//===- SyntheticSections.cpp ----------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains linker-synthesized sections. Currently, // synthetic sections are created either output sections or input sections, // but we are rewriting code so that all synthetic sections are created as // input sections. // //===----------------------------------------------------------------------===// #include "SyntheticSections.h" #include "Config.h" #include "Error.h" #include "InputFiles.h" #include "Memory.h" #include "OutputSections.h" #include "Strings.h" #include "SymbolTable.h" #include "Target.h" #include "Writer.h" #include "lld/Config/Version.h" #include "lld/Core/Parallel.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MD5.h" #include "llvm/Support/RandomNumberGenerator.h" #include "llvm/Support/SHA1.h" #include "llvm/Support/xxhash.h" #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; template static std::vector getCommonSymbols() { std::vector V; for (Symbol *S : Symtab::X->getSymbols()) if (auto *B = dyn_cast(S->body())) V.push_back(B); return V; } // Find all common symbols and allocate space for them. template InputSection *elf::createCommonSection() { auto *Ret = make>(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, 1, ArrayRef(), "COMMON"); Ret->Live = true; // Sort the common symbols by alignment as an heuristic to pack them better. std::vector Syms = getCommonSymbols(); std::stable_sort(Syms.begin(), Syms.end(), [](const DefinedCommon *A, const DefinedCommon *B) { return A->Alignment > B->Alignment; }); // Assign offsets to symbols. size_t Size = 0; size_t Alignment = 1; for (DefinedCommon *Sym : Syms) { Alignment = std::max(Alignment, Sym->Alignment); Size = alignTo(Size, Sym->Alignment); // Compute symbol offset relative to beginning of input section. Sym->Offset = Size; Size += Sym->Size; } Ret->Alignment = Alignment; Ret->Data = makeArrayRef(nullptr, Size); return Ret; } // Returns an LLD version string. static ArrayRef getVersion() { // Check LLD_VERSION first for ease of testing. // You can get consitent output by using the environment variable. // This is only for testing. StringRef S = getenv("LLD_VERSION"); if (S.empty()) S = Saver.save(Twine("Linker: ") + getLLDVersion()); // +1 to include the terminating '\0'. return {(const uint8_t *)S.data(), S.size() + 1}; } // Creates a .comment section containing LLD version info. // With this feature, you can identify LLD-generated binaries easily // by "objdump -s -j .comment ". // The returned object is a mergeable string section. template MergeInputSection *elf::createCommentSection() { typename ELFT::Shdr Hdr = {}; Hdr.sh_flags = SHF_MERGE | SHF_STRINGS; Hdr.sh_type = SHT_PROGBITS; Hdr.sh_entsize = 1; Hdr.sh_addralign = 1; auto *Ret = make>(/*file=*/nullptr, &Hdr, ".comment"); Ret->Data = getVersion(); Ret->splitIntoPieces(); return Ret; } // Iterate over sections of the specified type. For each section call // provided function. After that "kill" the section by turning off // "Live" flag, so that they won't be included in the final output. template static void iterateSectionContents( uint32_t Type, std::function *, ArrayRef)> F) { for (InputSectionBase *Sec : Symtab::X->Sections) { if (Sec && Sec->Live && Sec->Type == Type) { Sec->Live = false; F(Sec->getFile(), Sec->Data); } } } // .MIPS.abiflags section. template MipsAbiFlagsSection::MipsAbiFlagsSection() : InputSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ArrayRef(), ".MIPS.abiflags") { auto Func = [this](ObjectFile *F, ArrayRef D) { if (D.size() != sizeof(Elf_Mips_ABIFlags)) { error(getFilename(F) + ": invalid size of .MIPS.abiflags section"); return; } auto *S = reinterpret_cast(D.data()); if (S->version != 0) { error(getFilename(F) + ": unexpected .MIPS.abiflags version " + Twine(S->version)); return; } // LLD checks ISA compatibility in getMipsEFlags(). Here we just // select the highest number of ISA/Rev/Ext. Flags.isa_level = std::max(Flags.isa_level, S->isa_level); Flags.isa_rev = std::max(Flags.isa_rev, S->isa_rev); Flags.isa_ext = std::max(Flags.isa_ext, S->isa_ext); Flags.gpr_size = std::max(Flags.gpr_size, S->gpr_size); Flags.cpr1_size = std::max(Flags.cpr1_size, S->cpr1_size); Flags.cpr2_size = std::max(Flags.cpr2_size, S->cpr2_size); Flags.ases |= S->ases; Flags.flags1 |= S->flags1; Flags.flags2 |= S->flags2; Flags.fp_abi = elf::getMipsFpAbiFlag(Flags.fp_abi, S->fp_abi, getFilename(F)); }; iterateSectionContents(SHT_MIPS_ABIFLAGS, Func); this->Data = ArrayRef((const uint8_t *)&Flags, sizeof(Flags)); this->Live = true; } // .MIPS.options section. template MipsOptionsSection::MipsOptionsSection() : InputSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ArrayRef(), ".MIPS.options") { Buf.resize(sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo)); getOptions()->kind = ODK_REGINFO; getOptions()->size = Buf.size(); auto Func = [this](ObjectFile *F, ArrayRef D) { while (!D.empty()) { if (D.size() < sizeof(Elf_Mips_Options)) { error(getFilename(F) + ": invalid size of .MIPS.options section"); break; } auto *O = reinterpret_cast(D.data()); if (O->kind == ODK_REGINFO) { if (Config->Relocatable && O->getRegInfo().ri_gp_value) error(getFilename(F) + ": unsupported non-zero ri_gp_value"); getOptions()->getRegInfo().ri_gprmask |= O->getRegInfo().ri_gprmask; F->MipsGp0 = O->getRegInfo().ri_gp_value; break; } if (!O->size) fatal(getFilename(F) + ": zero option descriptor size"); D = D.slice(O->size); } }; iterateSectionContents(SHT_MIPS_OPTIONS, Func); this->Data = ArrayRef(Buf); // Section should be alive for N64 ABI only. this->Live = ELFT::Is64Bits; } template void MipsOptionsSection::finalize() { if (!Config->Relocatable) getOptions()->getRegInfo().ri_gp_value = In::MipsGot->getVA() + MipsGPOffset; } // MIPS .reginfo section. template MipsReginfoSection::MipsReginfoSection() : InputSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ArrayRef(), ".reginfo") { auto Func = [this](ObjectFile *F, ArrayRef D) { if (D.size() != sizeof(Elf_Mips_RegInfo)) { error(getFilename(F) + ": invalid size of .reginfo section"); return; } auto *R = reinterpret_cast(D.data()); if (Config->Relocatable && R->ri_gp_value) error(getFilename(F) + ": unsupported non-zero ri_gp_value"); Reginfo.ri_gprmask |= R->ri_gprmask; F->MipsGp0 = R->ri_gp_value; }; iterateSectionContents(SHT_MIPS_REGINFO, Func); this->Data = ArrayRef((const uint8_t *)&Reginfo, sizeof(Reginfo)); // Section should be alive for O32 and N32 ABIs only. this->Live = !ELFT::Is64Bits; } template void MipsReginfoSection::finalize() { if (!Config->Relocatable) Reginfo.ri_gp_value = In::MipsGot->getVA() + MipsGPOffset; } static ArrayRef createInterp() { // StringSaver guarantees that the returned string ends with '\0'. StringRef S = Saver.save(Config->DynamicLinker); return {(const uint8_t *)S.data(), S.size() + 1}; } template InputSection *elf::createInterpSection() { auto *Ret = make>(SHF_ALLOC, SHT_PROGBITS, 1, createInterp(), ".interp"); Ret->Live = true; return Ret; } template BuildIdSection::BuildIdSection(size_t HashSize) : InputSection(SHF_ALLOC, SHT_NOTE, 1, ArrayRef(), ".note.gnu.build-id"), HashSize(HashSize) { this->Live = true; Buf.resize(HeaderSize + HashSize); const endianness E = ELFT::TargetEndianness; write32(Buf.data(), 4); // Name size write32(Buf.data() + 4, HashSize); // Content size write32(Buf.data() + 8, NT_GNU_BUILD_ID); // Type memcpy(Buf.data() + 12, "GNU", 4); // Name string this->Data = ArrayRef(Buf); } // Returns the location of the build-id hash value in the output. template uint8_t *BuildIdSection::getOutputLoc(uint8_t *Start) const { return Start + this->OutSec->Offset + this->OutSecOff + HeaderSize; } // Split one uint8 array into small pieces of uint8 arrays. static std::vector> split(ArrayRef Arr, size_t ChunkSize) { std::vector> Ret; while (Arr.size() > ChunkSize) { Ret.push_back(Arr.take_front(ChunkSize)); Arr = Arr.drop_front(ChunkSize); } if (!Arr.empty()) Ret.push_back(Arr); return Ret; } // Computes a hash value of Data using a given hash function. // In order to utilize multiple cores, we first split data into 1MB // chunks, compute a hash for each chunk, and then compute a hash value // of the hash values. template void BuildIdSection::computeHash( llvm::MutableArrayRef Data, std::function Arr, uint8_t *Dest)> HashFn) { std::vector> Chunks = split(Data, 1024 * 1024); std::vector HashList(Chunks.size() * HashSize); auto Fn = [&](ArrayRef &Chunk) { size_t Idx = &Chunk - Chunks.data(); HashFn(Chunk, HashList.data() + Idx * HashSize); }; if (Config->Threads) parallel_for_each(Chunks.begin(), Chunks.end(), Fn); else std::for_each(Chunks.begin(), Chunks.end(), Fn); HashFn(HashList, this->getOutputLoc(Data.begin())); } template void BuildIdFastHash::writeBuildId(MutableArrayRef Buf) { this->computeHash(Buf, [](ArrayRef Arr, uint8_t *Dest) { write64le(Dest, xxHash64(toStringRef(Arr))); }); } template void BuildIdMd5::writeBuildId(MutableArrayRef Buf) { this->computeHash(Buf, [](ArrayRef Arr, uint8_t *Dest) { MD5 Hash; Hash.update(Arr); MD5::MD5Result Res; Hash.final(Res); memcpy(Dest, Res, 16); }); } template void BuildIdSha1::writeBuildId(MutableArrayRef Buf) { this->computeHash(Buf, [](ArrayRef Arr, uint8_t *Dest) { SHA1 Hash; Hash.update(Arr); memcpy(Dest, Hash.final().data(), 20); }); } template void BuildIdUuid::writeBuildId(MutableArrayRef Buf) { if (getRandomBytes(this->getOutputLoc(Buf.data()), this->HashSize)) error("entropy source failure"); } template BuildIdHexstring::BuildIdHexstring() : BuildIdSection(Config->BuildIdVector.size()) {} template void BuildIdHexstring::writeBuildId(MutableArrayRef Buf) { memcpy(this->getOutputLoc(Buf.data()), Config->BuildIdVector.data(), Config->BuildIdVector.size()); } template GotSection::GotSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Target->GotEntrySize, ".got") {} template void GotSection::addEntry(SymbolBody &Sym) { Sym.GotIndex = Entries.size(); Entries.push_back(&Sym); } template bool GotSection::addDynTlsEntry(SymbolBody &Sym) { if (Sym.GlobalDynIndex != -1U) return false; Sym.GlobalDynIndex = Entries.size(); // Global Dynamic TLS entries take two GOT slots. Entries.push_back(nullptr); Entries.push_back(&Sym); return true; } // Reserves TLS entries for a TLS module ID and a TLS block offset. // In total it takes two GOT slots. template bool GotSection::addTlsIndex() { if (TlsIndexOff != uint32_t(-1)) return false; TlsIndexOff = Entries.size() * sizeof(uintX_t); Entries.push_back(nullptr); Entries.push_back(nullptr); return true; } template typename GotSection::uintX_t GotSection::getGlobalDynAddr(const SymbolBody &B) const { return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t); } template typename GotSection::uintX_t GotSection::getGlobalDynOffset(const SymbolBody &B) const { return B.GlobalDynIndex * sizeof(uintX_t); } template void GotSection::finalize() { Size = Entries.size() * sizeof(uintX_t); } template void GotSection::writeTo(uint8_t *Buf) { for (const SymbolBody *B : Entries) { uint8_t *Entry = Buf; Buf += sizeof(uintX_t); if (!B) continue; if (B->isPreemptible()) continue; // The dynamic linker will take care of it. uintX_t VA = B->getVA(); write(Entry, VA); } } template