/* * Copyright (c) 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "math.h" #include "sincos_helpers.h" #define bitalign(hi, lo, shift) \ ((hi) << (32 - (shift))) | ((lo) >> (shift)); _CLC_DEF float __clc_sinf_piby4(float x, float y) { // Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ... // = x * (1 - x^2/3! + x^4/5! - x^6/7! ... // = x * f(w) // where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ... // We use a minimax approximation of (f(w) - 1) / w // because this produces an expansion in even powers of x. const float c1 = -0.1666666666e0f; const float c2 = 0.8333331876e-2f; const float c3 = -0.198400874e-3f; const float c4 = 0.272500015e-5f; const float c5 = -2.5050759689e-08f; // 0xb2d72f34 const float c6 = 1.5896910177e-10f; // 0x2f2ec9d3 float z = x * x; float v = z * x; float r = mad(z, mad(z, mad(z, mad(z, c6, c5), c4), c3), c2); float ret = x - mad(v, -c1, mad(z, mad(y, 0.5f, -v*r), -y)); return ret; } _CLC_DEF float __clc_cosf_piby4(float x, float y) { // Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ... // = f(w) // where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ... // We use a minimax approximation of (f(w) - 1 + w/2) / (w*w) // because this produces an expansion in even powers of x. const float c1 = 0.416666666e-1f; const float c2 = -0.138888876e-2f; const float c3 = 0.248006008e-4f; const float c4 = -0.2730101334e-6f; const float c5 = 2.0875723372e-09f; // 0x310f74f6 const float c6 = -1.1359647598e-11f; // 0xad47d74e float z = x * x; float r = z * mad(z, mad(z, mad(z, mad(z, mad(z, c6, c5), c4), c3), c2), c1); // if |x| < 0.3 float qx = 0.0f; int ix = as_int(x) & EXSIGNBIT_SP32; // 0.78125 > |x| >= 0.3 float xby4 = as_float(ix - 0x01000000); qx = (ix >= 0x3e99999a) & (ix <= 0x3f480000) ? xby4 : qx; // x > 0.78125 qx = ix > 0x3f480000 ? 0.28125f : qx; float hz = mad(z, 0.5f, -qx); float a = 1.0f - qx; float ret = a - (hz - mad(z, r, -x*y)); return ret; } _CLC_DEF void __clc_fullMulS(float *hi, float *lo, float a, float b, float bh, float bt) { if (HAVE_HW_FMA32()) { float ph = a * b; *hi = ph; *lo = fma(a, b, -ph); } else { float ah = as_float(as_uint(a) & 0xfffff000U); float at = a - ah; float ph = a * b; float pt = mad(at, bt, mad(at, bh, mad(ah, bt, mad(ah, bh, -ph)))); *hi = ph; *lo = pt; } } _CLC_DEF float __clc_removePi2S(float *hi, float *lo, float x) { // 72 bits of pi/2 const float fpiby2_1 = (float) 0xC90FDA / 0x1.0p+23f; const float fpiby2_1_h = (float) 0xC90 / 0x1.0p+11f; const float fpiby2_1_t = (float) 0xFDA / 0x1.0p+23f; const float fpiby2_2 = (float) 0xA22168 / 0x1.0p+47f; const float fpiby2_2_h = (float) 0xA22 / 0x1.0p+35f; const float fpiby2_2_t = (float) 0x168 / 0x1.0p+47f; const float fpiby2_3 = (float) 0xC234C4 / 0x1.0p+71f; const float fpiby2_3_h = (float) 0xC23 / 0x1.0p+59f; const float fpiby2_3_t = (float) 0x4C4 / 0x1.0p+71f; const float twobypi = 0x1.45f306p-1f; float fnpi2 = trunc(mad(x, twobypi, 0.5f)); // subtract n * pi/2 from x float rhead, rtail; __clc_fullMulS(&rhead, &rtail, fnpi2, fpiby2_1, fpiby2_1_h, fpiby2_1_t); float v = x - rhead; float rem = v + (((x - v) - rhead) - rtail); float rhead2, rtail2; __clc_fullMulS(&rhead2, &rtail2, fnpi2, fpiby2_2, fpiby2_2_h, fpiby2_2_t); v = rem - rhead2; rem = v + (((rem - v) - rhead2) - rtail2); float rhead3, rtail3; __clc_fullMulS(&rhead3, &rtail3, fnpi2, fpiby2_3, fpiby2_3_h, fpiby2_3_t); v = rem - rhead3; *hi = v + ((rem - v) - rhead3); *lo = -rtail3; return fnpi2; } _CLC_DEF int __clc_argReductionSmallS(float *r, float *rr, float x) { float fnpi2 = __clc_removePi2S(r, rr, x); return (int)fnpi2 & 0x3; } #define FULL_MUL(A, B, HI, LO) \ LO = A * B; \ HI = mul_hi(A, B) #define