/* * Copyright (c) 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #pragma OPENCL EXTENSION cl_khr_fp64 : enable _CLC_INLINE double2 __libclc__sincos_piby4(double x, double xx) { // Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ... // = x * (1 - x^2/3! + x^4/5! - x^6/7! ... // = x * f(w) // where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ... // We use a minimax approximation of (f(w) - 1) / w // because this produces an expansion in even powers of x. // If xx (the tail of x) is non-zero, we add a correction // term g(x,xx) = (1-x*x/2)*xx to the result, where g(x,xx) // is an approximation to cos(x)*sin(xx) valid because // xx is tiny relative to x. // Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ... // = f(w) // where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ... // We use a minimax approximation of (f(w) - 1 + w/2) / (w*w) // because this produces an expansion in even powers of x. // If xx (the tail of x) is non-zero, we subtract a correction // term g(x,xx) = x*xx to the result, where g(x,xx) // is an approximation to sin(x)*sin(xx) valid because // xx is tiny relative to x. const double sc1 = -0.166666666666666646259241729; const double sc2 = 0.833333333333095043065222816e-2; const double sc3 = -0.19841269836761125688538679e-3; const double sc4 = 0.275573161037288022676895908448e-5; const double sc5 = -0.25051132068021699772257377197e-7; const double sc6 = 0.159181443044859136852668200e-9; const double cc1 = 0.41666666666666665390037e-1; const double cc2 = -0.13888888888887398280412e-2; const double cc3 = 0.248015872987670414957399e-4; const double cc4 = -0.275573172723441909470836e-6; const double cc5 = 0.208761463822329611076335e-8; const double cc6 = -0.113826398067944859590880e-10; double x2 = x * x; double x3 = x2 * x; double r = 0.5 * x2; double t = 1.0 - r; double sp = fma(fma(fma(fma(sc6, x2, sc5), x2, sc4), x2, sc3), x2, sc2); double cp = t + fma(fma(fma(fma(fma(fma(cc6, x2, cc5), x2, cc4), x2, cc3), x2, cc2), x2, cc1), x2*x2, fma(x, xx, (1.0 - t) - r)); double2 ret; ret.lo = x - fma(-x3, sc1, fma(fma(-x3, sp, 0.5*xx), x2, -xx)); ret.hi = cp; return ret; }