MipsGotSection::MipsGotSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, Target->GotEntrySize, ".got") {} template void MipsGotSection::addEntry(SymbolBody &Sym, uintX_t Addend, RelExpr Expr) { // For "true" local symbols which can be referenced from the same module // only compiler creates two instructions for address loading: // // lw $8, 0($gp) # R_MIPS_GOT16 // addi $8, $8, 0 # R_MIPS_LO16 // // The first instruction loads high 16 bits of the symbol address while // the second adds an offset. That allows to reduce number of required // GOT entries because only one global offset table entry is necessary // for every 64 KBytes of local data. So for local symbols we need to // allocate number of GOT entries to hold all required "page" addresses. // // All global symbols (hidden and regular) considered by compiler uniformly. // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation // to load address of the symbol. So for each such symbol we need to // allocate dedicated GOT entry to store its address. // // If a symbol is preemptible we need help of dynamic linker to get its // final address. The corresponding GOT entries are allocated in the // "global" part of GOT. Entries for non preemptible global symbol allocated // in the "local" part of GOT. // // See "Global Offset Table" in Chapter 5: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Expr == R_MIPS_GOT_LOCAL_PAGE) { // At this point we do not know final symbol value so to reduce number // of allocated GOT entries do the following trick. Save all output // sections referenced by GOT relocations. Then later in the `finalize` // method calculate number of "pages" required to cover all saved output // section and allocate appropriate number of GOT entries. auto *OutSec = cast>(&Sym)->Section->OutSec; OutSections.insert(OutSec); return; } if (Sym.isTls()) { // GOT entries created for MIPS TLS relocations behave like // almost GOT entries from other ABIs. They go to the end // of the global offset table. Sym.GotIndex = TlsEntries.size(); TlsEntries.push_back(&Sym); return; } auto AddEntry = [&](SymbolBody &S, uintX_t A, GotEntries &Items) { if (S.isInGot() && !A) return; size_t NewIndex = Items.size(); if (!EntryIndexMap.insert({{&S, A}, NewIndex}).second) return; Items.emplace_back(&S, A); if (!A) S.GotIndex = NewIndex; }; if (Sym.isPreemptible()) { // Ignore addends for preemptible symbols. They got single GOT entry anyway. AddEntry(Sym, 0, GlobalEntries); Sym.IsInGlobalMipsGot = true; } else if (Expr == R_MIPS_GOT_OFF32) { AddEntry(Sym, Addend, LocalEntries32); Sym.Is32BitMipsGot = true; } else { // Hold local GOT entries accessed via a 16-bit index separately. // That allows to write them in the beginning of the GOT and keep // their indexes as less as possible to escape relocation's overflow. AddEntry(Sym, Addend, LocalEntries); } } template bool MipsGotSection::addDynTlsEntry(SymbolBody &Sym) { if (Sym.GlobalDynIndex != -1U) return false; Sym.GlobalDynIndex = TlsEntries.size(); // Global Dynamic TLS entries take two GOT slots. TlsEntries.push_back(nullptr); TlsEntries.push_back(&Sym); return true; } // Reserves TLS entries for a TLS module ID and a TLS block offset. // In total it takes two GOT slots. template bool MipsGotSection::addTlsIndex() { if (TlsIndexOff != uint32_t(-1)) return false; TlsIndexOff = TlsEntries.size() * sizeof(uintX_t); TlsEntries.push_back(nullptr); TlsEntries.push_back(nullptr); return true; } template typename MipsGotSection::uintX_t MipsGotSection::getPageEntryOffset(uintX_t EntryValue) { // Initialize the entry by the %hi(EntryValue) expression // but without right-shifting. EntryValue = (EntryValue + 0x8000) & ~0xffff; // Take into account MIPS GOT header. // See comment in the MipsGotSection::writeTo. size_t NewIndex = PageIndexMap.size() + 2; auto P = PageIndexMap.insert(std::make_pair(EntryValue, NewIndex)); assert(!P.second || PageIndexMap.size() <= PageEntriesNum); return (uintX_t)P.first->second * sizeof(uintX_t) - MipsGPOffset; } template typename MipsGotSection::uintX_t MipsGotSection::getBodyEntryOffset(const SymbolBody &B, uintX_t Addend) const { // Calculate offset of the GOT entries block: TLS, global, local. uintX_t GotBlockOff; if (B.isTls()) GotBlockOff = getTlsOffset(); else if (B.IsInGlobalMipsGot) GotBlockOff = getLocalEntriesNum() * sizeof(uintX_t); else if (B.Is32BitMipsGot) GotBlockOff = (PageEntriesNum + LocalEntries.size()) * sizeof(uintX_t); else GotBlockOff = PageEntriesNum * sizeof(uintX_t); // Calculate index of the GOT entry in the block. uintX_t GotIndex; if (B.isInGot()) GotIndex = B.GotIndex; else { auto It = EntryIndexMap.find({&B, Addend}); assert(It != EntryIndexMap.end()); GotIndex = It->second; } return GotBlockOff + GotIndex * sizeof(uintX_t) - MipsGPOffset; } template typename MipsGotSection::uintX_t MipsGotSection::getTlsOffset() const { return (getLocalEntriesNum() + GlobalEntries.size()) * sizeof(uintX_t); } template typename MipsGotSection::uintX_t MipsGotSection::getGlobalDynOffset(const SymbolBody &B) const { return B.GlobalDynIndex * sizeof(uintX_t); } template const SymbolBody *MipsGotSection::getFirstGlobalEntry() const { return GlobalEntries.empty() ? nullptr : GlobalEntries.front().first; } template unsigned MipsGotSection::getLocalEntriesNum() const { return PageEntriesNum + LocalEntries.size() + LocalEntries32.size(); } template void MipsGotSection::finalize() { size_t EntriesNum = TlsEntries.size(); // Take into account MIPS GOT header. // See comment in the MipsGotSection::writeTo. PageEntriesNum += 2; for (const OutputSectionBase *OutSec : OutSections) { // Calculate an upper bound of MIPS GOT entries required to store page // addresses of local symbols. We assume the worst case - each 64kb // page of the output section has at least one GOT relocation against it. // Add 0x8000 to the section's size because the page address stored // in the GOT entry is calculated as (value + 0x8000) & ~0xffff. PageEntriesNum += (OutSec->Size + 0x8000 + 0xfffe) / 0xffff; } EntriesNum += getLocalEntriesNum() + GlobalEntries.size(); Size = EntriesNum * sizeof(uintX_t); } template static void writeUint(uint8_t *Buf, typename ELFT::uint Val) { typedef typename ELFT::uint uintX_t; write(Buf, Val); } template void MipsGotSection::writeTo(uint8_t *Buf) { // Set the MSB of the second GOT slot. This is not required by any // MIPS ABI documentation, though. // // There is a comment in glibc saying that "The MSB of got[1] of a // gnu object is set to identify gnu objects," and in GNU gold it // says "the second entry will be used by some runtime loaders". // But how this field is being used is unclear. // // We are not really willing to mimic other linkers behaviors // without understanding why they do that, but because all files // generated by GNU tools have this special GOT value, and because // we've been doing this for years, it is probably a safe bet to // keep doing this for now. We really need to revisit this to see // if we had to do this. auto *P = reinterpret_cast(Buf); P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31); // Write 'page address' entries to the local part of the GOT. for (std::pair &L : PageIndexMap) { uint8_t *Entry = Buf + L.second * sizeof(uintX_t); writeUint(Entry, L.first); } Buf += PageEntriesNum * sizeof(uintX_t); auto AddEntry = [&](const GotEntry &SA) { uint8_t *Entry = Buf; Buf += sizeof(uintX_t); const SymbolBody *Body = SA.first; uintX_t VA = Body->template getVA(SA.second); writeUint(Entry, VA); }; std::for_each(std::begin(LocalEntries), std::end(LocalEntries), AddEntry); std::for_each(std::begin(LocalEntries32), std::end(LocalEntries32), AddEntry); std::for_each(std::begin(GlobalEntries), std::end(GlobalEntries), AddEntry); // Initialize TLS-related GOT entries. If the entry has a corresponding // dynamic relocations, leave it initialized by zero. Write down adjusted // TLS symbol's values otherwise. To calculate the adjustments use offsets // for thread-local storage. // https://www.linux-mips.org/wiki/NPTL if (TlsIndexOff != -1U && !Config->Pic) writeUint(Buf + TlsIndexOff, 1); for (const SymbolBody *B : TlsEntries) { if (!B || B->isPreemptible()) continue; uintX_t VA = B->getVA(); if (B->GotIndex != -1U) { uint8_t *Entry = Buf + B->GotIndex * sizeof(uintX_t); writeUint(Entry, VA - 0x7000); } if (B->GlobalDynIndex != -1U) { uint8_t *Entry = Buf + B->GlobalDynIndex * sizeof(uintX_t); writeUint(Entry, 1); Entry += sizeof(uintX_t); writeUint(Entry, VA - 0x8000); } } } template GotPltSection::GotPltSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Target->GotPltEntrySize, ".got.plt") {} template void GotPltSection::addEntry(SymbolBody &Sym) { Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size(); Entries.push_back(&Sym); } template bool GotPltSection::empty() const { return Entries.empty(); } template size_t GotPltSection::getSize() const { return (Target->GotPltHeaderEntriesNum + Entries.size()) * Target->GotPltEntrySize; } template void GotPltSection::writeTo(uint8_t *Buf) { Target->writeGotPltHeader(Buf); Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize; for (const SymbolBody *B : Entries) { Target->writeGotPlt(Buf, *B); Buf += sizeof(uintX_t); } } template StringTableSection::StringTableSection(StringRef Name, bool Dynamic) : SyntheticSection(Dynamic ? (uintX_t)SHF_ALLOC : 0, SHT_STRTAB, 1, Name), Dynamic(Dynamic) {} // Adds a string to the string table. If HashIt is true we hash and check for // duplicates. It is optional because the name of global symbols are already // uniqued and hashing them again has a big cost for a small value: uniquing // them with some other string that happens to be the same. template unsigned StringTableSection::addString(StringRef S, bool HashIt) { if (HashIt) { auto R = StringMap.insert(std::make_pair(S, this->Size)); if (!R.second) return R.first->second; } unsigned Ret = this->Size; this->Size = this->Size + S.size() + 1; Strings.push_back(S); return Ret; } template void StringTableSection::writeTo(uint8_t *Buf) { // ELF string tables start with NUL byte, so advance the pointer by one. ++Buf; for (StringRef S : Strings) { memcpy(Buf, S.data(), S.size()); Buf += S.size() + 1; } } static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; } template DynamicSection::DynamicSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, sizeof(uintX_t), ".dynamic") { this->Entsize = ELFT::Is64Bits ? 