//===- OutputSections.cpp -------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "OutputSections.h" #include "Config.h" #include "LinkerScript.h" #include "SymbolTable.h" #include "Target.h" #include "lld/Core/Parallel.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/MD5.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SHA1.h" #include using namespace llvm; using namespace llvm::dwarf; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; static bool isAlpha(char C) { return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z') || C == '_'; } static bool isAlnum(char C) { return isAlpha(C) || ('0' <= C && C <= '9'); } // Returns true if S is valid as a C language identifier. bool elf::isValidCIdentifier(StringRef S) { return !S.empty() && isAlpha(S[0]) && std::all_of(S.begin() + 1, S.end(), isAlnum); } template OutputSectionBase::OutputSectionBase(StringRef Name, uint32_t Type, uintX_t Flags) : Name(Name) { memset(&Header, 0, sizeof(Elf_Shdr)); Header.sh_type = Type; Header.sh_flags = Flags; } template void OutputSectionBase::writeHeaderTo(Elf_Shdr *Shdr) { *Shdr = Header; } template GotPltSection::GotPltSection() : OutputSectionBase(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { this->Header.sh_addralign = sizeof(uintX_t); } template void GotPltSection::addEntry(SymbolBody &Sym) { Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size(); Entries.push_back(&Sym); } template bool GotPltSection::empty() const { return Entries.empty(); } template void GotPltSection::finalize() { this->Header.sh_size = (Target->GotPltHeaderEntriesNum + Entries.size()) * sizeof(uintX_t); } template void GotPltSection::writeTo(uint8_t *Buf) { Target->writeGotPltHeader(Buf); Buf += Target->GotPltHeaderEntriesNum * sizeof(uintX_t); for (const SymbolBody *B : Entries) { Target->writeGotPlt(Buf, B->getPltVA()); Buf += sizeof(uintX_t); } } template GotSection::GotSection() : OutputSectionBase(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { if (Config->EMachine == EM_MIPS) this->Header.sh_flags |= SHF_MIPS_GPREL; this->Header.sh_addralign = sizeof(uintX_t); } template void GotSection::addEntry(SymbolBody &Sym) { if (Config->EMachine == EM_MIPS) { // For "true" local symbols which can be referenced from the same module // only compiler creates two instructions for address loading: // // lw $8, 0($gp) # R_MIPS_GOT16 // addi $8, $8, 0 # R_MIPS_LO16 // // The first instruction loads high 16 bits of the symbol address while // the second adds an offset. That allows to reduce number of required // GOT entries because only one global offset table entry is necessary // for every 64 KBytes of local data. So for local symbols we need to // allocate number of GOT entries to hold all required "page" addresses. // // All global symbols (hidden and regular) considered by compiler uniformly. // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation // to load address of the symbol. So for each such symbol we need to // allocate dedicated GOT entry to store its address. // // If a symbol is preemptible we need help of dynamic linker to get its // final address. The corresponding GOT entries are allocated in the // "global" part of GOT. Entries for non preemptible global symbol allocated // in the "local" part of GOT. // // See "Global Offset Table" in Chapter 5: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Sym.isLocal()) { // At this point we do not know final symbol value so to reduce number // of allocated GOT entries do the following trick. Save all output // sections referenced by GOT relocations. Then later in the `finalize` // method calculate number of "pages" required to cover all saved output // section and allocate appropriate number of GOT entries. auto *OutSec = cast>(&Sym)->Section->OutSec; MipsOutSections.insert(OutSec); return; } if (!Sym.isPreemptible()) { // In case of non-local symbols require an entry in the local part // of MIPS GOT, we set GotIndex to 1 just to accent that this symbol // has the GOT entry and escape creation more redundant GOT entries. // FIXME (simon): We can try to store such symbols in the `Entries` // container. But in that case we have to sort out that container // and update GotIndex assigned to symbols. Sym.GotIndex = 1; ++MipsLocalEntries; return; } } Sym.GotIndex = Entries.size(); Entries.push_back(&Sym); } template bool GotSection::addDynTlsEntry(SymbolBody &Sym) { if (Sym.symbol()->GlobalDynIndex != -1U) return false; Sym.symbol()->GlobalDynIndex = Entries.size(); // Global Dynamic TLS entries take two GOT slots. Entries.push_back(&Sym); Entries.push_back(nullptr); return true; } // Reserves TLS entries for a TLS module ID and a TLS block offset. // In total it takes two GOT slots. template bool GotSection::addTlsIndex() { if (TlsIndexOff != uint32_t(-1)) return false; TlsIndexOff = Entries.size() * sizeof(uintX_t); Entries.push_back(nullptr); Entries.push_back(nullptr); return true; } template typename GotSection::uintX_t GotSection::getMipsLocalPageOffset(uintX_t EntryValue) { // Initialize the entry by the %hi(EntryValue) expression // but without right-shifting. return getMipsLocalEntryOffset((EntryValue + 0x8000) & ~0xffff); } template typename GotSection::uintX_t GotSection::getMipsLocalEntryOffset(uintX_t EntryValue) { // Take into account MIPS GOT header. // See comment in the GotSection::writeTo. size_t NewIndex = MipsLocalGotPos.size() + 2; auto P = MipsLocalGotPos.insert(std::make_pair(EntryValue, NewIndex)); assert(!P.second || MipsLocalGotPos.size() <= MipsLocalEntries); return P.first->second * sizeof(uintX_t) - MipsGPOffset; } template typename GotSection::uintX_t GotSection::getGlobalDynAddr(const SymbolBody &B) const { return this->getVA() + B.symbol()->GlobalDynIndex * sizeof(uintX_t); } template typename GotSection::uintX_t GotSection::getGlobalDynOffset(const SymbolBody &B) const { return B.symbol()->GlobalDynIndex * sizeof(uintX_t); } template const SymbolBody *GotSection::getMipsFirstGlobalEntry() const { return Entries.empty() ? nullptr : Entries.front(); } template unsigned GotSection::getMipsLocalEntriesNum() const { return MipsLocalEntries; } template void GotSection::finalize() { if (Config->EMachine == EM_MIPS) // Take into account MIPS GOT header. // See comment in the GotSection::writeTo. MipsLocalEntries += 2; for (const OutputSectionBase *OutSec : MipsOutSections) { // Calculate