//===-- xray_interface.cpp --------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of XRay, a dynamic runtime instrumentation system. // // Implementation of the API functions. // //===----------------------------------------------------------------------===// #include "xray_interface_internal.h" #include #include #include #include #include #include #include "sanitizer_common/sanitizer_common.h" namespace __xray { // This is the function to call when we encounter the entry or exit sleds. std::atomic XRayPatchedFunction{nullptr}; // MProtectHelper is an RAII wrapper for calls to mprotect(...) that will undo // any successful mprotect(...) changes. This is used to make a page writeable // and executable, and upon destruction if it was successful in doing so returns // the page into a read-only and executable page. // // This is only used specifically for runtime-patching of the XRay // instrumentation points. This assumes that the executable pages are originally // read-and-execute only. class MProtectHelper { void *PageAlignedAddr; std::size_t MProtectLen; bool MustCleanup; public: explicit MProtectHelper(void *PageAlignedAddr, std::size_t MProtectLen) : PageAlignedAddr(PageAlignedAddr), MProtectLen(MProtectLen), MustCleanup(false) {} int MakeWriteable() { auto R = mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_WRITE | PROT_EXEC); if (R != -1) MustCleanup = true; return R; } ~MProtectHelper() { if (MustCleanup) { mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC); } } }; } // namespace __xray extern "C" { // The following functions have to be defined in assembler, on a per-platform // basis. See xray_trampoline_*.s files for implementations. extern void __xray_FunctionEntry(); extern void __xray_FunctionExit(); } extern std::atomic XRayInitialized; extern std::atomic<__xray::XRaySledMap> XRayInstrMap; int __xray_set_handler(void (*entry)(int32_t, XRayEntryType)) { if (XRayInitialized.load(std::memory_order_acquire)) { __xray::XRayPatchedFunction.store(entry, std::memory_order_release); return 1; } return 0; } std::atomic XRayPatching{false}; using namespace __xray; // FIXME: Figure out whether we can move this class to sanitizer_common instead // as a generic "scope guard". template class CleanupInvoker { Function Fn; public: explicit CleanupInvoker(Function Fn) : Fn(Fn) {} CleanupInvoker(const CleanupInvoker &) = default; CleanupInvoker(CleanupInvoker &&) = default; CleanupInvoker &operator=(const CleanupInvoker &) = delete; CleanupInvoker &operator=(CleanupInvoker &&) = delete; ~CleanupInvoker() { Fn(); } }; template CleanupInvoker ScopeCleanup(Function Fn) { return CleanupInvoker{Fn}; } XRayPatchingStatus __xray_patch() { if (!XRayInitialized.load(std::memory_order_acquire)) return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized. static bool NotPatching = false; if (!XRayPatching.compare_exchange_strong(NotPatching, true, std::memory_order_acq_rel, std::memory_order_acquire)) { return XRayPatchingStatus::ONGOING; // Already patching. } bool PatchingSuccess = false; auto XRayPatchingStatusResetter = ScopeCleanup([&PatchingSuccess] { if (!PatchingSuccess) { XRayPatching.store(false, std::memory_order_release); } }); // Step 1: Compute the function id, as a unique identifier per function in the // instrumentation map. XRaySledMap InstrMap = XRayInstrMap.load(std::memory_order_acquire); if (InstrMap.Entries == 0) return XRayPatchingStatus::NOT_INITIALIZED; int32_t FuncId = 1; static constexpr uint8_t CallOpCode = 0xe8; static constexpr uint16_t MovR10Seq = 0xba41; static constexpr uint8_t JmpOpCode = 0xe9; uint64_t CurFun = 0; for (std::size_t I = 0; I < InstrMap.Entries; I++) { auto Sled = InstrMap.Sleds[I]; auto F = Sled.Function; if (CurFun == 0) CurFun = F; if (F != CurFun) { ++FuncId; CurFun = F; } // While we're here, we should patch the nop sled. To do that we mprotect // the page containing the function to be writeable. void *PageAlignedAddr = reinterpret_cast(Sled.Address & ~((2 << 16) - 1)); std::size_t MProtectLen = (Sled.Address + 12) - reinterpret_cast(PageAlignedAddr); MProtectHelper Protector(PageAlignedAddr, MProtectLen); if (Protector.MakeWriteable() == -1) { printf("Failed mprotect: %d\n", errno); return XRayPatchingStatus::FAILED; } static constexpr int64_t MinOffset{std::numeric_limits::min()}; static constexpr int64_t MaxOffset{std::numeric_limits::max()}; if (Sled.Kind == XRayEntryType::ENTRY) { // FIXME: Implement this in a more extensible manner, per-platform. // Here we do the dance of replacing the following sled: // // xray_sled_n: // jmp +9 // <9 byte nop> // // With the following: // // mov r10d, // call // // We need to do this in the following order: // // 1. Put the function id first, 2 bytes from the start of the sled (just // after the 2-byte jmp instruction). // 2. Put the call opcode 6 bytes from the start of the sled. // 3. Put the relative offset 7 bytes from the start of the sled. // 4. Do an atomic write over the jmp instruction for the "mov r10d" // opcode and first operand. // // Prerequisite is to compute the relative offset to the // __xray_FunctionEntry function's address. int64_t TrampolineOffset = reinterpret_cast(__xray_FunctionEntry) - (static_cast(Sled.Address) + 11); if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) { Report("XRay Entry trampoline (%p) too far from sled (%p); distance = " "%ld\n", __xray_FunctionEntry, reinterpret_cast(Sled.Address), TrampolineOffset); continue; } *reinterpret_cast(Sled.Address + 2) = FuncId; *reinterpret_cast(Sled.Address + 6) = CallOpCode; *reinterpret_cast(Sled.Address + 7) = TrampolineOffset; std::atomic_store_explicit( reinterpret_cast *>(Sled.Address), MovR10Seq, std::memory_order_release); } if (Sled.Kind == XRayEntryType::EXIT) { // FIXME: Implement this in a more extensible manner, per-platform. // Here we do the dance of replacing the following sled: // // xray_sled_n: // ret // <10 byte nop> // // With the following: // // mov r10d, // jmp // // 1. Put the function id first, 2 bytes from the start of the sled (just // after the 1-byte ret instruction). // 2. Put the jmp opcode 6 bytes from the start of the sled. // 3. Put the relative offset 7 bytes from the start of the sled. // 4. Do an atomic write over the jmp instruction for the "mov r10d" // opcode and first operand. // // Prerequisite is to compute the relative offset fo the // __xray_FunctionExit function's address. int64_t TrampolineOffset = reinterpret_cast(__xray_FunctionExit) - (static_cast(Sled.Address) + 11); if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) { Report("XRay Exit trampoline (%p) too far from sled (%p); distance = " "%ld\n", __xray_FunctionExit, reinterpret_cast(Sled.Address), TrampolineOffset); continue; } *reinterpret_cast(Sled.Address + 2) = FuncId; *reinterpret_cast(Sled.Address + 6) = JmpOpCode; *reinterpret_cast(Sled.Address + 7) = TrampolineOffset; std::atomic_store_explicit( reinterpret_cast *>(Sled.Address), MovR10Seq, std::memory_order_release); } } XRayPatching.store(false, std::memory_order_release); PatchingSuccess = true; return XRayPatchingStatus::SUCCESS; }