16 : 8; // .dynamic section is not writable on MIPS. // See "Special Section" in Chapter 4 in the following document: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Config->EMachine == EM_MIPS) this->Flags = SHF_ALLOC; addEntries(); } // There are some dynamic entries that don't depend on other sections. // Such entries can be set early. template void DynamicSection::addEntries() { // Add strings to .dynstr early so that .dynstr's size will be // fixed early. for (StringRef S : Config->AuxiliaryList) add({DT_AUXILIARY, In::DynStrTab->addString(S)}); if (!Config->RPath.empty()) add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, In::DynStrTab->addString(Config->RPath)}); for (SharedFile *F : Symtab::X->getSharedFiles()) if (F->isNeeded()) add({DT_NEEDED, In::DynStrTab->addString(F->getSoName())}); if (!Config->SoName.empty()) add({DT_SONAME, In::DynStrTab->addString(Config->SoName)}); // Set DT_FLAGS and DT_FLAGS_1. uint32_t DtFlags = 0; uint32_t DtFlags1 = 0; if (Config->Bsymbolic) DtFlags |= DF_SYMBOLIC; if (Config->ZNodelete) DtFlags1 |= DF_1_NODELETE; if (Config->ZNow) { DtFlags |= DF_BIND_NOW; DtFlags1 |= DF_1_NOW; } if (Config->ZOrigin) { DtFlags |= DF_ORIGIN; DtFlags1 |= DF_1_ORIGIN; } if (DtFlags) add({DT_FLAGS, DtFlags}); if (DtFlags1) add({DT_FLAGS_1, DtFlags1}); if (!Config->Entry.empty()) add({DT_DEBUG, (uint64_t)0}); } // Add remaining entries to complete .dynamic contents. template void DynamicSection::finalize() { if (this->Size) return; // Already finalized. this->Link = In::DynStrTab->OutSec->SectionIndex; if (In::RelaDyn->hasRelocs()) { bool IsRela = Config->Rela; add({IsRela ? DT_RELA : DT_REL, In::RelaDyn}); add({IsRela ? DT_RELASZ : DT_RELSZ, In::RelaDyn->getSize()}); add({IsRela ? DT_RELAENT : DT_RELENT, uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))}); // MIPS dynamic loader does not support RELCOUNT tag. // The problem is in the tight relation between dynamic // relocations and GOT. So do not emit this tag on MIPS. if (Config->EMachine != EM_MIPS) { size_t NumRelativeRels = In::RelaDyn->getRelativeRelocCount(); if (Config->ZCombreloc && NumRelativeRels) add({IsRela ? DT_RELACOUNT : DT_RELCOUNT, NumRelativeRels}); } } if (In::RelaPlt->hasRelocs()) { add({DT_JMPREL, In::RelaPlt}); add({DT_PLTRELSZ, In::RelaPlt->getSize()}); add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT, In::GotPlt}); add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)}); } add({DT_SYMTAB, In::DynSymTab}); add({DT_SYMENT, sizeof(Elf_Sym)}); add({DT_STRTAB, In::DynStrTab}); add({DT_STRSZ, In::DynStrTab->getSize()}); if (In::GnuHashTab) add({DT_GNU_HASH, In::GnuHashTab}); if (In::HashTab) add({DT_HASH, In::HashTab}); if (Out::PreinitArray) { add({DT_PREINIT_ARRAY, Out::PreinitArray}); add({DT_PREINIT_ARRAYSZ, Out::PreinitArray, Entry::SecSize}); } if (Out::InitArray) { add({DT_INIT_ARRAY, Out::InitArray}); add({DT_INIT_ARRAYSZ, Out::InitArray, Entry::SecSize}); } if (Out::FiniArray) { add({DT_FINI_ARRAY, Out::FiniArray}); add({DT_FINI_ARRAYSZ, Out::FiniArray, Entry::SecSize}); } if (SymbolBody *B = Symtab::X->find(Config->Init)) add({DT_INIT, B}); if (SymbolBody *B = Symtab::X->find(Config->Fini)) add({DT_FINI, B}); bool HasVerNeed = Out::VerNeed->getNeedNum() != 0; if (HasVerNeed || Out::VerDef) add({DT_VERSYM, Out::VerSym}); if (Out::VerDef) { add({DT_VERDEF, Out::VerDef}); add({DT_VERDEFNUM, getVerDefNum()}); } if (HasVerNeed) { add({DT_VERNEED, Out::VerNeed}); add({DT_VERNEEDNUM, Out::VerNeed->getNeedNum()}); } if (Config->EMachine == EM_MIPS) { add({DT_MIPS_RLD_VERSION, 1}); add({DT_MIPS_FLAGS, RHF_NOTPOT}); add({DT_MIPS_BASE_ADDRESS, Config->ImageBase}); add({DT_MIPS_SYMTABNO, In::DynSymTab->getNumSymbols()}); add({DT_MIPS_LOCAL_GOTNO, In::MipsGot->getLocalEntriesNum()}); if (const SymbolBody *B = In::MipsGot->getFirstGlobalEntry()) add({DT_MIPS_GOTSYM, B->DynsymIndex}); else add({DT_MIPS_GOTSYM, In::DynSymTab->getNumSymbols()}); add({DT_PLTGOT, In::MipsGot}); if (Out::MipsRldMap) add({DT_MIPS_RLD_MAP, Out::MipsRldMap}); } this->OutSec->Entsize = this->Entsize; this->OutSec->Link = this->Link; // +1 for DT_NULL this->Size = (Entries.size() + 1) * this->Entsize; } template void DynamicSection::writeTo(uint8_t *Buf) { auto *P = reinterpret_cast(Buf); for (const Entry &E : Entries) { P->d_tag = E.Tag; switch (E.Kind) { case Entry::SecAddr: P->d_un.d_ptr = E.OutSec->Addr; break; case Entry::InSecAddr: P->d_un.d_ptr = E.InSec->OutSec->Addr + E.InSec->OutSecOff; break; case Entry::SecSize: P->d_un.d_val = E.OutSec->Size; break; case Entry::SymAddr: P->d_un.d_ptr = E.Sym->template getVA(); break; case Entry::PlainInt: P->d_un.d_val = E.Val; break; } ++P; } } template typename ELFT::uint DynamicReloc::getOffset() const { if (OutputSec) return OutputSec->Addr + OffsetInSec; return InputSec->OutSec->Addr + InputSec->getOffset(OffsetInSec); } template typename ELFT::uint DynamicReloc::getAddend() const { if (UseSymVA) return Sym->getVA(Addend); return Addend; } template uint32_t DynamicReloc::getSymIndex() const { if (Sym && !UseSymVA) return Sym->DynsymIndex; return 0; } template RelocationSection::RelocationSection(StringRef Name, bool Sort) : SyntheticSection(SHF_ALLOC, Config->Rela ? SHT_RELA : SHT_REL, sizeof(uintX_t), Name), Sort(Sort) { this->Entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); } template void RelocationSection::addReloc(const DynamicReloc &Reloc) { if (Reloc.Type == Target->RelativeRel) ++NumRelativeRelocs; Relocs.push_back(Reloc); } template static bool compRelocations(const RelTy &A, const RelTy &B) { bool AIsRel = A.getType(Config->Mips64EL) == Target->RelativeRel; bool BIsRel = B.getType(Config->Mips64EL) == Target->RelativeRel; if (AIsRel != BIsRel) return AIsRel; return A.getSymbol(Config->Mips64EL) < B.getSymbol(Config->Mips64EL); } template void RelocationSection::writeTo(uint8_t *Buf) { uint8_t *BufBegin = Buf; for (const DynamicReloc &Rel : Relocs) { auto *P = reinterpret_cast(Buf); Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); if (Config->Rela) P->r_addend = Rel.getAddend(); P->r_offset = Rel.getOffset(); if (Config->EMachine == EM_MIPS && Rel.getInputSec() == In::MipsGot) // Dynamic relocation against MIPS GOT section make deal TLS entries // allocated in the end of the GOT. We need to adjust the offset to take // in account 'local' and 'global' GOT entries. P->r_offset += In::MipsGot->getTlsOffset(); P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->Mips64EL); } if (Sort) { if (Config->Rela) std::stable_sort((Elf_Rela *)BufBegin, (Elf_Rela *)BufBegin + Relocs.size(), compRelocations); else std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(), compRelocations); } } template unsigned RelocationSection::getRelocOffset() { return this->Entsize * Relocs.size(); } template void RelocationSection::finalize() { this->Link = In::DynSymTab ? In::DynSymTab->OutSec->SectionIndex : In::SymTab->OutSec->SectionIndex; // Set required output section properties. this->OutSec->Link = this->Link; this->OutSec->Entsize = this->Entsize; } template SymbolTableSection::SymbolTableSection( StringTableSection &StrTabSec) : SyntheticSection(StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0, StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, sizeof(uintX_t), StrTabSec.isDynamic() ? ".dynsym" : ".symtab"), StrTabSec(StrTabSec) { this->Entsize = sizeof(Elf_Sym); } // Orders symbols according to their positions in the GOT, // in compliance with MIPS ABI rules. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf static bool sortMipsSymbols(const SymbolBody *L, const SymbolBody *R) { // Sort entries related to non-local preemptible symbols by GOT indexes. // All other entries go to the first part of GOT in arbitrary order. bool LIsInLocalGot = !L->IsInGlobalMipsGot; bool RIsInLocalGot = !R->IsInGlobalMipsGot; if (LIsInLocalGot || RIsInLocalGot) return !RIsInLocalGot; return L->GotIndex < R->GotIndex; } static uint8_t getSymbolBinding(SymbolBody *Body) { Symbol *S = Body->symbol(); if (Config->Relocatable) return S->Binding; uint8_t Visibility = S->Visibility; if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED) return STB_LOCAL; if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE) return STB_GLOBAL; return S->Binding; } template void SymbolTableSection::finalize() { this->OutSec->Link = this->Link = StrTabSec.OutSec->SectionIndex; this->OutSec->Info = this->Info = NumLocals + 1; this->OutSec->Entsize = this->Entsize; if (Config->Relocatable) { size_t I = NumLocals; for (const SymbolTableEntry &S : Symbols) S.Symbol->DynsymIndex = ++I; return; } if (!StrTabSec.isDynamic()) { std::stable_sort(Symbols.begin(), Symbols.end(), [](const SymbolTableEntry &L, const SymbolTableEntry &R) { return getSymbolBinding(L.Symbol) == STB_LOCAL && getSymbolBinding(R.Symbol) != STB_LOCAL; }); return; } if (In::GnuHashTab) // NB: It also sorts Symbols to meet the GNU hash table requirements. In::GnuHashTab->addSymbols(Symbols); else if (Config->EMachine == EM_MIPS) std::stable_sort(Symbols.begin(), Symbols.end(), [](const SymbolTableEntry &L, const SymbolTableEntry &R) { return sortMipsSymbols(L.Symbol, R.Symbol); }); size_t I = 0; for (const SymbolTableEntry &S : Symbols) S.Symbol->DynsymIndex = ++I; } template void SymbolTableSection::addSymbol(SymbolBody *B) { Symbols.push_back({B, StrTabSec.addString(B->getName(), false)}); } template void SymbolTableSection::writeTo(uint8_t *Buf) { Buf += sizeof(Elf_Sym); // All symbols with STB_LOCAL binding precede the weak and global symbols. // .dynsym only contains global symbols. if (Config->Discard != DiscardPolicy::All && !StrTabSec.isDynamic()) writeLocalSymbols(Buf); writeGlobalSymbols(Buf); } template void SymbolTableSection::writeLocalSymbols(uint8_t *&Buf) { // Iterate over all input object files to copy their local symbols // to the output symbol table pointed by Buf. for (ObjectFile *File : Symtab::X->getObjectFiles()) { for (const std::pair *, size_t> &P : File->KeptLocalSyms) { const DefinedRegular &Body = *P.first; InputSectionBase *Section = Body.Section; auto *ESym = reinterpret_cast(Buf); if (!Section) { ESym->st_shndx = SHN_ABS; ESym->st_value = Body.Value; } else { const OutputSectionBase *OutSec = Section->OutSec; ESym->st_shndx = OutSec->SectionIndex; ESym->st_value = OutSec->Addr + Section->getOffset(Body); } ESym->st_name = P.second; ESym->st_size = Body.template getSize(); ESym->setBindingAndType(STB_LOCAL, Body.Type); Buf += sizeof(*ESym); } } } template void SymbolTableSection::writeGlobalSymbols(uint8_t *Buf) { // Write the internal symbol table contents to the output symbol table // pointed by Buf. auto *ESym = reinterpret_cast(Buf); for (const SymbolTableEntry &S : Symbols) { SymbolBody *Body = S.Symbol; size_t StrOff = S.StrTabOffset; uint8_t Type = Body->Type; uintX_t Size = Body->getSize(); ESym->setBindingAndType(getSymbolBinding(Body), Type); ESym->st_size = Size; ESym->st_name = StrOff; ESym->setVisibility(Body->symbol()->Visibility); ESym->st_value = Body->getVA(); if (const OutputSectionBase *OutSec = getOutputSection(Body)) ESym->st_shndx = OutSec->SectionIndex; else if (isa>(Body)) ESym->st_shndx = SHN_ABS; if (Config->EMachine == EM_MIPS) { // On MIPS we need to mark symbol which has a PLT entry and requires // pointer equality by STO_MIPS_PLT flag. That is necessary to help // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. // https://sourceware.org/ml/binutils/2008-07/txt00000.txt if (Body->isInPlt() && Body->NeedsCopyOrPltAddr) ESym->st_other |= STO_MIPS_PLT; if (Config->Relocatable) { auto *D = dyn_cast>(Body); if (D && D->isMipsPIC()) ESym->st_other |= STO_MIPS_PIC; } } ++ESym; } } template const OutputSectionBase * SymbolTableSection::getOutputSection(SymbolBody *Sym) { switch (Sym->kind()) { case SymbolBody::DefinedSyntheticKind: return cast>(Sym)->Section; case SymbolBody::DefinedRegularKind: { auto &D = cast>(*Sym); if (D.Section) return D.Section->OutSec; break; } case SymbolBody::DefinedCommonKind: return In::Common->OutSec; case SymbolBody::SharedKind: if (cast>(Sym)->needsCopy()) return Out::Bss; break; case SymbolBody::UndefinedKind: case SymbolBody::LazyArchiveKind: case SymbolBody::LazyObjectKind: break; } return nullptr; } template GnuHashTableSection::GnuHashTableSection() : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, sizeof(uintX_t), ".gnu.hash") { this->Entsize = ELFT::Is64Bits ? 