//===- Writer.cpp ---------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Writer.h" #include "Config.h" #include "LinkerScript.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Target.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace lld; using namespace lld::elf2; namespace { // The writer writes a SymbolTable result to a file. template class Writer { public: typedef typename ELFFile::uintX_t uintX_t; typedef typename ELFFile::Elf_Shdr Elf_Shdr; typedef typename ELFFile::Elf_Ehdr Elf_Ehdr; typedef typename ELFFile::Elf_Phdr Elf_Phdr; typedef typename ELFFile::Elf_Sym Elf_Sym; typedef typename ELFFile::Elf_Sym_Range Elf_Sym_Range; typedef typename ELFFile::Elf_Rela Elf_Rela; Writer(SymbolTable &S) : Symtab(S) {} void run(); private: // This describes a program header entry. // Each contains type, access flags and range of output sections that will be // placed in it. struct Phdr { Phdr(unsigned Type, unsigned Flags) { H.p_type = Type; H.p_flags = Flags; } Elf_Phdr H = {}; OutputSectionBase *First = nullptr; OutputSectionBase *Last = nullptr; }; void copyLocalSymbols(); void addReservedSymbols(); bool createSections(); void addPredefinedSections(); template void scanRelocs(InputSectionBase &C, iterator_range *> Rels); void scanRelocs(InputSection &C); void scanRelocs(InputSectionBase &S, const Elf_Shdr &RelSec); void createPhdrs(); void assignAddresses(); void fixAbsoluteSymbols(); bool openFile(); void writeHeader(); void writeSections(); bool isDiscarded(InputSectionBase *IS) const; StringRef getOutputSectionName(InputSectionBase *S) const; bool needsInterpSection() const { return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty(); } bool isOutputDynamic() const { return !Symtab.getSharedFiles().empty() || Config->Shared; } OutputSection *getBss(); void addCommonSymbols(std::vector &Syms); void addCopyRelSymbols(std::vector *> &Syms); std::unique_ptr Buffer; BumpPtrAllocator Alloc; std::vector *> OutputSections; std::vector>> OwningSections; // We create a section for the ELF header and one for the program headers. const unsigned NumDummySections = 2; ArrayRef *> getSections() const { return makeArrayRef(OutputSections).slice(NumDummySections); } unsigned getNumSections() const { return OutputSections.size() + 1 - NumDummySections; } void addRelIpltSymbols(); void addStartEndSymbols(); void addStartStopSymbols(OutputSectionBase *Sec); SymbolTable &Symtab; std::vector Phdrs; uintX_t FileSize; uintX_t SectionHeaderOff; // Flag to force GOT to be in output if we have relocations // that relies on its address. bool HasGotOffRel = false; }; } // anonymous namespace template static bool shouldUseRela() { return ELFT::Is64Bits; } template void elf2::writeResult(SymbolTable *Symtab) { typedef typename ELFFile::uintX_t uintX_t; // Create singleton output sections. bool IsRela = shouldUseRela(); DynamicSection Dynamic(*Symtab); EhFrameHeader EhFrameHdr; GotSection Got; InterpSection Interp; PltSection Plt; RelocationSection RelaDyn(IsRela ? ".rela.dyn" : ".rel.dyn", IsRela); StringTableSection DynStrTab(".dynstr", true); StringTableSection ShStrTab(".shstrtab", false); SymbolTableSection DynSymTab(*Symtab, DynStrTab); OutputSectionBase ElfHeader("", 0, SHF_ALLOC); OutputSectionBase ProgramHeaders("", 0, SHF_ALLOC); ProgramHeaders.updateAlign(sizeof(uintX_t)); // Instantiate optional output sections if they are needed. std::unique_ptr> GnuHashTab; std::unique_ptr> GotPlt; std::unique_ptr> HashTab; std::unique_ptr> RelaPlt; std::unique_ptr> StrTab; std::unique_ptr> SymTabSec; if (Config->GnuHash) GnuHashTab.reset(new GnuHashTableSection); if (Config->SysvHash) HashTab.reset(new HashTableSection); if (Target->UseLazyBinding) { StringRef S = IsRela ? ".rela.plt" : ".rel.plt"; GotPlt.reset(new GotPltSection); RelaPlt.reset(new RelocationSection(S, IsRela)); } if (!Config->StripAll) { StrTab.reset(new StringTableSection(".strtab", false)); SymTabSec.reset(new SymbolTableSection(*Symtab, *StrTab)); } Out::DynStrTab = &DynStrTab; Out::DynSymTab = &DynSymTab; Out::Dynamic = &Dynamic; Out::EhFrameHdr = &EhFrameHdr; Out::GnuHashTab = GnuHashTab.get(); Out::Got = &Got; Out::GotPlt = GotPlt.get(); Out::HashTab = HashTab.get(); Out::Interp = &Interp; Out::Plt = &Plt; Out::RelaDyn = &RelaDyn; Out::RelaPlt = RelaPlt.get(); Out::ShStrTab = &ShStrTab; Out::StrTab = StrTab.get(); Out::SymTab = SymTabSec.get(); Out::Bss = nullptr; Out::MipsRldMap = nullptr; Out::Opd = nullptr; Out::OpdBuf = nullptr; Out::TlsPhdr = nullptr; Out::ElfHeader = &ElfHeader; Out::ProgramHeaders = &ProgramHeaders; Writer(*Symtab).run(); } // The main function of the writer. template void Writer::run() { if (!Config->DiscardAll) copyLocalSymbols(); addReservedSymbols(); if (!createSections()) return; createPhdrs(); assignAddresses(); fixAbsoluteSymbols(); if (!openFile()) return; writeHeader(); writeSections(); if (HasError) return; fatal(Buffer->commit()); } namespace { template struct SectionKey { typedef typename std::conditional::type uintX_t; StringRef Name; uint32_t Type; uintX_t Flags; uintX_t Alignment; }; } namespace llvm { template struct DenseMapInfo> { static SectionKey getEmptyKey() { return SectionKey{DenseMapInfo::getEmptyKey(), 0, 0, 0}; } static SectionKey getTombstoneKey() { return SectionKey{DenseMapInfo::getTombstoneKey(), 0, 0, 0}; } static unsigned getHashValue(const SectionKey &Val) { return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment); } static bool isEqual(const SectionKey &LHS, const SectionKey &RHS) { return