachable("unknown BuildIdKind"); } for (Partition &Part : Partitions) Part.BuildId->writeBuildId(BuildId); } template void elf::writeResult(); template void elf::writeResult(); template void elf::writeResult(); template void elf::writeResult();