0 : 4; } template unsigned GnuHashTableSection::calcNBuckets(unsigned NumHashed) { if (!NumHashed) return 0; // These values are prime numbers which are not greater than 2^(N-1) + 1. // In result, for any particular NumHashed we return a prime number // which is not greater than NumHashed. static const unsigned Primes[] = { 1, 1, 3, 3, 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071}; return Primes[std::min(Log2_32_Ceil(NumHashed), array_lengthof(Primes) - 1)]; } // Bloom filter estimation: at least 8 bits for each hashed symbol. // GNU Hash table requirement: it should be a power of 2, // the minimum value is 1, even for an empty table. // Expected results for a 32-bit target: // calcMaskWords(0..4) = 1 // calcMaskWords(5..8) = 2 // calcMaskWords(9..16) = 4 // For a 64-bit target: // calcMaskWords(0..8) = 1 // calcMaskWords(9..16) = 2 // calcMaskWords(17..32) = 4 template unsigned GnuHashTableSection::calcMaskWords(unsigned NumHashed) { if (!NumHashed) return 1; return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off)); } template void GnuHashTableSection::finalize() { unsigned NumHashed = Symbols.size(); NBuckets = calcNBuckets(NumHashed); MaskWords = calcMaskWords(NumHashed); // Second hash shift estimation: just predefined values. Shift2 = ELFT::Is64Bits ? 6 : 5; this->OutSec->Entsize = this->Entsize; this->OutSec->Link = this->Link = In::DynSymTab->OutSec->SectionIndex; this->Size = sizeof(Elf_Word) * 4 // Header + sizeof(Elf_Off) * MaskWords // Bloom Filter + sizeof(Elf_Word) * NBuckets // Hash Buckets + sizeof(Elf_Word) * NumHashed; // Hash Values } template void GnuHashTableSection::writeTo(uint8_t *Buf) { writeHeader(Buf); if (Symbols.empty()) return; writeBloomFilter(Buf); writeHashTable(Buf); } template void GnuHashTableSection::writeHeader(uint8_t *&Buf) { auto *P = reinterpret_cast(Buf); *P++ = NBuckets; *P++ = In::DynSymTab->getNumSymbols() - Symbols.size(); *P++ = MaskWords; *P++ = Shift2; Buf = reinterpret_cast(P); } template void GnuHashTableSection::writeBloomFilter(uint8_t *&Buf) { unsigned C = sizeof(Elf_Off) * 8; auto *Masks = reinterpret_cast(Buf); for (const SymbolData &Sym : Symbols) { size_t Pos = (Sym.Hash / C) & (MaskWords - 1); uintX_t V = (uintX_t(1) << (Sym.Hash % C)) | (uintX_t(1) << ((Sym.Hash >> Shift2) % C)); Masks[Pos] |= V; } Buf += sizeof(Elf_Off) * MaskWords; } template void GnuHashTableSection::writeHashTable(uint8_t *Buf) { Elf_Word *Buckets = reinterpret_cast(Buf); Elf_Word *Values = Buckets + NBuckets; int PrevBucket = -1; int I = 0; for (const SymbolData &Sym : Symbols) { int Bucket = Sym.Hash % NBuckets; assert(PrevBucket <= Bucket); if (Bucket != PrevBucket) { Buckets[Bucket] = Sym.Body->DynsymIndex; PrevBucket = Bucket; if (I > 0) Values[I - 1] |= 1; } Values[I] = Sym.Hash & ~1; ++I; } if (I > 0) Values[I - 1] |= 1; } static uint32_t hashGnu(StringRef Name) { uint32_t H = 5381; for (uint8_t C : Name) H = (H << 5) + H + C; return H; } // Add symbols to this symbol hash table. Note that this function // destructively sort a given vector -- which is needed because // GNU-style hash table places some sorting requirements. template void GnuHashTableSection::addSymbols(std::vector &V) { // Ideally this will just be 'auto' but GCC 6.1 is not able // to deduce it correctly. std::vector::iterator Mid = std::stable_partition(V.begin(), V.end(), [](const SymbolTableEntry &S) { return S.Symbol->isUndefined(); }); if (Mid == V.end()) return; for (auto I = Mid, E = V.end(); I != E; ++I) { SymbolBody *B = I->Symbol; size_t StrOff = I->StrTabOffset; Symbols.push_back({B, StrOff, hashGnu(B->getName())}); } unsigned NBuckets = calcNBuckets(Symbols.size()); std::stable_sort(Symbols.begin(), Symbols.end(), [&](const SymbolData &L, const SymbolData &R) { return L.Hash % NBuckets < R.Hash % NBuckets; }); V.erase(Mid, V.end()); for (const SymbolData &Sym : Symbols) V.push_back({Sym.Body, Sym.STName}); } template HashTableSection::HashTableSection() : SyntheticSection(SHF_ALLOC, SHT_HASH, sizeof(Elf_Word), ".hash") { this->Entsize = sizeof(Elf_Word); } template void HashTableSection::finalize() { this->OutSec->Link = this->Link = In::DynSymTab->OutSec->SectionIndex; this->OutSec->Entsize = this->Entsize; unsigned NumEntries = 2; // nbucket and nchain. NumEntries += In::DynSymTab->getNumSymbols(); // The chain entries. // Create as many buckets as there are symbols. // FIXME: This is simplistic. We can try to optimize it, but implementing // support for SHT_GNU_HASH is probably even more profitable. NumEntries += In::DynSymTab->getNumSymbols(); this->Size = NumEntries * sizeof(Elf_Word); } template void HashTableSection::writeTo(uint8_t *Buf) { unsigned NumSymbols = In::DynSymTab->getNumSymbols(); auto *P = reinterpret_cast(Buf); *P++ = NumSymbols; // nbucket *P++ = NumSymbols; // nchain Elf_Word *Buckets = P; Elf_Word *Chains = P + NumSymbols; for (const SymbolTableEntry &S : In::DynSymTab->getSymbols()) { SymbolBody *Body = S.Symbol; StringRef Name = Body->getName(); unsigned I = Body->DynsymIndex; uint32_t Hash = hashSysV(Name) % NumSymbols; Chains[I] = Buckets[Hash]; Buckets[Hash] = I; } } template PltSection::PltSection() : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} template