FULL_MAD(A, B, C, HI, LO) \ LO = ((A) * (B) + (C)); \ HI = mul_hi(A, B); \ HI += LO < C _CLC_DEF int __clc_argReductionLargeS(float *r, float *rr, float x) { int xe = (int)(as_uint(x) >> 23) - 127; uint xm = 0x00800000U | (as_uint(x) & 0x7fffffU); // 224 bits of 2/PI: . A2F9836E 4E441529 FC2757D1 F534DDC0 DB629599 3C439041 FE5163AB const uint b6 = 0xA2F9836EU; const uint b5 = 0x4E441529U; const uint b4 = 0xFC2757D1U; const uint b3 = 0xF534DDC0U; const uint b2 = 0xDB629599U; const uint b1 = 0x3C439041U; const uint b0 = 0xFE5163ABU; uint p0, p1, p2, p3, p4, p5, p6, p7, c0, c1; FULL_MUL(xm, b0, c0, p0); FULL_MAD(xm, b1, c0, c1, p1); FULL_MAD(xm, b2, c1, c0, p2); FULL_MAD(xm, b3, c0, c1, p3); FULL_MAD(xm, b4, c1, c0, p4); FULL_MAD(xm, b5, c0, c1, p5); FULL_MAD(xm, b6, c1, p7, p6); uint fbits = 224 + 23 - xe; // shift amount to get 2 lsb of integer part at top 2 bits // min: 25 (xe=18) max: 134 (xe=127) uint shift = 256U - 2 - fbits; // Shift by up to 134/32 = 4 words int c = shift > 31; p7 = c ? p6 : p7; p6 = c ? p5 : p6; p5 = c ? p4 : p5; p4 = c ? p3 : p4; p3 = c ? p2 : p3; p2 = c ? p1 : p2; p1 = c ? p0 : p1; shift -= (-c) & 32; c = shift > 31; p7 = c ? p6 : p7; p6 = c ? p5 : p6; p5 = c ? p4 : p5; p4 = c ? p3 : p4; p3 = c ? p2 : p3; p2 = c ? p1 : p2; shift -= (-c) & 32; c = shift > 31; p7 = c ? p6 : p7; p6 = c ? p5 : p6; p5 = c ? p4 : p5; p4 = c ? p3 : p4; p3 = c ? p2 : p3; shift -= (-c) & 32; c = shift > 31; p7 = c ? p6 : p7; p6 = c ? p5 : p6; p5 = c ? p4 : p5; p4 = c ? p3 : p4; shift -= (-c) & 32; // bitalign cannot handle a shift of 32 c = shift > 0; shift = 32 - shift; uint t7 = bitalign(p7, p6, shift); uint t6 = bitalign(p6, p5, shift); uint t5 = bitalign(p5, p4, shift); p7 = c ? t7 : p7; p6 = c ? t6 : p6; p5 = c ? t5 : p5; // Get 2 lsb of int part and msb of fraction int i = p7 >> 29; // Scoot up 2 more bits so only fraction remains p7 = bitalign(p7, p6, 30); p6 = bitalign(p6, p5, 30); p5 = bitalign(p5, p4, 30); // Subtract 1 if msb of fraction is 1, i.e. fraction >= 0.5 uint flip = i & 1 ? 0xffffffffU : 0U; uint sign = i & 1 ? 0x80000000U : 0U; p7 = p7 ^ flip; p6 = p6 ^ flip; p5 = p5 ^ flip; // Find exponent and shift away leading zeroes and hidden bit xe = clz(p7) + 1; shift = 32 - xe; p7 = bitalign(p7, p6, shift); p6 = bitalign(p6, p5, shift); // Most significant part of fraction float q1 = as_float(sign | ((127 - xe) << 23) | (p7 >> 9)); // Shift out bits we captured on q1 p7 = bitalign(p7, p6, 32-23); // Get 24 more bits of fraction in another float, there are not long strings of zeroes here int xxe = clz(p7) + 1; p7 = bitalign(p7, p6, 32-xxe); float q0 = as_float(sign | ((127 - (xe + 23 + xxe)) << 23) | (p7 >> 9)); // At this point, the fraction q1 + q0 is correct to at least 48 bits // Now we need to multiply the fraction by pi/2 // This loses us about 4 bits // pi/2 = C90 FDA A22 168 C23 4C4 const float pio2h = (float)0xc90fda / 0x1.0p+23f; const float pio2hh = (float)0xc90 / 0x1.0p+11f; const float pio2ht = (float)0xfda / 0x1.0p+23f; const float pio2t = (float)0xa22168 / 0x1.0p+47f; float rh, rt; if (HAVE_HW_FMA32()) { rh = q1 * pio2h; rt = fma(q0, pio2h, fma(q1, pio2t, fma(q1, pio2h, -rh))); } else { float q1h = as_float(as_uint(q1) & 0xfffff000); float q1t = q1 - q1h; rh = q1 * pio2h; rt = mad(q1t, pio2ht, mad(q1t, pio2hh, mad(q1h, pio2ht, mad(q1h, pio2hh, -rh)))); rt = mad(q0, pio2h, mad(q1, pio2t, rt)); } float t = rh + rt; rt = rt - (t - rh); *r = t; *rr = rt; return ((i >> 1) + (i & 1)) & 0x3; } _CLC_DEF int __clc_argReductionS(float *r, float *rr, float x) { if (x < 0x1.0p+23f) return __clc_argReductionSmallS(r, rr, x); else return __clc_argReductionLargeS(r, rr, x); }