DenseMapInfo::isEqual(LHS.Name, RHS.Name) && LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && LHS.Alignment == RHS.Alignment; } }; } template static bool handleTlsRelocation(unsigned Type, SymbolBody *Body, InputSectionBase &C, RelT &RI) { if (Target->isTlsLocalDynamicRel(Type)) { if (Target->canRelaxTls(Type, nullptr)) return true; if (Out::Got->addTlsIndex()) Out::RelaDyn->addReloc({Target->TlsModuleIndexRel, DynamicReloc::Off_LTlsIndex, nullptr}); return true; } if (!Body || !Body->IsTls) return false; if (Target->isTlsGlobalDynamicRel(Type)) { if (!Target->canRelaxTls(Type, Body)) { if (Out::Got->addDynTlsEntry(Body)) { Out::RelaDyn->addReloc({Target->TlsModuleIndexRel, DynamicReloc::Off_GTlsIndex, Body}); Out::RelaDyn->addReloc( {Target->TlsOffsetRel, DynamicReloc::Off_GTlsOffset, Body}); } return true; } if (!canBePreempted(Body, true)) return true; } return !Target->isTlsDynRel(Type, *Body); } // The reason we have to do this early scan is as follows // * To mmap the output file, we need to know the size // * For that, we need to know how many dynamic relocs we will have. // It might be possible to avoid this by outputting the file with write: // * Write the allocated output sections, computing addresses. // * Apply relocations, recording which ones require a dynamic reloc. // * Write the dynamic relocations. // * Write the rest of the file. // This would have some drawbacks. For example, we would only know if .rela.dyn // is needed after applying relocations. If it is, it will go after rw and rx // sections. Given that it is ro, we will need an extra PT_LOAD. This // complicates things for the dynamic linker and means we would have to reserve // space for the extra PT_LOAD even if we end up not using it. template template void Writer::scanRelocs( InputSectionBase &C, iterator_range *> Rels) { typedef Elf_Rel_Impl RelType; const ObjectFile &File = *C.getFile(); for (const RelType &RI : Rels) { uint32_t SymIndex = RI.getSymbol(Config->Mips64EL); SymbolBody *Body = File.getSymbolBody(SymIndex); uint32_t Type = RI.getType(Config->Mips64EL); // Ignore "hint" relocation because it is for optional code optimization. if (Target->isHintRel(Type)) continue; if (Target->isGotRelative(Type)) HasGotOffRel = true; // Set "used" bit for --as-needed. if (Body && Body->isUndefined() && !Body->isWeak()) if (auto *S = dyn_cast>(Body->repl())) S->File->IsUsed = true; if (Body) Body = Body->repl(); if (handleTlsRelocation(Type, Body, C, RI)) continue; if (Target->needsDynRelative(Type)) Out::RelaDyn->addReloc({Target->RelativeRel, &C, RI.r_offset, true, Body, getAddend(RI)}); // MIPS has a special rule to create GOTs for local symbols. if (Config->EMachine == EM_MIPS && !canBePreempted(Body, true) && (Type == R_MIPS_GOT16 || Type == R_MIPS_CALL16)) { // FIXME (simon): Do not add so many redundant entries. Out::Got->addMipsLocalEntry(); continue; } // If a symbol in a DSO is referenced directly instead of through GOT, // we need to create a copy relocation for the symbol. if (auto *B = dyn_cast_or_null>(Body)) { if (B->needsCopy()) continue; if (Target->needsCopyRel(Type, *B)) { B->NeedsCopyOrPltAddr = true; Out::RelaDyn->addReloc( {Target->CopyRel, DynamicReloc::Off_Bss, B}); continue; } } // An STT_GNU_IFUNC symbol always uses a PLT entry, and all references // to the symbol go through the PLT. This is true even for a local // symbol, although local symbols normally do not require PLT entries. if (Body && isGnuIFunc(*Body)) { if (Body->isInPlt()) continue; Out::Plt->addEntry(Body); bool CBP = canBePreempted(Body, /*NeedsGot=*/true); if (Target->UseLazyBinding) { Out::GotPlt->addEntry(Body); Out::RelaPlt->addReloc( {CBP ? Target->PltRel : Target->IRelativeRel, DynamicReloc::Off_GotPlt, !CBP, Body}); } else { Out::Got->addEntry(Body); Out::RelaDyn->addReloc( {CBP ? Target->PltRel : Target->IRelativeRel, DynamicReloc::Off_Got, !CBP, Body}); } continue; } // If a relocation needs PLT, we create a PLT and a GOT slot // for the symbol. TargetInfo::PltNeed NeedPlt = TargetInfo::Plt_No; if (Body) NeedPlt = Target->needsPlt(Type, *Body); if (NeedPlt) { if (NeedPlt == TargetInfo::Plt_Implicit) Body->NeedsCopyOrPltAddr = true; if (Body->isInPlt()) continue; Out::Plt->addEntry(Body); if (Target->UseLazyBinding) { Out::GotPlt->addEntry(Body); Out::RelaPlt->addReloc( {Target->PltRel, DynamicReloc::Off_GotPlt, Body}); } else { if (Body->isInGot()) continue; Out::Got->addEntry(Body); Out::RelaDyn->addReloc( {Target->GotRel, DynamicReloc::Off_Got, Body}); } continue; } // If a relocation needs GOT, we create a GOT slot for the symbol. if (Body && Target->needsGot(Type, *Body)) { if (Body->isInGot()) continue; Out::Got->addEntry(Body); if (Config->EMachine == EM_MIPS) { // MIPS ABI has special rules to process GOT entries // and doesn't require relocation entries for them. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf Body->MustBeInDynSym = true; continue; } bool CBP = canBePreempted(Body, /*NeedsGot=*/true); bool Dynrel = Config->Shared && !Target->isRelRelative(Type) && !Target->isSizeRel(Type); if (CBP || Dynrel) { uint32_t DynType; if (CBP) DynType = Body->IsTls ? Target->TlsGotRel : Target->GotRel; else DynType = Target->RelativeRel; Out::RelaDyn->addReloc( {DynType, DynamicReloc::Off_Got, !CBP, Body}); } continue; } if (Config->EMachine == EM_MIPS) { if (Type == R_MIPS_LO16) // Ignore R_MIPS_LO16 relocation. If it is a pair for R_MIPS_GOT16 we // already completed all required action (GOT entry allocation) when // handle R_MIPS_GOT16a. If it is a pair for R_MIPS_HI16 against // _gp_disp it does not require dynamic relocation. If its a pair for // R_MIPS_HI16 against a regular symbol it does not require dynamic // relocation too because that case is possible for executable file // linking only. continue; if (Body == Config->MipsGpDisp || Body == Config->MipsLocalGp) // MIPS _gp_disp designates offset between start of function and 'gp' // pointer into GOT. __gnu_local_gp is equal to the current value of // the 'gp'. Therefore any relocations against them do not require // dynamic relocation. continue; } if (canBePreempted(Body, /*NeedsGot=*/false)) { // We don't know anything about the finaly symbol. Just ask the dynamic // linker to handle the relocation for us. Out::RelaDyn->addReloc({Target->getDynRel(Type), &C, RI.r_offset, false, Body, getAddend(RI)}); continue; } // We know that this is the final symbol. If the program being produced // is position independent, the final value is still not known. // If the relocation depends on the symbol value (not the size or distances // in the output), we still need some help from the dynamic linker. // We can however do better than just copying the incoming relocation. We // can process some of it and and just ask the dynamic linker to add the // load address. if (!Config->Shared || Target->isRelRelative(Type) || Target->isSizeRel(Type)) continue; uintX_t Addend = getAddend(RI); if (Config->EMachine == EM_PPC64 && RI.getType(false) == R_PPC64_TOC) { Out::RelaDyn->addReloc({R_PPC64_RELATIVE, &C, RI.r_offset, false, nullptr, (uintX_t)getPPC64TocBase() + Addend}); continue; } if (Body) { Out::RelaDyn->addReloc( {Target->RelativeRel, &C, RI.r_offset, true, Body, Addend}); continue; } const Elf_Sym *Sym = File.getObj().getRelocationSymbol(&RI, File.getSymbolTable()); InputSectionBase *Section = File.getSection(*Sym); uintX_t Offset = Sym->st_value; if (Sym->getType() == STT_SECTION) { Offset += Addend; Addend = 0; } Out::RelaDyn->addReloc( {Target->RelativeRel, &C, RI.r_offset, Section, Offset, Addend}); } } template void Writer::scanRelocs(InputSection &C) { if (C.getSectionHdr()->sh_flags & SHF_ALLOC) for (const Elf_Shdr *RelSec : C.RelocSections) scanRelocs(C, *RelSec); } template void Writer::scanRelocs(InputSectionBase &S, const Elf_Shdr &RelSec) { ELFFile &EObj = S.getFile()->getObj(); if (RelSec.sh_type == SHT_RELA) scanRelocs(S, EObj.relas(&RelSec)); else scanRelocs(S, EObj.rels(&RelSec)); } template static void reportUndefined(SymbolTable &Symtab, SymbolBody *Sym) { if (Config->Shared && !Config->NoUndefined) return; std::string Msg = "undefined symbol: " + Sym->getName().str(); if (ELFFileBase *File = Symtab.findFile(Sym)) Msg += " in " + File->getName().str(); if (Config->NoInhibitExec) warning(Msg); else error(Msg); } template static bool shouldKeepInSymtab(const ObjectFile &File, StringRef SymName, const typename ELFFile::Elf_Sym &Sym) { if (Sym.getType() == STT_SECTION || Sym.getType() == STT_FILE) return false; InputSectionBase *Sec = File.getSection(Sym); // If sym references a section in a discarded group, don't keep it. if (Sec == &InputSection::Discarded) return false; if (Config->DiscardNone) return true; // In ELF assembly .L symbols are normally discarded by the assembler. // If the assembler fails to do so, the linker discards them if // * --discard-locals is used. // * The symbol is in a SHF_MERGE section, which is normally the reason for // the assembler keeping the .L symbol. if (!SymName.startswith(".L") && !SymName.empty()) return true; if (Config->DiscardLocals) return false; return !(Sec->getSectionHdr()->sh_flags & SHF_MERGE); } // Local symbols are not in the linker's symbol table. This function scans // each object file's symbol table to copy local symbols to the output. template void Writer::copyLocalSymbols() { if (!Out::SymTab) return; for (const std::unique_ptr> &F : Symtab.getObjectFiles()) { for (const Elf_Sym &Sym : F->getLocalSymbols()) { ErrorOr SymNameOrErr = Sym.getName(F->getStringTable()); fatal(SymNameOrErr); StringRef SymName = *SymNameOrErr; if (!shouldKeepInSymtab(*F, SymName, Sym)) continue; if (Sym.st_shndx != SHN_ABS) { InputSectionBase *Section = F->getSection(Sym); if (!Section->isLive()) continue; } ++Out::SymTab->NumLocals; F->KeptLocalSyms.push_back(std::make_pair( &Sym, Out::SymTab->StrTabSec.addString(SymName))); } } } // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that // we would like to make sure appear is a specific order to maximize their // coverage by a single signed 16-bit offset from the TOC base pointer. // Conversely, the special .tocbss section should be first among all SHT_NOBITS // sections. This will put it next to the loaded special PPC64 sections (and, // thus, within reach of the TOC base pointer). static int getPPC64SectionRank(StringRef SectionName) { return StringSwitch(SectionName) .Case(".tocbss", 0) .Case(".branch_lt", 2) .Case(".toc", 3) .Case(".toc1", 4) .Case(".opd", 5) .Default(1); } template static bool isRelroSection(OutputSectionBase *Sec) { if (!Config->ZRelro) return false; typename OutputSectionBase::uintX_t Flags = Sec->getFlags(); if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) return false; if (Flags & SHF_TLS) return true; uint32_t Type = Sec->getType(); if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || Type == SHT_PREINIT_ARRAY) return true; if (Sec == Out::GotPlt) return Config->ZNow; if (Sec == Out::Dynamic || Sec == Out::Got) return true; StringRef S = Sec->getName(); return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || S == ".eh_frame"; } // Output section ordering is determined by this function. template static bool compareSections(OutputSectionBase *A, OutputSectionBase *B) { typedef typename ELFFile::uintX_t uintX_t; int Comp = Script->compareSections(A->getName(), B->getName()); if (Comp != 0) return Comp < 0; uintX_t AFlags = A->getFlags(); uintX_t BFlags = B->getFlags(); // Allocatable sections go first to reduce the total PT_LOAD size and // so debug info doesn't change addresses in actual code. bool AIsAlloc = AFlags & SHF_ALLOC; bool BIsAlloc = BFlags & SHF_ALLOC; if (AIsAlloc != BIsAlloc) return AIsAlloc; // We don't have any special requirements for the relative order of // two non allocatable sections. if (!AIsAlloc) return false; // We want the read only sections first so that they go in the PT_LOAD // covering the program headers at the start of the file. bool AIsWritable = AFlags & SHF_WRITE; bool BIsWritable = BFlags & SHF_WRITE; if (AIsWritable != BIsWritable) return BIsWritable; // For a corresponding reason, put non exec sections first (the program // header PT_LOAD is not executable). bool AIsExec = AFlags & SHF_EXECINSTR; bool BIsExec = BFlags & SHF_EXECINSTR; if (AIsExec != BIsExec) return BIsExec; // If we got here we know that both A and B are in the same PT_LOAD. // The TLS initialization block needs to be a single contiguous block in a R/W // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS // sections are placed here as they don't take up virtual address space in the // PT_LOAD. bool AIsTls = AFlags & SHF_TLS; bool BIsTls = BFlags & SHF_TLS; if (AIsTls != BIsTls) return AIsTls; // The next requirement we have is to put nobits sections last. The // reason is that the only thing the dynamic linker will see about // them is a p_memsz that is larger than p_filesz. Seeing that it // zeros the end of the PT_LOAD, so that has to correspond to the // nobits sections. bool AIsNoBits = A->getType() == SHT_NOBITS; bool BIsNoBits = B->getType() == SHT_NOBITS; if (AIsNoBits != BIsNoBits) return BIsNoBits; // We place RelRo section before plain r/w ones. bool AIsRelRo = isRelroSection(A); bool BIsRelRo = isRelroSection(B); if (AIsRelRo != BIsRelRo) return AIsRelRo; // Some architectures have additional ordering restrictions for sections // within the same PT_LOAD. if (Config->EMachine == EM_PPC64) return getPPC64SectionRank(A->getName()) < getPPC64SectionRank(B->getName()); return false; } template OutputSection *Writer::getBss() { if (!Out::Bss) { Out::Bss = new OutputSection(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); OwningSections.emplace_back(Out::Bss); OutputSections.push_back(Out::Bss); } return Out::Bss; } // Until this function is called, common symbols do not belong to any section. // This function adds them to end of BSS section. template void Writer::addCommonSymbols(std::vector &Syms) { if (Syms.empty()) return; // Sort the common symbols by alignment as an heuristic to pack them better. std::stable_sort(Syms.begin(), Syms.end(), [](const DefinedCommon *A, const DefinedCommon *B) { return A->MaxAlignment > B->MaxAlignment; }); uintX_t Off = getBss()->getSize(); for (DefinedCommon *C : Syms) { Off = alignTo(Off, C->MaxAlignment); C->OffsetInBss = Off; Off += C->Size; } Out::Bss->setSize(Off); } // Reserve space in .bss for copy relocations. template void Writer::addCopyRelSymbols(std::vector *> &Syms) { if (Syms.empty()) return; uintX_t Off = getBss()->getSize(); for (SharedSymbol *C : Syms) { const Elf_Sym &Sym = C->Sym; const Elf_Shdr *Sec = C->File->getSection(Sym); uintX_t SecAlign = Sec->sh_addralign; unsigned TrailingZeros = std::min(countTrailingZeros(SecAlign), countTrailingZeros((uintX_t)Sym.st_value)); uintX_t Align = 1 << TrailingZeros; Out::Bss->updateAlign(Align); Off = alignTo(Off, Align); C->OffsetInBss = Off; Off += Sym.st_size; } Out::Bss->setSize(Off); } template StringRef Writer::getOutputSectionName(InputSectionBase *S) const { StringRef Dest = Script->getOutputSection(S); if (!Dest.empty()) return Dest; StringRef Name = S->getSectionName(); for (StringRef V : {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", ".gcc_except_table.", ".tdata."}) if (Name.startswith(V)) return V.drop_back(); return Name; } template void reportDiscarded(InputSectionBase *IS, const std::unique_ptr> &File) { if (!Config->PrintGcSections || !IS || IS->isLive()) return; llvm::errs() << "removing unused section from '" << IS->getSectionName() << "' in file '" << File->getName() << "'\n"; } template bool Writer::isDiscarded(InputSectionBase *S) const { return !S || !S->isLive() || S == &InputSection::Discarded || Script->isDiscarded(S); } // The beginning and the ending of .rel[a].plt section are marked // with __rel[a]_iplt_{start,end} symbols if it is a statically linked // executable. The runtime needs these symbols in order to resolve // all IRELATIVE relocs on startup. For dynamic executables, we don't // need these symbols, since IRELATIVE relocs are resolved through GOT // and PLT. For details, see http://www.airs.com/blog/archives/403. template void Writer::addRelIpltSymbols() { if (isOutputDynamic() || !Out::RelaPlt) return; bool IsRela = shouldUseRela(); StringRef S = IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; if (Symtab.find(S)) Symtab.addAbsolute(S, ElfSym::RelaIpltStart); S = IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; if (Symtab.find(S)) Symtab.addAbsolute(S, ElfSym::RelaIpltEnd); } template static bool includeInSymtab(const SymbolBody &B) { if (!B.isUsedInRegularObj()) return false; if (auto *D = dyn_cast>(&B)) { // Don't include synthetic symbols like __init_array_start in every output. if (&D->Sym == &ElfSym::Ignored) return false; // Exclude symbols pointing to garbage-collected sections. if (D->Section && !D->Section->isLive()) return false; } return true; } static bool includeInDynsym(const SymbolBody &B) { uint8_t V = B.getVisibility(); if (V != STV_DEFAULT && V != STV_PROTECTED) return false; if (Config->ExportDynamic || Config->Shared) return true; return B.MustBeInDynSym; } // This class knows how to create an output section for a given // input section. Output section type is determined by various // factors, including input section's sh_flags, sh_type and // linker scripts. namespace { template class OutputSectionFactory { typedef typename ELFFile::Elf_Shdr Elf_Shdr; typedef typename ELFFile::uintX_t uintX_t; public: std::pair *, bool> create(InputSectionBase *C, StringRef OutsecName); OutputSectionBase *lookup(StringRef Name, uint32_t Type, uintX_t Flags); private: SectionKey createKey(InputSectionBase *C, StringRef OutsecName); SmallDenseMap, OutputSectionBase *> Map; }; } template std::pair *, bool> OutputSectionFactory::create(InputSectionBase *C, StringRef OutsecName) { SectionKey Key = createKey(C, OutsecName); OutputSectionBase *&Sec = Map[Key]; if (Sec) return {Sec, false}; switch (C->SectionKind) { case InputSectionBase::Regular: Sec = new OutputSection(Key.Name, Key.Type, Key.Flags); break; case InputSectionBase::EHFrame: Sec = new EHOutputSection(Key.Name, Key.Type, Key.Flags); break; case InputSectionBase::Merge: Sec = new MergeOutputSection(Key.Name, Key.Type, Key.Flags, Key.Alignment); break; case InputSectionBase::MipsReginfo: Sec = new MipsReginfoOutputSection(); break; } return {Sec, true}; } template OutputSectionBase *OutputSectionFactory::lookup(StringRef Name, uint32_t Type, uintX_t Flags) { return Map.lookup({Name, Type, Flags, 0}); } template SectionKey OutputSectionFactory::createKey(InputSectionBase *C, StringRef OutsecName) { const Elf_Shdr *H = C->getSectionHdr(); uintX_t Flags = H->sh_flags & ~SHF_GROUP; // For SHF_MERGE we create different output sections for each alignment. // This makes each output section simple and keeps a single level mapping from // input to output. uintX_t Alignment = 0; if (isa>(C)) { Alignment = H->sh_addralign; if (H->sh_entsize > Alignment) Alignment = H->sh_entsize; } // GNU as can give .eh_frame secion type SHT_PROGBITS or SHT_X86_64_UNWIND // depending on the construct. We want to canonicalize it so that // there is only one .eh_frame in the end. uint32_t Type = H->sh_type; if (Type == SHT_PROGBITS && Config->EMachine == EM_X86_64 && isa>(C)) Type = SHT_X86_64_UNWIND; return SectionKey{OutsecName, Type, Flags, Alignment}; } // The linker is expected to define some symbols depending on // the linking result. This function defines such symbols. template void Writer::addReservedSymbols() { // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For // static linking the linker is required to optimize away any references to // __tls_get_addr, so it's not defined anywhere. Create a hidden definition // to avoid the undefined symbol error. if (!isOutputDynamic()) Symtab.addIgnored("__tls_get_addr"); // If the "_end" symbol is referenced, it is expected to point to the address // right after the data segment. Usually, this symbol points to the end // of .bss section or to the end of .data section if .bss section is absent. // We don't know the final address of _end yet, so just add a symbol here, // and fix ElfSym::End.st_value later. if (Symtab.find("_end")) Symtab.addAbsolute("_end", ElfSym::End); // Define "end" as an alias to "_end" if it is used but not defined. // We don't want to define that unconditionally because we don't want to // break programs that uses "end" as a regular symbol. if (SymbolBody *B = Symtab.find("end")) if (B->isUndefined()) Symtab.addAbsolute("end", ElfSym::End); } // Sort input sections by section name suffixes for // __attribute__((init_priority(N))). template static void sortInitFini(OutputSectionBase *S) { if (S) reinterpret_cast *>(S)->sortInitFini(); } // Sort input sections by the special rule for .ctors and .dtors. template static void sortCtorsDtors(OutputSectionBase *S) { if (S) reinterpret_cast *>(S)->sortCtorsDtors(); } // Create output section objects and add them to OutputSections. template bool Writer::createSections() { OutputSections.push_back(Out::ElfHeader); OutputSections.push_back(Out::ProgramHeaders); // Add .interp first because some loaders want to see that section // on the first page of the executable file when loaded into memory. if (needsInterpSection()) OutputSections.push_back(Out::Interp); // Create output sections for input object file sections. std::vector *> RegularSections; OutputSectionFactory Factory; for (const std::unique_ptr> &F : Symtab.getObjectFiles()) { for (InputSectionBase *C : F->getSections()) { if (isDiscarded(C)) { reportDiscarded(C, F); continue; } OutputSectionBase *Sec; bool IsNew; std::tie(Sec, IsNew) = Factory.create(C, getOutputSectionName(C)); if (IsNew) { OwningSections.emplace_back(Sec); OutputSections.push_back(Sec); RegularSections.push_back(Sec); } Sec->addSection(C); } } Out::Bss = static_cast *>( Factory.lookup(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE)); // If we have a .opd section (used under PPC64 for function descriptors), // store a pointer to it here so that we can use it later when processing // relocations. Out::Opd = Factory.lookup(".