an upper bound of MIPS GOT entries required to store page // addresses of local symbols. We assume the worst case - each 64kb // page of the output section has at least one GOT relocation against it. // Add 0x8000 to the section's size because the page address stored // in the GOT entry is calculated as (value + 0x8000) & ~0xffff. MipsLocalEntries += (OutSec->getSize() + 0x8000 + 0xfffe) / 0xffff; } this->Header.sh_size = (MipsLocalEntries + Entries.size()) * sizeof(uintX_t); } template void GotSection::writeTo(uint8_t *Buf) { if (Config->EMachine == EM_MIPS) { // Set the MSB of the second GOT slot. This is not required by any // MIPS ABI documentation, though. // // There is a comment in glibc saying that "The MSB of got[1] of a // gnu object is set to identify gnu objects," and in GNU gold it // says "the second entry will be used by some runtime loaders". // But how this field is being used is unclear. // // We are not really willing to mimic other linkers behaviors // without understanding why they do that, but because all files // generated by GNU tools have this special GOT value, and because // we've been doing this for years, it is probably a safe bet to // keep doing this for now. We really need to revisit this to see // if we had to do this. auto *P = reinterpret_cast(Buf); P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31); } for (std::pair &L : MipsLocalGotPos) { uint8_t *Entry = Buf + L.second * sizeof(uintX_t); write(Entry, L.first); } Buf += MipsLocalEntries * sizeof(uintX_t); for (const SymbolBody *B : Entries) { uint8_t *Entry = Buf; Buf += sizeof(uintX_t); if (!B) continue; // MIPS has special rules to fill up GOT entries. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf // As the first approach, we can just store addresses for all symbols. if (Config->EMachine != EM_MIPS && B->isPreemptible()) continue; // The dynamic linker will take care of it. uintX_t VA = B->getVA(); write(Entry, VA); } } template PltSection::PltSection() : OutputSectionBase(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) { this->Header.sh_addralign = 16; } template void PltSection::writeTo(uint8_t *Buf) { size_t Off = 0; if (Target->UseLazyBinding) { // At beginning of PLT, we have code to call the dynamic linker // to resolve dynsyms at runtime. Write such code. Target->writePltZero(Buf); Off += Target->PltZeroSize; } for (auto &I : Entries) { const SymbolBody *B = I.first; unsigned RelOff = I.second; uint64_t Got = Target->UseLazyBinding ? B->getGotPltVA() : B->getGotVA(); uint64_t Plt = this->getVA() + Off; Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); Off += Target->PltEntrySize; } } template void PltSection::addEntry(SymbolBody &Sym) { Sym.PltIndex = Entries.size(); unsigned RelOff = Target->UseLazyBinding ? Out::RelaPlt->getRelocOffset() : Out::RelaDyn->getRelocOffset(); Entries.push_back(std::make_pair(&Sym, RelOff)); } template void PltSection::finalize() { this->Header.sh_size = Target->PltZeroSize + Entries.size() * Target->PltEntrySize; } template RelocationSection::RelocationSection(StringRef Name) : OutputSectionBase(Name, Config->Rela ? SHT_RELA : SHT_REL, SHF_ALLOC) { this->Header.sh_entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); this->Header.sh_addralign = sizeof(uintX_t); } template void RelocationSection::addReloc(const DynamicReloc &Reloc) { Relocs.push_back(Reloc); } template void RelocationSection::writeTo(uint8_t *Buf) { for (const DynamicReloc &Rel : Relocs) { auto *P = reinterpret_cast(Buf); Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); SymbolBody *Sym = Rel.Sym; if (Config->Rela) P->r_addend = Rel.UseSymVA ? Sym->getVA(Rel.Addend) : Rel.Addend; P->r_offset = Rel.OffsetInSec + Rel.OffsetSec->getVA(); uint32_t SymIdx = (!Rel.UseSymVA && Sym) ? Sym->DynsymIndex : 0; P->setSymbolAndType(SymIdx, Rel.Type, Config->Mips64EL); } } template unsigned RelocationSection::getRelocOffset() { return this->Header.sh_entsize * Relocs.size(); } template void RelocationSection::finalize() { this->Header.sh_link = Static ? Out::SymTab->SectionIndex : Out::DynSymTab->SectionIndex; this->Header.sh_size = Relocs.size() * this->Header.sh_entsize; } template InterpSection::InterpSection() : OutputSectionBase(".interp", SHT_PROGBITS, SHF_ALLOC) { this->Header.sh_size = Config->DynamicLinker.size() + 1; this->Header.sh_addralign = 1; } template void InterpSection::writeTo(uint8_t *Buf) { StringRef S = Config->DynamicLinker; memcpy(Buf, S.data(), S.size()); } template HashTableSection::HashTableSection() : OutputSectionBase(".hash", SHT_HASH, SHF_ALLOC) { this->Header.sh_entsize = sizeof(Elf_Word); this->Header.sh_addralign = sizeof(Elf_Word); } static uint32_t hashSysv(StringRef Name) { uint32_t H = 0; for (char C : Name) { H = (H << 4) + C; uint32_t G = H & 0xf0000000; if (G) H ^= G >> 24; H &= ~G; } return H; } template void HashTableSection::finalize() { this->Header.sh_link = Out::DynSymTab->SectionIndex; unsigned NumEntries = 2; // nbucket and nchain. NumEntries += Out::DynSymTab->getNumSymbols(); // The chain entries. // Create as many buckets as there are symbols. // FIXME: This is simplistic. We can try to optimize it, but implementing // support for SHT_GNU_HASH is probably even more profitable. NumEntries += Out::DynSymTab->getNumSymbols(); this->Header.sh_size = NumEntries * sizeof(Elf_Word); } template void HashTableSection::writeTo(uint8_t *Buf) { unsigned NumSymbols = Out::DynSymTab->getNumSymbols(); auto *P = reinterpret_cast(Buf); *P++ = NumSymbols; // nbucket *P++ = NumSymbols; // nchain Elf_Word *Buckets = P; Elf_Word *Chains = P + NumSymbols; for (const std::pair &P : Out::DynSymTab->getSymbols()) { SymbolBody *Body = P.first; StringRef Name = Body->getName(); unsigned I = Body->DynsymIndex; uint32_t Hash = hashSysv(Name) % NumSymbols; Chains[I] = Buckets[Hash]; Buckets[Hash] = I; } } static uint32_t hashGnu(StringRef Name) { uint32_t H = 5381; for (uint8_t C : Name) H = (H << 5) + H + C; return H; } template GnuHashTableSection::GnuHashTableSection() : OutputSectionBase(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) { this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4; this->Header.sh_addralign = sizeof(uintX_t); } template unsigned GnuHashTableSection::calcNBuckets(unsigned NumHashed) { if (!NumHashed) return 0; // These values are prime numbers which are not greater than 2^(N-1) + 