//===- InputSection.cpp ---------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "InputSection.h" #include "Config.h" #include "Error.h" #include "InputFiles.h" #include "OutputSections.h" #include "Target.h" #include "llvm/Support/Endian.h" using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; template InputSectionBase::InputSectionBase(elf::ObjectFile *File, const Elf_Shdr *Header, Kind SectionKind) : Header(Header), File(File), SectionKind(SectionKind), Repl(this) { // The garbage collector sets sections' Live bits. // If GC is disabled, all sections are considered live by default. Live = !Config->GcSections; // The ELF spec states that a value of 0 means the section has // no alignment constraits. Align = std::max(Header->sh_addralign, 1); } template size_t InputSectionBase::getSize() const { if (auto *D = dyn_cast>(this)) if (D->getThunksSize() > 0) return D->getThunkOff() + D->getThunksSize(); return Header->sh_size; } template StringRef InputSectionBase::getSectionName() const { return check(File->getObj().getSectionName(this->Header)); } template ArrayRef InputSectionBase::getSectionData() const { return check(this->File->getObj().getSectionContents(this->Header)); } template typename ELFT::uint InputSectionBase::getOffset(uintX_t Offset) { switch (SectionKind) { case Regular: return cast>(this)->OutSecOff + Offset; case EHFrame: return cast>(this)->getOffset(Offset); case Merge: return cast>(this)->getOffset(Offset); case MipsReginfo: // MIPS .reginfo sections are consumed by the linker, // so it should never be copied to output. llvm_unreachable("MIPS .reginfo reached writeTo()."); } llvm_unreachable("invalid section kind"); } template typename ELFT::uint InputSectionBase::getOffset(const DefinedRegular &Sym) { return getOffset(Sym.Value); } // Returns a section that Rel relocation is pointing to. template InputSectionBase * InputSectionBase::getRelocTarget(const Elf_Rel &Rel) const { // Global symbol uint32_t SymIndex = Rel.getSymbol(Config->Mips64EL); SymbolBody &B = File->getSymbolBody(SymIndex).repl(); if (auto *D = dyn_cast>(&B)) if (D->Section) return D->Section->Repl; return nullptr; } template InputSectionBase * InputSectionBase::getRelocTarget(const Elf_Rela &Rel) const { return getRelocTarget(reinterpret_cast(Rel)); } template InputSection::InputSection(elf::ObjectFile *F, const Elf_Shdr *Header) : InputSectionBase(F, Header, Base::Regular) {} template bool InputSection::classof(const InputSectionBase *S) { return S->SectionKind == Base::Regular; } template InputSectionBase *InputSection::getRelocatedSection() { assert(this->Header->sh_type == SHT_RELA || this->Header->sh_type == SHT_REL); ArrayRef *> Sections = this->File->getSections(); return Sections[this->Header->sh_info]; } template void InputSection::addThunk(SymbolBody &Body) { Body.ThunkIndex = Thunks.size(); Thunks.push_back(&Body); } template uint64_t InputSection::getThunkOff() const { return this->Header->sh_size; } template uint64_t InputSection::getThunksSize() const { return Thunks.size() * Target->ThunkSize; } // This is used for -r. We can't use memcpy to copy relocations because we need // to update symbol table offset and section index for each relocation. So we // copy relocations one by one. template template void InputSection::copyRelocations(uint8_t *Buf, ArrayRef Rels) { InputSectionBase *RelocatedSection = getRelocatedSection(); for (const RelTy &Rel : Rels) { uint32_t SymIndex = Rel.getSymbol(Config->Mips64EL); uint32_t Type = Rel.getType(Config->Mips64EL); SymbolBody &Body = this->File->getSymbolBody(SymIndex).repl(); RelTy *P = reinterpret_cast(Buf); Buf += sizeof(RelTy); P->r_offset = RelocatedSection->getOffset(Rel.r_offset); P->setSymbolAndType(Body.DynsymIndex, Type, Config->Mips64EL); } } template static uint32_t