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC); Out::Dynamic->PreInitArraySec = Factory.lookup( ".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC); Out::Dynamic->InitArraySec = Factory.lookup(".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC); Out::Dynamic->FiniArraySec = Factory.lookup(".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC); // Sort section contents for __attribute__((init_priority(N)). sortInitFini(Out::Dynamic->InitArraySec); sortInitFini(Out::Dynamic->FiniArraySec); sortCtorsDtors(Factory.lookup(".ctors", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC)); sortCtorsDtors(Factory.lookup(".dtors", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC)); // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop // symbols for sections, so that the runtime can get the start and end // addresses of each section by section name. Add such symbols. addStartEndSymbols(); for (OutputSectionBase *Sec : RegularSections) addStartStopSymbols(Sec); // Define __rel[a]_iplt_{start,end} symbols if needed. addRelIpltSymbols(); // Scan relocations. This must be done after every symbol is declared so that // we can correctly decide if a dynamic relocation is needed. for (const std::unique_ptr> &F : Symtab.getObjectFiles()) { for (InputSectionBase *C : F->getSections()) { if (isDiscarded(C)) continue; if (auto *S = dyn_cast>(C)) scanRelocs(*S); else if (auto *S = dyn_cast>(C)) if (S->RelocSection) scanRelocs(*S, *S->RelocSection); } } // Now that we have defined all possible symbols including linker- // synthesized ones. Visit all symbols to give the finishing touches. std::vector CommonSymbols; std::vector *> CopyRelSymbols; for (auto &P : Symtab.getSymbols()) { SymbolBody *Body = P.second->Body; if (auto *U = dyn_cast(Body)) if (!U->isWeak() && !U->canKeepUndefined()) reportUndefined(Symtab, Body); if (auto *C = dyn_cast(Body)) CommonSymbols.push_back(C); if (auto *SC = dyn_cast>(Body)) if (SC->needsCopy()) CopyRelSymbols.push_back(SC); if (!includeInSymtab(*Body)) continue; if (Out::SymTab) Out::SymTab->addSymbol(Body); if (isOutputDynamic() && includeInDynsym(*Body)) Out::DynSymTab->addSymbol(Body); } // Do not proceed if there was an undefined symbol. if (HasError) return false; addCommonSymbols(CommonSymbols); addCopyRelSymbols(CopyRelSymbols); // So far we have added sections from input object files. // This function adds linker-created Out::* sections. addPredefinedSections(); std::stable_sort(OutputSections.begin(), OutputSections.end(), compareSections); for (unsigned I = NumDummySections, N = OutputSections.size(); I < N; ++I) OutputSections[I]->SectionIndex = I + 1 - NumDummySections; for (OutputSectionBase *Sec : getSections()) Sec->setSHName(Out::ShStrTab->addString(Sec->getName())); // Finalizers fix each section's size. // .dynsym is finalized early since that may fill up .gnu.hash. if (isOutputDynamic()) Out::DynSymTab->finalize(); // Fill other section headers. The dynamic table is finalized // at the end because some tags like RELSZ depend on result // of finalizing other sections. The dynamic string table is // finalized once the .dynamic finalizer has added a few last // strings. See DynamicSection::finalize() for (OutputSectionBase *Sec : OutputSections) if (Sec != Out::DynStrTab && Sec != Out::Dynamic) Sec->finalize(); if (isOutputDynamic()) Out::Dynamic->finalize(); return true; } // This function add Out::* sections to OutputSections. template void Writer::addPredefinedSections() { auto Add = [&](OutputSectionBase *C) { if (C) OutputSections.push_back(C); }; // This order is not the same as the final output order // because we sort the sections using their attributes below. Add(Out::SymTab); Add(Out::ShStrTab); Add(Out::StrTab); if (isOutputDynamic()) { Add(Out::DynSymTab); Add(Out::GnuHashTab); Add(Out::HashTab); Add(Out::Dynamic); Add(Out::DynStrTab); if (Out::RelaDyn->hasRelocs()) Add(Out::RelaDyn); // This is a MIPS specific section to hold a space within the data segment // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry. // See "Dynamic section" in Chapter 5 in the following document: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Config->EMachine == EM_MIPS && !Config->Shared) { Out::MipsRldMap = new OutputSection(".rld_map", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE); Out::MipsRldMap->setSize(sizeof(uintX_t)); Out::MipsRldMap->updateAlign(sizeof(uintX_t)); OwningSections.emplace_back(Out::MipsRldMap); Add(Out::MipsRldMap); } } // We always need to add rel[a].plt to output if it has entries. // Even during static linking it can contain R_[*]_IRELATIVE relocations. if (Out::RelaPlt && Out::RelaPlt->hasRelocs()) { Add(Out::RelaPlt); Out::RelaPlt->Static = !isOutputDynamic(); } bool needsGot = !Out::Got->empty(); // We add the .got section to the result for dynamic MIPS target because // its address and properties are mentioned in the .dynamic section. if (Config->EMachine == EM_MIPS) needsGot |= isOutputDynamic(); // If we have a relocation that is relative to GOT (such as GOTOFFREL), // we need to emit a GOT even if it's empty. if (HasGotOffRel) needsGot = true; if (needsGot) Add(Out::Got); if (Out::GotPlt && !Out::GotPlt->empty()) Add(Out::GotPlt); if (!Out::Plt->empty()) Add(Out::Plt); if (Out::EhFrameHdr->Live) Add(Out::EhFrameHdr); } // The linker is expected to define SECNAME_start and SECNAME_end // symbols for a few sections. This function defines them. template void Writer::addStartEndSymbols() { auto