void PltSection::writeTo(uint8_t *Buf) { // At beginning of PLT, we have code to call the dynamic linker // to resolve dynsyms at runtime. Write such code. Target->writePltHeader(Buf); size_t Off = Target->PltHeaderSize; for (auto &I : Entries) { const SymbolBody *B = I.first; unsigned RelOff = I.second; uint64_t Got = B->getGotPltVA(); uint64_t Plt = this->getVA() + Off; Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); Off += Target->PltEntrySize; } } template void PltSection::addEntry(SymbolBody &Sym) { Sym.PltIndex = Entries.size(); unsigned RelOff = In::RelaPlt->getRelocOffset(); Entries.push_back(std::make_pair(&Sym, RelOff)); } template size_t PltSection::getSize() const { return Target->PltHeaderSize + Entries.size() * Target->PltEntrySize; } template GdbIndexSection::GdbIndexSection() : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} template void GdbIndexSection::parseDebugSections() { std::vector *> &IS = static_cast *>(Out::DebugInfo)->Sections; for (InputSection *I : IS) readDwarf(I); } template void GdbIndexSection::readDwarf(InputSection *I) { std::vector> CuList = readCuList(I); CompilationUnits.insert(CompilationUnits.end(), CuList.begin(), CuList.end()); } template void GdbIndexSection::finalize() { parseDebugSections(); // GdbIndex header consist from version fields // and 5 more fields with different kinds of offsets. CuTypesOffset = CuListOffset + CompilationUnits.size() * CompilationUnitSize; } template void GdbIndexSection::writeTo(uint8_t *Buf) { write32le(Buf, 7); // Write Version write32le(Buf + 4, CuListOffset); // CU list offset write32le(Buf + 8, CuTypesOffset); // Types CU list offset write32le(Buf + 12, CuTypesOffset); // Address area offset write32le(Buf + 16, CuTypesOffset); // Symbol table offset write32le(Buf + 20, CuTypesOffset); // Constant pool offset Buf += 24; // Write the CU list. for (std::pair CU : CompilationUnits) { write64le(Buf, CU.first); write64le(Buf + 8, CU.second); Buf += 16; } } template InputSection *elf::createCommonSection(); template InputSection *elf::createCommonSection(); template InputSection *elf::createCommonSection(); template InputSection *elf::createCommonSection(); template InputSection *elf::createInterpSection(); template InputSection *elf::createInterpSection(); template InputSection *elf::createInterpSection(); template InputSection *elf::createInterpSection(); template MergeInputSection *elf::createCommentSection(); template MergeInputSection *elf::createCommentSection(); template MergeInputSection *elf::createCommentSection(); template MergeInputSection *elf::createCommentSection(); template class elf::MipsAbiFlagsSection; template class elf::MipsAbiFlagsSection; template class elf::MipsAbiFlagsSection; template class elf::MipsAbiFlagsSection; template class elf::MipsOptionsSection; template class elf::MipsOptionsSection; template class elf::MipsOptionsSection; template class elf::MipsOptionsSection; template class elf::MipsReginfoSection; template class elf::MipsReginfoSection; template class elf::MipsReginfoSection; template class elf::MipsReginfoSection; template class elf::BuildIdSection; template class elf::BuildIdSection; template class elf::BuildIdSection; template class elf::BuildIdSection; template class elf::BuildIdFastHash; template class elf::BuildIdFastHash; template class elf::BuildIdFastHash; template class elf::BuildIdFastHash; template class elf::BuildIdMd5; template class elf::BuildIdMd5; template class elf::BuildIdMd5; template class elf::BuildIdMd5; template class elf::BuildIdSha1; template class elf::BuildIdSha1; template class elf::BuildIdSha1; template class elf::BuildIdSha1; template class elf::BuildIdUuid; template class elf::BuildIdUuid; template class elf::BuildIdUuid; template class elf::BuildIdUuid; template class elf::BuildIdHexstring; template class elf::BuildIdHexstring; template class elf::BuildIdHexstring; template class elf::BuildIdHexstring; template class elf::GotSection; template class elf::GotSection; template class elf::GotSection; template class elf::GotSection; template class elf::MipsGotSection; template class elf::MipsGotSection; template class elf::MipsGotSection; template class elf::MipsGotSection; template class elf::GotPltSection; template class elf::GotPltSection; template class elf::GotPltSection; template class elf::GotPltSection; template class elf::StringTableSection; template class elf::StringTableSection; template class elf::StringTableSection; template class elf::StringTableSection; template class elf::DynamicSection; template class elf::DynamicSection; template class elf::DynamicSection; template class elf::DynamicSection; template class elf::RelocationSection; template class elf::RelocationSection; template class elf::RelocationSection; template class elf::RelocationSection; template class elf::SymbolTableSection; template class elf::SymbolTableSection; template class elf::SymbolTableSection; template class elf::SymbolTableSection; template class elf::GnuHashTableSection; template class elf::GnuHashTableSection; template class elf::GnuHashTableSection; template class elf::GnuHashTableSection; template class elf::HashTableSection; template class elf::HashTableSection; template class elf::HashTableSection; template class elf::HashTableSection; template class elf::PltSection; template class elf::PltSection; template class elf::PltSection; template class elf::PltSection; template class elf::GdbIndexSection; template class elf::GdbIndexSection; template class elf::GdbIndexSection; template class elf::GdbIndexSection;