1. // In result, for any particular NumHashed we return a prime number // which is not greater than NumHashed. static const unsigned Primes[] = { 1, 1, 3, 3, 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071}; return Primes[std::min(Log2_32_Ceil(NumHashed), array_lengthof(Primes) - 1)]; } // Bloom filter estimation: at least 8 bits for each hashed symbol. // GNU Hash table requirement: it should be a power of 2, // the minimum value is 1, even for an empty table. // Expected results for a 32-bit target: // calcMaskWords(0..4) = 1 // calcMaskWords(5..8) = 2 // calcMaskWords(9..16) = 4 // For a 64-bit target: // calcMaskWords(0..8) = 1 // calcMaskWords(9..16) = 2 // calcMaskWords(17..32) = 4 template unsigned GnuHashTableSection::calcMaskWords(unsigned NumHashed) { if (!NumHashed) return 1; return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off)); } template void GnuHashTableSection::finalize() { unsigned NumHashed = Symbols.size(); NBuckets = calcNBuckets(NumHashed); MaskWords = calcMaskWords(NumHashed); // Second hash shift estimation: just predefined values. Shift2 = ELFT::Is64Bits ? 6 : 5; this->Header.sh_link = Out::DynSymTab->SectionIndex; this->Header.sh_size = sizeof(Elf_Word) * 4 // Header + sizeof(Elf_Off) * MaskWords // Bloom Filter + sizeof(Elf_Word) * NBuckets // Hash Buckets + sizeof(Elf_Word) * NumHashed; // Hash Values } template void GnuHashTableSection::writeTo(uint8_t *Buf) { writeHeader(Buf); if (Symbols.empty()) return; writeBloomFilter(Buf); writeHashTable(Buf); } template void GnuHashTableSection::writeHeader(uint8_t *&Buf) { auto *P = reinterpret_cast(Buf); *P++ = NBuckets; *P++ = Out::DynSymTab->getNumSymbols() - Symbols.size(); *P++ = MaskWords; *P++ = Shift2; Buf = reinterpret_cast(P); } template void GnuHashTableSection::writeBloomFilter(uint8_t *&Buf) { unsigned C = sizeof(Elf_Off) * 8; auto *Masks = reinterpret_cast(Buf); for (const SymbolData &Sym : Symbols) { size_t Pos = (Sym.Hash / C) & (MaskWords - 1); uintX_t V = (uintX_t(1) << (Sym.Hash % C)) | (uintX_t(1) << ((Sym.Hash >> Shift2) % C)); Masks[Pos] |= V; } Buf += sizeof(Elf_Off) * MaskWords; } template void GnuHashTableSection::writeHashTable(uint8_t *Buf) { Elf_Word *Buckets = reinterpret_cast(Buf); Elf_Word *Values = Buckets + NBuckets; int PrevBucket = -1; int I = 0; for (const SymbolData &Sym : Symbols) { int Bucket = Sym.Hash % NBuckets; assert(PrevBucket <= Bucket); if (Bucket != PrevBucket) { Buckets[Bucket] = Sym.Body->DynsymIndex; PrevBucket = Bucket; if (I > 0) Values[I - 1] |= 1; } Values[I] = Sym.Hash & ~1; ++I; } if (I > 0) Values[I - 1] |= 1; } static bool includeInGnuHashTable(SymbolBody *B) { // Assume that includeInDynsym() is already checked. return !B->isUndefined(); } // Add symbols to this symbol hash table. Note that this function // destructively sort a given vector -- which is needed because // GNU-style hash table places some sorting requirements. template void GnuHashTableSection::addSymbols( std::vector> &V) { auto Mid = std::stable_partition(V.begin(), V.end(), [](std::pair &P) { return !includeInGnuHashTable(P.first); }); if (Mid == V.end()) return; for (auto I = Mid, E = V.end(); I != E; ++I) { SymbolBody *B = I->first; size_t StrOff = I->second; Symbols.push_back({B, StrOff, hashGnu(B->getName())}); } unsigned NBuckets = calcNBuckets(Symbols.size()); std::stable_sort(Symbols.begin(), Symbols.end(), [&](const SymbolData &L, const SymbolData &R) { return L.Hash % NBuckets < R.Hash % NBuckets; }); V.erase(Mid, V.end()); for (const SymbolData &Sym : Symbols) V.push_back({Sym.Body, Sym.STName}); } template DynamicSection::DynamicSection(SymbolTable &SymTab) : OutputSectionBase(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE), SymTab(SymTab) { Elf_Shdr &Header = this->Header; Header.sh_addralign = sizeof(uintX_t); Header.sh_entsize = ELFT::Is64Bits ? 16 : 8; // .dynamic section is not writable on MIPS. // See "Special Section" in Chapter 4 in the following document: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Config->EMachine == EM_MIPS) Header.sh_flags = SHF_ALLOC; } template void DynamicSection::finalize() { if (this->Header.sh_size) return; // Already finalized. Elf_Shdr &Header = this->Header; Header.sh_link = Out::DynStrTab->SectionIndex; auto Add = [=](Entry E) { Entries.push_back(E); }; // Add strings. We know that these are the last strings to be added to // DynStrTab and doing this here allows this function to set DT_STRSZ. if (!Config->RPath.empty()) Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, Out::DynStrTab->addString(Config->RPath)}); for (const std::unique_ptr> &F : SymTab.getSharedFiles()) if (F->isNeeded()) Add({DT_NEEDED, Out::DynStrTab->addString(F->getSoName())}); if (!Config->SoName.empty()) Add({DT_SONAME, Out::DynStrTab->addString(Config->SoName)}); Out::DynStrTab->finalize(); if (Out::RelaDyn->hasRelocs()) { bool IsRela = Config->Rela; Add({IsRela ? DT_RELA : DT_REL, Out::RelaDyn}); Add({IsRela ? DT_RELASZ : DT_RELSZ, Out::RelaDyn->getSize()}); Add({IsRela ? DT_RELAENT : DT_RELENT, uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))}); } if (Out::RelaPlt && Out::RelaPlt->hasRelocs()) { Add({DT_JMPREL, Out::RelaPlt}); Add({DT_PLTRELSZ, Out::RelaPlt->getSize()}); Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT, Out::GotPlt}); Add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)}); } Add({DT_SYMTAB, Out::DynSymTab}); Add({DT_SYMENT, sizeof(Elf_Sym)}); Add({DT_STRTAB, Out::DynStrTab}); Add({DT_STRSZ, Out::DynStrTab->getSize()}); if (Out::GnuHashTab) Add({DT_GNU_HASH, Out::GnuHashTab}); if (Out::HashTab) Add({DT_HASH, Out::HashTab}); if (PreInitArraySec) { Add({DT_PREINIT_ARRAY, PreInitArraySec}); Add({DT_PREINIT_ARRAYSZ, PreInitArraySec->getSize()}); } if (InitArraySec) { Add({DT_INIT_ARRAY, InitArraySec}); Add({DT_INIT_ARRAYSZ, (uintX_t)InitArraySec->getSize()}); } if (FiniArraySec) { Add({DT_FINI_ARRAY, FiniArraySec}); Add({DT_FINI_ARRAYSZ, (uintX_t)FiniArraySec->getSize()}); } if (SymbolBody *B = SymTab.find(Config->Init)) Add({DT_INIT, B}); if (SymbolBody *B = SymTab.find(Config->Fini)) Add({DT_FINI, B}); uint32_t DtFlags = 0; uint32_t DtFlags1 = 0; if (Config->Bsymbolic) DtFlags |= DF_SYMBOLIC; if (Config->ZNodelete) DtFlags1 |= DF_1_NODELETE; if (Config->ZNow) { DtFlags |= DF_BIND_NOW; DtFlags1 |= DF_1_NOW; } if (Config->ZOrigin) { DtFlags |= DF_ORIGIN; DtFlags1 |= DF_1_ORIGIN; } if (DtFlags) Add({DT_FLAGS, DtFlags}); if (DtFlags1) Add({DT_FLAGS_1, DtFlags1}); if (!Config->Entry.empty()) Add({DT_DEBUG, (uint64_t)0}); if (size_t NeedNum = Out::VerNeed->getNeedNum()) { Add({DT_VERSYM, Out::VerSym}); Add({DT_VERNEED, Out::VerNeed}); Add({DT_VERNEEDNUM, NeedNum}); } if (Config->EMachine == EM_MIPS) { Add({DT_MIPS_RLD_VERSION, 1}); Add({DT_MIPS_FLAGS, RHF_NOTPOT}); Add({DT_MIPS_BASE_ADDRESS, (uintX_t)Target->getVAStart()}); Add({DT_MIPS_SYMTABNO, Out::DynSymTab->getNumSymbols()}); Add({DT_MIPS_LOCAL_GOTNO, Out::Got->getMipsLocalEntriesNum()}); if (const SymbolBody *B = Out::Got->getMipsFirstGlobalEntry()) Add({DT_MIPS_GOTSYM, B->DynsymIndex}); else Add({DT_MIPS_GOTSYM, Out::DynSymTab->getNumSymbols()}); Add({DT_PLTGOT, Out::Got}); if (Out::MipsRldMap) Add({DT_MIPS_RLD_MAP, Out::MipsRldMap}); } // +1 for DT_NULL Header.sh_size = (Entries.size() + 1) * Header.sh_entsize; } template void DynamicSection::writeTo(uint8_t *Buf) { auto *P = reinterpret_cast(Buf); for (const Entry &E : Entries) { P->d_tag = E.Tag; switch (E.Kind) { case Entry::SecAddr: P->d_un.d_ptr = E.OutSec->getVA(); break; case Entry::SymAddr: P->d_un.d_ptr = E.Sym->template getVA(); break; case Entry::PlainInt: P->d_un.d_val = E.Val; break; } ++P; } } template EhFrameHeader::EhFrameHeader() : OutputSectionBase(".eh_frame_hdr", llvm::ELF::SHT_PROGBITS, SHF_ALLOC) { // It's a 4 bytes of header + pointer to the contents of the .eh_frame section // + the number of FDE pointers in the table. this->Header.sh_size = 12; } // We have to get PC values of FDEs. They depend on relocations // which are target specific, so we run this code after performing // all relocations. We read the values from ouput buffer according to the // encoding given for FDEs. Return value is an offset to the initial PC value // for the FDE. template typename EhFrameHeader::uintX_t EhFrameHeader::getFdePc(uintX_t EhVA, const FdeData &F) { const endianness E = ELFT::TargetEndianness; uint8_t Size = F.Enc & 0x7; if (Size == DW_EH_PE_absptr) Size = sizeof(uintX_t) == 8 ? DW_EH_PE_udata8 : DW_EH_PE_udata4; uint64_t PC; switch (Size) { case DW_EH_PE_udata2: PC = read16(F.PCRel); break; case DW_EH_PE_udata4: PC = read32(F.PCRel); break; case DW_EH_PE_udata8: PC = read64(F.PCRel); break; default: fatal("unknown FDE size encoding"); } switch (F.Enc & 0x70) { case DW_EH_PE_absptr: return PC; case DW_EH_PE_pcrel: return PC + EhVA + F.Off + 8; default: fatal("unknown FDE size relative encoding"); } } template void EhFrameHeader::writeTo(uint8_t *Buf) { const endianness E = ELFT::TargetEndianness; uintX_t EhVA = Sec->getVA(); uintX_t VA = this->getVA(); // InitialPC -> Offset in .eh_frame, sorted by InitialPC, and deduplicate PCs. // FIXME: Deduplication leaves unneeded null bytes at the end of the section. std::map PcToOffset; for (const FdeData &F : FdeList) PcToOffset[getFdePc(EhVA, F)] = F.Off; const uint8_t Header[] = {1, DW_EH_PE_pcrel | DW_EH_PE_sdata4, DW_EH_PE_udata4, DW_EH_PE_datarel | DW_EH_PE_sdata4}; memcpy(Buf, Header, sizeof(Header)); uintX_t EhOff = EhVA - VA - 4; write32(Buf + 4, EhOff); write32(Buf + 8, PcToOffset.size()); Buf += 12; for (auto &I : PcToOffset) { // The first four bytes are an offset to the initial PC value for the FDE. write32(Buf, I.first - VA); // The last four bytes are an offset to the FDE data itself. write32(Buf + 4, EhVA + I.second - VA); Buf += 8; } } template void EhFrameHeader::assignEhFrame(EHOutputSection *Sec) { assert((!this->Sec || this->Sec == Sec) && "multiple .eh_frame sections not supported for .eh_frame_hdr"); Live = Config->EhFrameHdr; this->Sec = Sec; } template void EhFrameHeader::addFde(uint8_t Enc, size_t Off, uint8_t *PCRel) { if (Live && (Enc & 0xF0) == DW_EH_PE_datarel) fatal("DW_EH_PE_datarel encoding unsupported for FDEs by .eh_frame_hdr"); FdeList.push_back(FdeData{Enc, Off, PCRel}); } template void EhFrameHeader::reserveFde() { // Each FDE entry is 8 bytes long: // The first four bytes are an offset to the initial PC value for the FDE. The // last four byte are an offset to the FDE data itself. this->Header.sh_size += 8; } template OutputSection::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags) : OutputSectionBase(Name, Type, Flags) { if (Type == SHT_RELA) this->Header.sh_entsize = sizeof(Elf_Rela); else if (Type == SHT_REL) this->Header.sh_entsize = sizeof(Elf_Rel); } template void OutputSection::finalize() { uint32_t Type = this->Header.sh_type; if (Type != SHT_RELA && Type != SHT_REL) return; this->Header.sh_link = Out::SymTab->SectionIndex; // sh_info for SHT_REL[A] sections should contain the section header index of // the section to which the relocation applies. InputSectionBase *S = Sections[0]->getRelocatedSection(); this->Header.sh_info = S->OutSec->SectionIndex; } template void OutputSection::addSection(InputSectionBase *C) { assert(C->Live); auto *S = cast>(C); Sections.push_back(S); S->OutSec = this; this->updateAlign(S->Align); } // If an input string is in the form of "foo.N" where N is a number, // return N. Otherwise, returns 65536, which is one greater than the // lowest priority. static int getPriority(StringRef S) { size_t Pos = S.rfind('.'); if (Pos == StringRef::npos) return 65536; int V; if (S.substr(Pos + 1).getAsInteger(10, V)) return 65536; return V; } template void OutputSection::forEachInputSection( std::function *S)> F) { for (InputSection *S : Sections) F(S); } // Sorts input sections by section name suffixes, so that .foo.N comes // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. // We want to keep the original order if the priorities are the same // because the compiler keeps the original initialization order in a // translation unit and we need to respect that. // For more detail, read the section of the GCC's manual about init_priority. template void OutputSection::sortInitFini() { // Sort sections by priority. typedef std::pair *> Pair; auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; }; std::vector V; for (InputSection *S : Sections) V.push_back({getPriority(S->getSectionName()), S}); std::stable_sort(V.begin(), V.end(), Comp); Sections.clear(); for (Pair &P : V) Sections.push_back(P.second); } // Returns true if S matches /Filename.?