Define = [&](StringRef Start, StringRef End, OutputSectionBase *OS) { if (OS) { Symtab.addSynthetic(Start, *OS, 0); Symtab.addSynthetic(End, *OS, OS->getSize()); } else { Symtab.addIgnored(Start); Symtab.addIgnored(End); } }; Define("__preinit_array_start", "__preinit_array_end", Out::Dynamic->PreInitArraySec); Define("__init_array_start", "__init_array_end", Out::Dynamic->InitArraySec); Define("__fini_array_start", "__fini_array_end", Out::Dynamic->FiniArraySec); } static bool isAlpha(char C) { return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z') || C == '_'; } static bool isAlnum(char C) { return isAlpha(C) || ('0' <= C && C <= '9'); } // Returns true if S is valid as a C language identifier. static bool isValidCIdentifier(StringRef S) { if (S.empty() || !isAlpha(S[0])) return false; return std::all_of(S.begin() + 1, S.end(), isAlnum); } // If a section name is valid as a C identifier (which is rare because of // the leading '.'), linkers are expected to define __start_ and // __stop_ symbols. They are at beginning and end of the section, // respectively. This is not requested by the ELF standard, but GNU ld and // gold provide the feature, and used by many programs. template void Writer::addStartStopSymbols(OutputSectionBase *Sec) { StringRef S = Sec->getName(); if (!isValidCIdentifier(S)) return; StringSaver Saver(Alloc); StringRef Start = Saver.save("__start_" + S); StringRef Stop = Saver.save("__stop_" + S); if (SymbolBody *B = Symtab.find(Start)) if (B->isUndefined()) Symtab.addSynthetic(Start, *Sec, 0); if (SymbolBody *B = Symtab.find(Stop)) if (B->isUndefined()) Symtab.addSynthetic(Stop, *Sec, Sec->getSize()); } template static bool needsPtLoad(OutputSectionBase *Sec) { if (!(Sec->getFlags() & SHF_ALLOC)) return false; // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is // responsible for allocating space for them, not the PT_LOAD that // contains the TLS initialization image. if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) return false; return true; } static uint32_t toPhdrFlags(uint64_t Flags) { uint32_t Ret = PF_R; if (Flags & SHF_WRITE) Ret |= PF_W; if (Flags & SHF_EXECINSTR) Ret |= PF_X; return Ret; } /// For AMDGPU we need to use custom segment kinds in order to specify which /// address space data should be loaded into. template static uint32_t getAmdgpuPhdr(OutputSectionBase *Sec) { uint32_t Flags = Sec->getFlags(); if (Flags & SHF_AMDGPU_HSA_CODE) return PT_AMDGPU_HSA_LOAD_CODE_AGENT; if ((Flags & SHF_AMDGPU_HSA_GLOBAL) && !(Flags & SHF_AMDGPU_HSA_AGENT)) return PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM; return PT_LOAD; } // Decide which program headers to create and which sections to include in each // one. template void Writer::createPhdrs() { auto AddHdr = [this](unsigned Type, unsigned Flags) { return &*Phdrs.emplace(Phdrs.end(), Type, Flags); }; auto AddSec = [](Phdr &Hdr, OutputSectionBase *Sec) { Hdr.Last = Sec; if (!Hdr.First) Hdr.First = Sec; Hdr.H.p_align = std::max(Hdr.H.p_align, Sec->getAlign()); }; // The first phdr entry is PT_PHDR which describes the program header itself. Phdr &Hdr = *AddHdr(PT_PHDR, PF_R); AddSec(Hdr, Out::ProgramHeaders); // PT_INTERP must be the second entry if exists. if (needsInterpSection()) { Phdr &Hdr = *AddHdr(PT_INTERP, toPhdrFlags(Out::Interp->getFlags())); AddSec(Hdr, Out::Interp); } // Add the first PT_LOAD segment for regular output sections. uintX_t Flags = PF_R; Phdr *Load = AddHdr(PT_LOAD, Flags); AddSec(*Load, Out::ElfHeader); Phdr TlsHdr(PT_TLS, PF_R); Phdr RelRo(PT_GNU_RELRO, PF_R); for (OutputSectionBase *Sec : OutputSections) { if (!(Sec->getFlags() & SHF_ALLOC)) break; // If we meet TLS section then we create TLS header // and put all TLS sections inside for futher use when // assign addresses. if (Sec->getFlags() & SHF_TLS) AddSec(TlsHdr, Sec); if (!needsPtLoad(Sec)) continue; // If flags changed then we want new load segment. uintX_t NewFlags = toPhdrFlags(Sec->getFlags()); if (Flags != NewFlags) { uint32_t LoadType = (Config->EMachine == EM_AMDGPU) ? getAmdgpuPhdr(Sec) : (uint32_t)PT_LOAD; Load = AddHdr(LoadType, NewFlags); Flags = NewFlags; } AddSec(*Load, Sec); if (isRelroSection(Sec)) AddSec(RelRo, Sec); } // Add the TLS segment unless it's empty. if (TlsHdr.First) Phdrs.push_back(std::move(TlsHdr)); // Add an entry for .dynamic. if (isOutputDynamic()) { Phdr &H = *AddHdr(PT_DYNAMIC, toPhdrFlags(Out::Dynamic->getFlags())); AddSec(H, Out::Dynamic); } // PT_GNU_RELRO includes all sections that should be marked as // read-only by dynamic linker after proccessing relocations. if (RelRo.First) Phdrs.push_back(std::move(RelRo)); // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. if (Out::EhFrameHdr->Live) { Phdr &Hdr = *AddHdr(PT_GNU_EH_FRAME, toPhdrFlags(Out::EhFrameHdr->getFlags())); AddSec(Hdr, Out::EhFrameHdr); } // PT_GNU_STACK is a special section to tell the loader to make the // pages for the stack non-executable. if (!Config->ZExecStack) AddHdr(PT_GNU_STACK, PF_R | PF_W); } // Visits all headers in PhdrTable and assigns the adresses to // the output sections. Also creates common and special headers. template void Writer::assignAddresses() { Out::ElfHeader->setSize(sizeof(Elf_Ehdr)); size_t PhdrSize = sizeof(Elf_Phdr) * Phdrs.size(); Out::ProgramHeaders->setSize(PhdrSize); // The first section of each PT_LOAD and the first section after PT_GNU_RELRO // have to be page aligned so that the dynamic linker can set the permissions. SmallPtrSet *, 4> PageAlign; for (const Phdr &P : Phdrs) { if (P.H.p_type == PT_GNU_RELRO) { // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we // have to align it to a page. auto I = std::find(OutputSections.begin(), OutputSections.end(), P.Last); ++I; if (I != OutputSections.end() && needsPtLoad(*I)) PageAlign.insert(*I); } if (P.H.p_type == PT_LOAD) PageAlign.insert(P.First); } uintX_t ThreadBssOffset = 0; uintX_t VA = Target->getVAStart(); uintX_t FileOff = 0; for (OutputSectionBase *Sec : OutputSections) { uintX_t Align = Sec->getAlign(); if (PageAlign.count(Sec)) Align = std::max(Align, Target->PageSize); if (Sec->getType() != SHT_NOBITS) FileOff = alignTo(FileOff, Align); Sec->setFileOffset(FileOff); if (Sec->getType() != SHT_NOBITS) FileOff += Sec->getSize(); // We only assign VAs to allocated sections. if (needsPtLoad(Sec)) { VA = alignTo(VA, Align); Sec->setVA(VA); VA += Sec->getSize(); } else if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) { uintX_t TVA = VA + ThreadBssOffset; TVA = alignTo(TVA, Align); Sec->setVA(TVA); ThreadBssOffset = TVA - VA + Sec->getSize(); } } // Add space for section headers. SectionHeaderOff = alignTo(FileOff, sizeof(uintX_t)); FileSize = SectionHeaderOff + getNumSections() * sizeof(Elf_Shdr); // Update "_end" and "end" symbols so that they // point to the end of the data segment. ElfSym::End.st_value = VA; for (Phdr &PHdr : Phdrs) { Elf_Phdr &H = PHdr.H; if (PHdr.First) { OutputSectionBase *Last = PHdr.Last; H.p_filesz = Last->getFileOff() - PHdr.First->getFileOff(); if (Last->getType() != SHT_NOBITS) H.p_filesz += Last->getSize(); H.p_memsz = Last->getVA() + Last->getSize() - PHdr.First->getVA(); H.p_offset = PHdr.First->getFileOff(); H.p_vaddr = PHdr.First->getVA(); } if (PHdr.H.p_type == PT_LOAD) H.p_align = Target->PageSize; else if (PHdr.H.p_type == PT_GNU_RELRO) H.p_align = 1; H.p_paddr = H.p_vaddr; // The TLS pointer goes after PT_TLS. At least glibc will align it, // so round up the size to make sure the offsets are correct. if (PHdr.H.p_type == PT_TLS) { Out::TlsPhdr = &H; H.p_memsz = alignTo(H.p_memsz, H.p_align); } } } static uint32_t getELFFlags() { if (Config->EMachine != EM_MIPS) return 0; // FIXME: In fact ELF flags depends on ELF flags of input object files // and selected emulation. For now just use hard coded values. uint32_t V = EF_MIPS_ABI_O32 | EF_MIPS_CPIC | EF_MIPS_ARCH_32R2; if (Config->Shared) V |= EF_MIPS_PIC; return V; } template static typename ELFFile::uintX_t getEntryAddr() { if (Config->EntrySym) { if (SymbolBody *B = Config->EntrySym->repl()) return B->getVA(); return 0; } if (Config->EntryAddr != uint64_t(-1)) return Config->EntryAddr; return 0; } // This function is called after we have assigned address and size // to each section. This function fixes some predefined absolute // symbol values that depend on section address and size. template void Writer::fixAbsoluteSymbols() { // Update __rel[a]_iplt_{start,end} symbols so that they point // to beginning or ending of .rela.plt section, respectively. if (Out::RelaPlt) { uintX_t Start = Out::RelaPlt->getVA(); ElfSym::RelaIpltStart.st_value = Start; ElfSym::RelaIpltEnd.st_value = Start + Out::RelaPlt->getSize(); } // Update MIPS _gp absolute symbol so that it points to the static data. if (Config->EMachine == EM_MIPS) ElfSym::MipsGp.st_value = getMipsGpAddr(); } template void Writer::writeHeader() { uint8_t *Buf = Buffer->getBufferStart(); memcpy(Buf, "\177ELF", 4); // Write the ELF header. auto *EHdr = reinterpret_cast(Buf); EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; EHdr->e_ident[EI_DATA] = ELFT::TargetEndianness == llvm::support::little ? ELFDATA2LSB : ELFDATA2MSB; EHdr->e_ident[EI_VERSION] = EV_CURRENT; auto &FirstObj = cast>(*Config->FirstElf); EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI(); EHdr->e_type = Config->Shared ? ET_DYN : ET_EXEC; EHdr->e_machine = FirstObj.getEMachine(); EHdr->e_version = EV_CURRENT; EHdr->e_entry = getEntryAddr(); EHdr->e_phoff = sizeof(Elf_Ehdr); EHdr->e_shoff = SectionHeaderOff; EHdr->e_flags = getELFFlags(); EHdr->e_ehsize = sizeof(Elf_Ehdr); EHdr->e_phentsize = sizeof(Elf_Phdr); EHdr->e_phnum = Phdrs.size(); EHdr->e_shentsize = sizeof(Elf_Shdr); EHdr->e_shnum = getNumSections(); EHdr->e_shstrndx = Out::ShStrTab->SectionIndex; // Write the program header table. auto *HBuf = reinterpret_cast(Buf + EHdr->e_phoff); for (Phdr &P : Phdrs) *HBuf++ = P.H; // Write the section header table. Note that the first table entry is null. auto SHdrs = reinterpret_cast(Buf + EHdr->e_shoff); for (OutputSectionBase *Sec : getSections()) Sec->writeHeaderTo(++SHdrs); } template bool Writer::openFile() { ErrorOr> BufferOrErr = FileOutputBuffer::create(Config->OutputFile, FileSize, FileOutputBuffer::F_executable); if (error(BufferOrErr, "failed to open " + Config->OutputFile)) return false; Buffer = std::move(*BufferOrErr); return true; } // Write section contents to a mmap'ed file. template void Writer::writeSections() { uint8_t *Buf = Buffer->getBufferStart(); // PPC64 needs to process relocations in the .opd section before processing // relocations in code-containing sections. if (OutputSectionBase *Sec = Out::Opd) { Out::OpdBuf = Buf + Sec->getFileOff(); Sec->writeTo(Buf + Sec->getFileOff()); } for (OutputSectionBase *Sec : OutputSections) if (Sec != Out::Opd) Sec->writeTo(Buf + Sec->getFileOff()); } template void elf2::writeResult(SymbolTable *Symtab); template void elf2::writeResult(SymbolTable *Symtab); template void elf2::writeResult(SymbolTable *Symtab); template void elf2::writeResult(SymbolTable *Symtab);