getMipsPairType(const RelTy *Rel, const SymbolBody &Sym) { switch (Rel->getType(Config->Mips64EL)) { case R_MIPS_HI16: return R_MIPS_LO16; case R_MIPS_GOT16: return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE; case R_MIPS_PCHI16: return R_MIPS_PCLO16; case R_MICROMIPS_HI16: return R_MICROMIPS_LO16; default: return R_MIPS_NONE; } } template static int16_t readSignedLo16(uint8_t *Loc) { return read32(Loc) & 0xffff; } template template int32_t InputSectionBase::findMipsPairedAddend(uint8_t *Buf, uint8_t *BufLoc, SymbolBody &Sym, const RelTy *Rel, const RelTy *End) { uint32_t SymIndex = Rel->getSymbol(Config->Mips64EL); uint32_t Type = getMipsPairType(Rel, Sym); // Some MIPS relocations use addend calculated from addend of the relocation // itself and addend of paired relocation. ABI requires to compute such // combined addend in case of REL relocation record format only. // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (RelTy::IsRela || Type == R_MIPS_NONE) return 0; for (const RelTy *RI = Rel; RI != End; ++RI) { if (RI->getType(Config->Mips64EL) != Type) continue; if (RI->getSymbol(Config->Mips64EL) != SymIndex) continue; uintX_t Offset = getOffset(RI->r_offset); if (Offset == (uintX_t)-1) break; const endianness E = ELFT::TargetEndianness; return ((read32(BufLoc) & 0xffff) << 16) + readSignedLo16(Buf + Offset); } unsigned OldType = Rel->getType(Config->Mips64EL); StringRef OldName = getELFRelocationTypeName(Config->EMachine, OldType); StringRef NewName = getELFRelocationTypeName(Config->EMachine, Type); warning("can't find matching " + NewName + " relocation for " + OldName); return 0; } template static uintX_t adjustMipsSymVA(uint32_t Type, const elf::ObjectFile &File, const SymbolBody &Body, uintX_t AddrLoc, uintX_t SymVA) { if (Type == R_MIPS_HI16 && &Body == Config->MipsGpDisp) return getMipsGpAddr() - AddrLoc; if (Type == R_MIPS_LO16 && &Body == Config->MipsGpDisp) return getMipsGpAddr() - AddrLoc + 4; if (&Body == Config->MipsLocalGp) return getMipsGpAddr(); if (Body.isLocal() && (Type == R_MIPS_GPREL16 || Type == R_MIPS_GPREL32)) // We need to adjust SymVA value in case of R_MIPS_GPREL16/32 // relocations because they use the following expression to calculate // the relocation's result for local symbol: S + A + GP0 - G. return SymVA + File.getMipsGp0(); return SymVA; } template static uintX_t getMipsGotVA(const SymbolBody &Body, uintX_t SymVA, uint8_t *BufLoc) { if (Body.isLocal()) // If relocation against MIPS local symbol requires GOT entry, this entry // should be initialized by 'page address'. This address is high 16-bits // of sum the symbol's value and the addend. return Out::Got->getMipsLocalPageAddr(SymVA); if (!Body.isPreemptible()) // For non-local symbols GOT entries should contain their full // addresses. But if such symbol cannot be preempted, we do not // have to put them into the "global" part of GOT and use dynamic // linker to determine their actual addresses. That is why we // create GOT entries for them in the "local" part of GOT. return Out::Got->getMipsLocalFullAddr(Body); return Body.getGotVA(); } template template void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd, ArrayRef Rels) { size_t Num = Rels.end() - Rels.begin(); for (size_t I = 0; I < Num; ++I) { const RelTy &RI = *(Rels.begin() + I); uintX_t Offset = getOffset(RI.r_offset); if (Offset == (uintX_t)-1) continue; uintX_t A = getAddend(RI); uint32_t SymIndex = RI.getSymbol(Config->Mips64EL); uint32_t Type = RI.getType(Config->Mips64EL); uint8_t *BufLoc = Buf + Offset; uintX_t AddrLoc = OutSec->getVA() + Offset; if (Target->pointsToLocalDynamicGotEntry(Type) && !Target->canRelaxTls(Type, nullptr)) { Target->relocateOne(BufLoc, BufEnd, Type, AddrLoc, Out::Got->getTlsIndexVA() + A); continue; } SymbolBody &Body = File->getSymbolBody(SymIndex).repl(); if (Target->canRelaxTls(Type, &Body)) { uintX_t SymVA; if (Target->needsGot(Type, Body)) SymVA = Body.getGotVA(); else SymVA = Body.getVA(); // By optimizing TLS relocations, it is sometimes needed to skip // relocations that immediately follow TLS relocations. This function // knows how many slots we need to skip. I += Target->relaxTls(BufLoc, BufEnd, Type, AddrLoc, SymVA, Body); continue; } // PPC64 has a special relocation representing the TOC base pointer // that does not have a corresponding symbol. if (Config->EMachine == EM_PPC64 && RI.getType(false) == R_PPC64_TOC) { uintX_t SymVA = getPPC64TocBase() + A; Target->relocateOne(BufLoc, BufEnd, Type, AddrLoc, SymVA); continue; } if (Target->isTlsGlobalDynamicRel(Type) && !Target->canRelaxTls(Type, &Body)) { Target->relocateOne(BufLoc, BufEnd, Type, AddrLoc, Out::Got->getGlobalDynAddr(Body) + A); continue; } if (!RelTy::IsRela) A += Target->getImplicitAddend(BufLoc, Type); if (Config->EMachine == EM_MIPS) A += findMipsPairedAddend(Buf, BufLoc, Body, &RI, Rels.end()); uintX_t SymVA = Body.getVA(A); if (Target->needsPlt(Type, Body)) { SymVA = Body.getPltVA() + A; } else if (Target->needsGot(Type, Body)) { if (Config->EMachine == EM_MIPS) SymVA = getMipsGotVA(Body, SymVA, BufLoc); else SymVA = Body.getGotVA() + A; if (Body.isTls()) Type = Target->getTlsGotRel(Type); } else if (Target->isSizeRel(Type) && Body.isPreemptible()) { // A SIZE relocation is supposed to set a symbol size, but if a symbol // can be preempted, the size at runtime may be different than link time. // If that's the case, we leave the field alone rather than filling it // with a possibly incorrect value. continue; } else if (Target->needsThunk(Type, *this->getFile(), Body)) { // Get address of a thunk code related to the symbol. SymVA = Body.getThunkVA(); } else if (!Target->needsCopyRel(Type, Body) && Body.isPreemptible()) { continue; } else if (Config->EMachine == EM_MIPS) { SymVA = adjustMipsSymVA(Type, *File, Body, AddrLoc, SymVA); } if (Target->isSizeRel(Type)) SymVA = Body.getSize() + A; Target->relocateOne(BufLoc, BufEnd, Type, AddrLoc, SymVA); } } template void InputSection::writeTo(uint8_t *Buf) { if (this->Header->sh_type == SHT_NOBITS) return; ELFFile &EObj = this->File->getObj(); // If -r is given, then an InputSection may be a relocation section. if (this->Header->sh_type == SHT_RELA) { copyRelocations(Buf + OutSecOff, EObj.relas(this->Header)); return; } if (this->Header->sh_type == SHT_REL) { copyRelocations(Buf + OutSecOff, EObj.rels(this->Header)); return; } // Copy section contents from source object file to output file. ArrayRef Data = this->getSectionData(); memcpy(Buf + OutSecOff, Data.data(), Data.size()); // Iterate over all relocation sections that apply to this section. uint8_t *BufEnd = Buf + OutSecOff + Data.size(); for (const Elf_Shdr *RelSec : this->RelocSections) { if (RelSec->sh_type == SHT_RELA) this->relocate(Buf, BufEnd, EObj.relas(RelSec)); else this->relocate(Buf, BufEnd, EObj.rels(RelSec)); } // The section might have a data/code generated by the linker and need // to be written after the section. Usually these are thunks - small piece // of code used to jump between "incompatible" functions like PIC and non-PIC // or if the jump target too far and its address does not fit to the short // jump istruction. if (!Thunks.empty()) { Buf += OutSecOff + getThunkOff(); for (const SymbolBody *S : Thunks) { Target->writeThunk(Buf, S->getVA()); Buf += Target->ThunkSize; } } } template void InputSection::replace(InputSection *Other) { this->Align = std::max(this->Align, Other->Align); Other->Repl = this->Repl; Other->Live = false; } template SplitInputSection::SplitInputSection( elf::ObjectFile *File, const Elf_Shdr *Header, typename InputSectionBase::Kind