\.o$/. static bool isCrtBeginEnd(StringRef S, StringRef Filename) { if (!S.endswith(".o")) return false; S = S.drop_back(2); if (S.endswith(Filename)) return true; return !S.empty() && S.drop_back().endswith(Filename); } static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); } static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); } // .ctors and .dtors are sorted by this priority from highest to lowest. // // 1. The section was contained in crtbegin (crtbegin contains // some sentinel value in its .ctors and .dtors so that the runtime // can find the beginning of the sections.) // // 2. The section has an optional priority value in the form of ".ctors.N" // or ".dtors.N" where N is a number. Unlike .{init,fini}_array, // they are compared as string rather than number. // // 3. The section is just ".ctors" or ".dtors". // // 4. The section was contained in crtend, which contains an end marker. // // In an ideal world, we don't need this function because .init_array and // .ctors are duplicate features (and .init_array is newer.) However, there // are too many real-world use cases of .ctors, so we had no choice to // support that with this rather ad-hoc semantics. template static bool compCtors(const InputSection *A, const InputSection *B) { bool BeginA = isCrtbegin(A->getFile()->getName()); bool BeginB = isCrtbegin(B->getFile()->getName()); if (BeginA != BeginB) return BeginA; bool EndA = isCrtend(A->getFile()->getName()); bool EndB = isCrtend(B->getFile()->getName()); if (EndA != EndB) return EndB; StringRef X = A->getSectionName(); StringRef Y = B->getSectionName(); assert(X.startswith(".ctors") || X.startswith(".dtors")); assert(Y.startswith(".ctors") || Y.startswith(".dtors")); X = X.substr(6); Y = Y.substr(6); if (X.empty() && Y.empty()) return false; return X < Y; } // Sorts input sections by the special rules for .ctors and .dtors. // Unfortunately, the rules are different from the one for .{init,fini}_array. // Read the comment above. template void OutputSection::sortCtorsDtors() { std::stable_sort(Sections.begin(), Sections.end(), compCtors); } static void fill(uint8_t *Buf, size_t Size, ArrayRef A) { size_t I = 0; for (; I + A.size() < Size; I += A.size()) memcpy(Buf + I, A.data(), A.size()); memcpy(Buf + I, A.data(), Size - I); } template void OutputSection::writeTo(uint8_t *Buf) { ArrayRef Filler = Script::X->getFiller(this->Name); if (!Filler.empty()) fill(Buf, this->getSize(), Filler); if (Config->Threads) { parallel_for_each(Sections.begin(), Sections.end(), [=](InputSection *C) { C->writeTo(Buf); }); } else { for (InputSection *C : Sections) C->writeTo(Buf); } } template EHOutputSection::EHOutputSection(StringRef Name, uint32_t Type, uintX_t Flags) : OutputSectionBase(Name, Type, Flags) { Out::EhFrameHdr->assignEhFrame(this); } template void EHOutputSection::forEachInputSection( std::function *)> F) { for (EHInputSection *S : Sections) F(S); } template EHRegion::EHRegion(EHInputSection *S, unsigned Index) : S(S), Index(Index) {} template StringRef EHRegion::data() const { ArrayRef SecData = S->getSectionData(); ArrayRef> Offsets = S->Offsets; size_t Start = Offsets[Index].first; size_t End = Index == Offsets.size() - 1 ? SecData.size() : Offsets[Index + 1].first; return StringRef((const char *)SecData.data() + Start, End - Start); } template Cie::Cie(EHInputSection *S, unsigned Index) : EHRegion(S, Index) {} // Read a byte and advance D by one byte. static uint8_t readByte(ArrayRef &D) { if (D.empty()) fatal("corrupted or unsupported CIE information"); uint8_t B = D.front(); D = D.slice(1); return B; } static void skipLeb128(ArrayRef &D) { while (!D.empty()) { uint8_t Val = D.front(); D = D.slice(1); if ((Val & 0x80) == 0) return; } fatal("corrupted or unsupported CIE information"); } template static size_t getAugPSize(unsigned Enc) { switch (Enc & 0x0f) { case DW_EH_PE_absptr: case DW_EH_PE_signed: return ELFT::Is64Bits ? 8 : 4; case DW_EH_PE_udata2: case DW_EH_PE_sdata2: return 2; case DW_EH_PE_udata4: case DW_EH_PE_sdata4: return 4; case DW_EH_PE_udata8: case DW_EH_PE_sdata8: return 8; } fatal("unknown FDE encoding"); } template static void skipAugP(ArrayRef &D) { uint8_t Enc = readByte(D); if ((Enc & 0xf0) == DW_EH_PE_aligned) fatal("DW_EH_PE_aligned encoding is not supported"); size_t Size = getAugPSize(Enc); if (Size >= D.size()) fatal("corrupted CIE"); D = D.slice(Size); } template uint8_t EHOutputSection::getFdeEncoding(ArrayRef D) { if (D.size() < 8) fatal("CIE too small"); D = D.slice(8); uint8_t Version = readByte(D); if (Version != 1 && Version != 3) fatal("FDE version 1 or 3 expected, but got " + Twine((unsigned)Version)); const unsigned char *AugEnd = std::find(D.begin() + 1, D.end(), '\0'); if (AugEnd == D.end()) fatal("corrupted CIE"); StringRef Aug(reinterpret_cast(D.begin()), AugEnd - D.begin()); D = D.slice(Aug.size() + 1); // Code alignment factor should always be 1 for .eh_frame. if (readByte(D) != 1) fatal("CIE code alignment must be 1"); // Skip data alignment factor. skipLeb128(D); // Skip the return address register. In CIE version 1 this is a single // byte. In CIE version 3 this is an unsigned LEB128. if (Version == 1) readByte(D); else skipLeb128(D); // We only care about an 'R' value, but other records may precede an 'R' // record. Records are not in TLV (type-length-value) format, so we need // to teach the linker how to skip records for each type. for (char C : Aug) { if (C == 'R') return readByte(D); if (C == 'z') { skipLeb128(D); continue; } if (C == 'P') { skipAugP(D); continue; } if (C == 'L') { readByte(D); continue; } fatal("unknown .eh_frame augmentation string: " + Aug); } return DW_EH_PE_absptr; } template static typename ELFT::uint readEntryLength(ArrayRef D) { const endianness E = ELFT::TargetEndianness; if (D.size() < 4) fatal("CIE/FDE too small"); // First 4 bytes of CIE/FDE is the size of the record. // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead. uint64_t V = read32(D.data()); if (V < UINT32_MAX) { uint64_t Len = V + 4; if (Len > D.size()) fatal("CIE/FIE ends past the end of the section"); return Len; } if (D.size() < 12) fatal("CIE/FDE too small"); V = read64(D.data() + 4); uint64_t Len = V + 12; if (Len < V || D.size() < Len) fatal("CIE/FIE ends past the end of the section"); return Len; } template template void EHOutputSection::addSectionAux(EHInputSection *S, ArrayRef Rels) { const endianness E = ELFT::TargetEndianness; S->OutSec = this; this->updateAlign(S->Align); Sections.push_back(S); ArrayRef SecData = S->getSectionData(); ArrayRef D = SecData; uintX_t Offset = 0; auto RelI = Rels.begin(); auto RelE = Rels.end(); DenseMap OffsetToIndex; while (!D.empty()) { unsigned Index = S->Offsets.size(); S->Offsets.push_back(std::make_pair(Offset, -1)); uintX_t Length = readEntryLength(D); // If CIE/FDE data length is zero then Length is 4, this // shall be considered a terminator and processing shall end. if (Length == 4) break; StringRef Entry((const char *)D.data(), Length); while (RelI != RelE && RelI->r_offset < Offset) ++RelI; uintX_t NextOffset = Offset + Length; bool HasReloc = RelI != RelE && RelI->r_offset < NextOffset; uint32_t ID = read32(D.data() + 4); if (ID == 0) { // CIE Cie C(S, Index); if (Config->EhFrameHdr) C.FdeEncoding = getFdeEncoding(D); SymbolBody *Personality = nullptr; if (HasReloc) Personality = &S->getFile()->getRelocTargetSym(*RelI); std::pair CieInfo(Entry, Personality); auto P = CieMap.insert(std::make_pair(CieInfo, Cies.size())); if (P.second) { Cies.push_back(C); this->Header.sh_size += alignTo(Length, sizeof(uintX_t)); } OffsetToIndex[Offset] = P.first->second; } else { if (!HasReloc) fatal("FDE doesn't reference another section"); SymbolBody &B = S->getFile()->getRelocTargetSym(*RelI); auto *D = dyn_cast>(&B); if (D && D->Section) { InputSectionBase *Target = D->Section->Repl; if (Target && Target->Live) { uint32_t CieOffset = Offset + 4 - ID; auto I = OffsetToIndex.find(CieOffset); if (I == OffsetToIndex.end()) fatal("invalid CIE reference"); Cies[I->second].Fdes.push_back(EHRegion(S, Index)); Out::EhFrameHdr->reserveFde(); this->Header.sh_size += alignTo(Length, sizeof(uintX_t)); } } } Offset = NextOffset; D = D.slice(Length); } } template void EHOutputSection::addSection(InputSectionBase *C) { auto *S = cast>(C); const Elf_Shdr *RelSec = S->RelocSection; if (!RelSec) { addSectionAux(S, makeArrayRef(nullptr, nullptr)); return; } ELFFile &Obj = S->getFile()->getObj(); if (RelSec->sh_type == SHT_RELA) addSectionAux(S, Obj.relas(RelSec)); else addSectionAux(S, Obj.rels(RelSec)); } template static void writeAlignedCieOrFde(StringRef Data, uint8_t *Buf) { typedef typename ELFT::uint uintX_t; const endianness E = ELFT::TargetEndianness; uint64_t Len = alignTo(Data.size(), sizeof(uintX_t)); write32(Buf, Len - 4); memcpy(Buf + 4, Data.data() + 4, Data.size() - 4); } template void EHOutputSection::finalize() { if (Finalized) return; Finalized = true; size_t Offset = 0; for (const Cie &C : Cies) { C.S->Offsets[C.Index].second = Offset; Offset += alignTo(C.data().size(), sizeof(uintX_t)); for (const EHRegion &F : C.Fdes) { F.S->Offsets[F.Index].second = Offset; Offset += alignTo(F.data().size(), sizeof(uintX_t)); } } } template void EHOutputSection::writeTo(uint8_t *Buf) { const endianness E = ELFT::TargetEndianness; for (const Cie &C : Cies) { size_t CieOffset = C.S->Offsets[C.Index].second; writeAlignedCieOrFde(C.data(), Buf + CieOffset); for (const EHRegion &F : C.Fdes) { size_t Offset = F.S->Offsets[F.Index].second; writeAlignedCieOrFde(F.data(), Buf + Offset); write32(Buf + Offset + 4, Offset + 4 - CieOffset); // Pointer Out::EhFrameHdr->addFde(C.FdeEncoding, Offset, Buf + Offset + 8); } } for (EHInputSection *S : Sections) S->relocate(Buf, nullptr); } template MergeOutputSection::MergeOutputSection(StringRef Name, uint32_t Type, uintX_t Flags, uintX_t Alignment) : OutputSectionBase(Name, Type, Flags), Builder(llvm::StringTableBuilder::RAW, Alignment) {} template void MergeOutputSection::writeTo(uint8_t *Buf) { if (shouldTailMerge()) { StringRef Data = Builder.data(); memcpy(Buf, Data.data(), Data.size()); return; } for (const std::pair &P : Builder.getMap()) { StringRef Data = P.first; memcpy(Buf + P.second, Data.data(), Data.size()); } } template void MergeOutputSection::addSection(InputSectionBase *C) { auto *S = cast>(C); S->OutSec = this; this->updateAlign(S->Align); ArrayRef D = S->getSectionData(); StringRef Data((const char *)D.data(), D.size()); uintX_t EntSize = S->getSectionHdr()->sh_entsize; this->Header.sh_entsize = EntSize; MutableArrayRef> Offsets = S->Offsets; // If this is of type string, the contents are null-terminated strings. if (this->Header.sh_flags & SHF_STRINGS) { for (unsigned I = 0, N = Offsets.size(); I != N; ++I) { auto &P = Offsets[I]; if (P.second == (uintX_t)-1) continue; uintX_t Start = P.first; uintX_t End = (I == N - 1) ? Data.size() : Offsets[I + 1].first; StringRef Entry = Data.substr(Start, End - Start); uintX_t OutputOffset = Builder.add(Entry); if (shouldTailMerge()) OutputOffset = -1; P.second = OutputOffset; } return; } // If this is not of type string, every entry has the same size. for (auto &P : Offsets) { if (P.second == (uintX_t)-1) continue; StringRef Entry = Data.substr(P.first, EntSize); P.second = Builder.add(Entry); } } template unsigned MergeOutputSection::getOffset(StringRef Val) { return Builder.getOffset(Val); } template bool MergeOutputSection::shouldTailMerge() const { return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS; } template void MergeOutputSection::finalize() { if (shouldTailMerge()) Builder.finalize(); this->Header.sh_size = Builder.getSize(); } template StringTableSection::StringTableSection(StringRef Name, bool Dynamic) : OutputSectionBase(Name, SHT_STRTAB, Dynamic ? (uintX_t)SHF_ALLOC : 0), Dynamic(Dynamic) { this->Header.sh_addralign = 1; } // Adds a string to the string table. If HashIt is true we hash and check for // duplicates. It is optional because the name of global symbols are already // uniqued and hashing them again has a big cost for a small value: uniquing // them with some other string that happens to be the same. template unsigned StringTableSection::addString(StringRef S, bool HashIt) { if (HashIt) { auto R = StringMap.insert(std::make_pair(S, Size)); if (!R.second) return R.first->second; } unsigned Ret = Size; Size += S.size() + 1; Strings.push_back(S); return Ret; } template void StringTableSection::writeTo(uint8_t *Buf) { // ELF string tables start with NUL byte, so advance the pointer by one. ++Buf; for (StringRef S : Strings) { memcpy(Buf, S.data(), S.size()); Buf += S.size() + 1; } } template SymbolTableSection::SymbolTableSection( SymbolTable &Table, StringTableSection &StrTabSec) : OutputSectionBase(StrTabSec.isDynamic() ? ".dynsym" : ".symtab", StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0), StrTabSec(StrTabSec), Table(Table) { this->Header.sh_entsize = sizeof(Elf_Sym); this->Header.sh_addralign = sizeof(uintX_t); } // Orders symbols according to their positions in the GOT, // in compliance with MIPS ABI rules. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf static bool sortMipsSymbols(const std::pair &L, const std::pair &R) { // Sort entries related to non-local preemptible symbols by GOT indexes. // All other entries go to the first part of GOT in arbitrary order. bool LIsInLocalGot = !L.first->isInGot() || !L.first->isPreemptible(); bool RIsInLocalGot = !R.first->isInGot() || !R.first->isPreemptible(); if (LIsInLocalGot || RIsInLocalGot) return !RIsInLocalGot; return L.first->GotIndex < R.first->GotIndex; } static uint8_t getSymbolBinding(SymbolBody *Body) { Symbol *S = Body->symbol(); uint8_t Visibility = S->Visibility; if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED) return STB_LOCAL; if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE) return STB_GLOBAL; return S->Binding; } template void SymbolTableSection::finalize() { if (this->Header.sh_size) return; // Already finalized. this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym); this->Header.sh_link = StrTabSec.SectionIndex; this->Header.sh_info = NumLocals + 1; if (Config->Relocatable) { size_t I = NumLocals; for (const std::pair &P : Symbols) P.first->DynsymIndex = ++I; return; } if (!StrTabSec.isDynamic()) { std::stable_sort(Symbols.begin(), Symbols.end(), [](const std::pair &L, const std::pair &R) { return getSymbolBinding(L.first) == STB_LOCAL && getSymbolBinding(R.first) != STB_LOCAL; }); return; } if (Out::GnuHashTab) // NB: It also sorts Symbols to meet the GNU hash table requirements. Out::GnuHashTab->addSymbols(Symbols); else if (Config->EMachine == EM_MIPS) std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols); size_t I = 0; for (const std::pair &P : Symbols) P.first->DynsymIndex = ++I; } template void SymbolTableSection::addSymbol(SymbolBody *B) { Symbols.push_back({B, StrTabSec.addString(B->getName(), false)}); } template void SymbolTableSection::writeTo(uint8_t *Buf) { Buf += sizeof(Elf_Sym); // All symbols with STB_LOCAL binding precede the weak and global symbols. // .dynsym only contains global symbols. if (!Config->DiscardAll && !StrTabSec.isDynamic()) writeLocalSymbols(Buf); writeGlobalSymbols(Buf); } template void SymbolTableSection::writeLocalSymbols(uint8_t *&Buf) { // Iterate over all input object files to copy their local symbols // to the output symbol table pointed by Buf. for (const std::unique_ptr> &File : Table.getObjectFiles()) { for (const std::pair *, size_t> &P : File->KeptLocalSyms) { const DefinedRegular &Body = *P.first; InputSectionBase *Section = Body.Section; auto *ESym = reinterpret_cast(Buf); if (!Section) { ESym->st_shndx = SHN_ABS; ESym->st_value = Body.Value; } else { const OutputSectionBase *OutSec = Section->OutSec; ESym->st_shndx = OutSec->SectionIndex; ESym->st_value = OutSec->getVA() + Section->getOffset(Body); } ESym->st_name = P.second; ESym->st_size = Body.template getSize(); ESym->setBindingAndType(STB_LOCAL, Body.Type); Buf += sizeof(*ESym); } } } template void SymbolTableSection::writeGlobalSymbols(uint8_t *Buf) { // Write the internal symbol table contents to the output symbol table // pointed by Buf. auto *ESym = reinterpret_cast(Buf); for (const std::pair &P : Symbols) { SymbolBody *Body = P.first; size_t StrOff = P.second; uint8_t Type = Body->Type; uintX_t Size = Body->getSize(); ESym->setBindingAndType(getSymbolBinding(Body), Type); ESym->st_size = Size; ESym->st_name = StrOff; ESym->setVisibility(Body->symbol()->Visibility); ESym->st_value = Body->getVA(); if (const OutputSectionBase *OutSec = getOutputSection(Body)) ESym->st_shndx = OutSec->SectionIndex; else if (isa>(Body)) ESym->st_shndx = SHN_ABS; // On MIPS we need to mark symbol which has a PLT entry and requires pointer // equality by STO_MIPS_PLT flag. That is necessary to help dynamic linker // distinguish such symbols and MIPS lazy-binding stubs. // https://sourceware.org/ml/binutils/2008-07/txt00000.txt if (Config->EMachine == EM_MIPS && Body->isInPlt() && Body->NeedsCopyOrPltAddr) ESym->st_other |= STO_MIPS_PLT; ++ESym; } } template const OutputSectionBase * SymbolTableSection::getOutputSection(SymbolBody *Sym) { switch (Sym->kind()) { case SymbolBody::DefinedSyntheticKind: return &cast>(Sym)->Section; case SymbolBody::DefinedRegularKind: { auto &D = cast>(*Sym); if (D.Section) return D.Section->OutSec; break; } case SymbolBody::DefinedCommonKind: return Out::Bss; case SymbolBody::SharedKind: if (cast>(Sym)->needsCopy()) return Out::Bss; break; case SymbolBody::UndefinedKind: case SymbolBody::LazyArchiveKind: case SymbolBody::LazyObjectKind: break; case SymbolBody::DefinedBitcodeKind: llvm_unreachable("should have been replaced"); } return nullptr; } template VersionTableSection::VersionTableSection() : OutputSectionBase(".gnu.version", SHT_GNU_versym, SHF_ALLOC) { this->Header.sh_addralign = sizeof(uint16_t); } template void VersionTableSection::finalize() { this->Header.sh_size = sizeof(Elf_Versym) * (Out::DynSymTab->getSymbols().size() + 1); this->Header.sh_entsize = sizeof(Elf_Versym); } template void VersionTableSection::writeTo(uint8_t *Buf) { auto *OutVersym = reinterpret_cast(Buf) + 1; for (const std::pair &P : Out::DynSymTab->getSymbols()) { if (auto *SS = dyn_cast>(P.first)) OutVersym->vs_index = SS->VersionId; else // The reserved identifier for a non-versioned global symbol. OutVersym->vs_index = 1; ++OutVersym; } } template VersionNeedSection::VersionNeedSection() : OutputSectionBase(".