SectionKind) : InputSectionBase(File, Header, SectionKind) {} template EHInputSection::EHInputSection(elf::ObjectFile *F, const Elf_Shdr *Header) : SplitInputSection(F, Header, InputSectionBase::EHFrame) { // Mark .eh_frame sections as live by default because there are // usually no relocations that point to .eh_frames. Otherwise, // the garbage collector would drop all .eh_frame sections. this->Live = true; } template bool EHInputSection::classof(const InputSectionBase *S) { return S->SectionKind == InputSectionBase::EHFrame; } template typename ELFT::uint EHInputSection::getOffset(uintX_t Offset) { // The file crtbeginT.o has relocations pointing to the start of an empty // .eh_frame that is known to be the first in the link. It does that to // identify the start of the output .eh_frame. Handle this special case. if (this->getSectionHdr()->sh_size == 0) return Offset; std::pair *I = this->getRangeAndSize(Offset).first; uintX_t Base = I->second; if (Base == uintX_t(-1)) return -1; // Not in the output uintX_t Addend = Offset - I->first; return Base + Addend; } template MergeInputSection::MergeInputSection(elf::ObjectFile *F, const Elf_Shdr *Header) : SplitInputSection(F, Header, InputSectionBase::Merge) {} template bool MergeInputSection::classof(const InputSectionBase *S) { return S->SectionKind == InputSectionBase::Merge; } template std::pair *, typename ELFT::uint> SplitInputSection::getRangeAndSize(uintX_t Offset) { ArrayRef D = this->getSectionData(); StringRef Data((const char *)D.data(), D.size()); uintX_t Size = Data.size(); if (Offset >= Size) fatal("entry is past the end of the section"); // Find the element this offset points to. auto I = std::upper_bound( Offsets.begin(), Offsets.end(), Offset, [](const uintX_t &A, const std::pair &B) { return A < B.first; }); uintX_t End = I == Offsets.end() ? Data.size() : I->first; --I; return std::make_pair(&*I, End); } template typename ELFT::uint MergeInputSection::getOffset(uintX_t Offset) { std::pair *, uintX_t> T = this->getRangeAndSize(Offset); std::pair *I = T.first; uintX_t End = T.second; uintX_t Start = I->first; // Compute the Addend and if the Base is cached, return. uintX_t Addend = Offset - Start; uintX_t &Base = I->second; if (Base != uintX_t(-1)) return Base + Addend; // Map the base to the offset in the output section and cache it. ArrayRef D = this->getSectionData(); StringRef Data((const char *)D.data(), D.size()); StringRef Entry = Data.substr(Start, End - Start); Base = static_cast *>(this->OutSec)->getOffset(Entry); return Base + Addend; } template MipsReginfoInputSection::MipsReginfoInputSection(elf::ObjectFile *F, const Elf_Shdr *Hdr) : InputSectionBase(F, Hdr, InputSectionBase::MipsReginfo) { // Initialize this->Reginfo. ArrayRef D = this->getSectionData(); if (D.size() != sizeof(Elf_Mips_RegInfo)) fatal("invalid size of .reginfo section"); Reginfo = reinterpret_cast *>(D.data()); } template bool MipsReginfoInputSection::classof(const InputSectionBase *S) { return S->SectionKind == InputSectionBase::MipsReginfo; } template class elf::InputSectionBase; template class elf::InputSectionBase; template class elf::InputSectionBase; template class elf::InputSectionBase; template class elf::InputSection; template class elf::InputSection; template class elf::InputSection; template class elf::InputSection; template class elf::EHInputSection; template class elf::EHInputSection; template class elf::EHInputSection; template class elf::EHInputSection; template class elf::MergeInputSection; template class elf::MergeInputSection; template class elf::MergeInputSection; template class elf::MergeInputSection; template class elf::MipsReginfoInputSection; template class elf::MipsReginfoInputSection; template class elf::MipsReginfoInputSection; template class elf::MipsReginfoInputSection;