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC) { this->Header.sh_addralign = sizeof(uint32_t); } template void VersionNeedSection::addSymbol(SharedSymbol *SS) { if (!SS->Verdef) { // The reserved identifier for a non-versioned global symbol. SS->VersionId = 1; return; } SharedFile *F = SS->File; // If we don't already know that we need an Elf_Verneed for this DSO, prepare // to create one by adding it to our needed list and creating a dynstr entry // for the soname. if (F->VerdefMap.empty()) Needed.push_back({F, Out::DynStrTab->addString(F->getSoName())}); typename SharedFile::NeededVer &NV = F->VerdefMap[SS->Verdef]; // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef, // prepare to create one by allocating a version identifier and creating a // dynstr entry for the version name. if (NV.Index == 0) { NV.StrTab = Out::DynStrTab->addString( SS->File->getStringTable().data() + SS->Verdef->getAux()->vda_name); NV.Index = NextIndex++; } SS->VersionId = NV.Index; } template void VersionNeedSection::writeTo(uint8_t *Buf) { // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. auto *Verneed = reinterpret_cast(Buf); auto *Vernaux = reinterpret_cast(Verneed + Needed.size()); for (std::pair *, size_t> &P : Needed) { // Create an Elf_Verneed for this DSO. Verneed->vn_version = 1; Verneed->vn_cnt = P.first->VerdefMap.size(); Verneed->vn_file = P.second; Verneed->vn_aux = reinterpret_cast(Vernaux) - reinterpret_cast(Verneed); Verneed->vn_next = sizeof(Elf_Verneed); ++Verneed; // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over // VerdefMap, which will only contain references to needed version // definitions. Each Elf_Vernaux is based on the information contained in // the Elf_Verdef in the source DSO. This loop iterates over a std::map of // pointers, but is deterministic because the pointers refer to Elf_Verdef // data structures within a single input file. for (auto &NV : P.first->VerdefMap) { Vernaux->vna_hash = NV.first->vd_hash; Vernaux->vna_flags = 0; Vernaux->vna_other = NV.second.Index; Vernaux->vna_name = NV.second.StrTab; Vernaux->vna_next = sizeof(Elf_Vernaux); ++Vernaux; } Vernaux[-1].vna_next = 0; } Verneed[-1].vn_next = 0; } template void VersionNeedSection::finalize() { this->Header.sh_link = Out::DynStrTab->SectionIndex; this->Header.sh_info = Needed.size(); unsigned Size = Needed.size() * sizeof(Elf_Verneed); for (std::pair *, size_t> &P : Needed) Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux); this->Header.sh_size = Size; } template BuildIdSection::BuildIdSection(size_t HashSize) : OutputSectionBase(".note.gnu.build-id", SHT_NOTE, SHF_ALLOC), HashSize(HashSize) { // 16 bytes for the note section header. this->Header.sh_size = 16 + HashSize; } template void BuildIdSection::writeTo(uint8_t *Buf) { const endianness E = ELFT::TargetEndianness; write32(Buf, 4); // Name size write32(Buf + 4, HashSize); // Content size write32(Buf + 8, NT_GNU_BUILD_ID); // Type memcpy(Buf + 12, "GNU", 4); // Name string HashBuf = Buf + 16; } template void BuildIdFnv1::writeBuildId(ArrayRef> Bufs) { const endianness E = ELFT::TargetEndianness; // 64-bit FNV-1 hash uint64_t Hash = 0xcbf29ce484222325; for (ArrayRef Buf : Bufs) { for (uint8_t B : Buf) { Hash *= 0x100000001b3; Hash ^= B; } } write64(this->HashBuf, Hash); } template void BuildIdMd5::writeBuildId(ArrayRef> Bufs) { llvm::MD5 Hash; for (ArrayRef Buf : Bufs) Hash.update(Buf); MD5::MD5Result Res; Hash.final(Res); memcpy(this->HashBuf, Res, 16); } template void BuildIdSha1::writeBuildId(ArrayRef> Bufs) { llvm::SHA1 Hash; for (ArrayRef Buf : Bufs) Hash.update(Buf); memcpy(this->HashBuf, Hash.final().data(), 20); } template MipsReginfoOutputSection::MipsReginfoOutputSection() : OutputSectionBase(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) { this->Header.sh_addralign = 4; this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo); this->Header.sh_size = sizeof(Elf_Mips_RegInfo); } template void MipsReginfoOutputSection::writeTo(uint8_t *Buf) { auto *R = reinterpret_cast(Buf); R->ri_gp_value = Out::Got->getVA() + MipsGPOffset; R->ri_gprmask = GprMask; } template void MipsReginfoOutputSection::addSection(InputSectionBase *C) { // Copy input object file's .reginfo gprmask to output. auto *S = cast>(C); GprMask |= S->Reginfo->ri_gprmask; } namespace lld { namespace elf { template class OutputSectionBase; template class OutputSectionBase; template class OutputSectionBase; template class OutputSectionBase; template class EhFrameHeader; template class EhFrameHeader; template class EhFrameHeader; template class EhFrameHeader; template class GotPltSection; template class GotPltSection; template class GotPltSection; template class GotPltSection; template class GotSection; template class GotSection; template class GotSection; template class GotSection; template class PltSection; template class PltSection; template class PltSection; template class PltSection; template class RelocationSection; template class RelocationSection; template class RelocationSection; template class RelocationSection; template class InterpSection; template class InterpSection; template class InterpSection; template class InterpSection; template class GnuHashTableSection; template class GnuHashTableSection; template class GnuHashTableSection; template class GnuHashTableSection; template class HashTableSection; template class HashTableSection; template class HashTableSection; template class HashTableSection; template class DynamicSection; template class DynamicSection; template class DynamicSection; template class DynamicSection; template class OutputSection; template class OutputSection; template class OutputSection; template class OutputSection; template class EHOutputSection; template class EHOutputSection; template class EHOutputSection; template class EHOutputSection; template class MipsReginfoOutputSection; template class MipsReginfoOutputSection; template class MipsReginfoOutputSection; template class MipsReginfoOutputSection; template class MergeOutputSection; template class MergeOutputSection; template class MergeOutputSection; template class MergeOutputSection; template class StringTableSection; template class StringTableSection; template class StringTableSection; template class StringTableSection; template class SymbolTableSection; template class SymbolTableSection; template class SymbolTableSection; template class SymbolTableSection; template class VersionTableSection; template class VersionTableSection; template class VersionTableSection; template class VersionTableSection; template class VersionNeedSection; template class VersionNeedSection; template class VersionNeedSection; template class VersionNeedSection; template class BuildIdSection; template class BuildIdSection; template class BuildIdSection; template class BuildIdSection; template class BuildIdFnv1; template class BuildIdFnv1; template class BuildIdFnv1; template class BuildIdFnv1; template class BuildIdMd5; template class BuildIdMd5; template class BuildIdMd5; template class BuildIdMd5; template class BuildIdSha1; template class BuildIdSha1; template class BuildIdSha1; template class BuildIdSha1; } }