//===- FuzzerDataFlowTrace.cpp - DataFlowTrace ---*- C++ -* ===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // fuzzer::DataFlowTrace //===----------------------------------------------------------------------===// #include "FuzzerDataFlowTrace.h" #include "FuzzerCommand.h" #include "FuzzerIO.h" #include "FuzzerRandom.h" #include "FuzzerSHA1.h" #include "FuzzerUtil.h" #include #include #include #include #include #include #include #include #include namespace fuzzer { static const char *kFunctionsTxt = "functions.txt"; bool BlockCoverage::AppendCoverage(const std::string &S) { std::stringstream SS(S); return AppendCoverage(SS); } // Coverage lines have this form: // CN X Y Z T // where N is the number of the function, T is the total number of instrumented // BBs, and X,Y,Z, if present, are the indecies of covered BB. // BB #0, which is the entry block, is not explicitly listed. bool BlockCoverage::AppendCoverage(std::istream &IN) { std::string L; while (std::getline(IN, L, '\n')) { if (L.empty() || L[0] != 'C') continue; // Ignore non-coverage lines. std::stringstream SS(L.c_str() + 1); size_t FunctionId = 0; SS >> FunctionId; Vector CoveredBlocks; while (true) { uint32_t BB = 0; SS >> BB; if (!SS) break; CoveredBlocks.push_back(BB); } if (CoveredBlocks.empty()) return false; uint32_t NumBlocks = CoveredBlocks.back(); CoveredBlocks.pop_back(); for (auto BB : CoveredBlocks) if (BB >= NumBlocks) return false; auto It = Functions.find(FunctionId); auto &Counters = It == Functions.end() ? Functions.insert({FunctionId, Vector(NumBlocks)}) .first->second : It->second; if (Counters.size() != NumBlocks) return false; // wrong number of blocks. Counters[0]++; for (auto BB : CoveredBlocks) Counters[BB]++; } return true; } // Assign weights to each function. // General principles: // * any uncovered function gets weight 0. // * a function with lots of uncovered blocks gets bigger weight. // * a function with a less frequently executed code gets bigger weight. Vector BlockCoverage::FunctionWeights(size_t NumFunctions) const { Vector Res(NumFunctions); for (auto It : Functions) { auto FunctionID = It.first; auto Counters = It.second; assert(FunctionID < NumFunctions); auto &Weight = Res[FunctionID]; Weight = 1000.; // this function is covered. Weight /= SmallestNonZeroCounter(Counters); Weight *= NumberOfUncoveredBlocks(Counters) + 1; // make sure it's not 0. } return Res; } void DataFlowTrace::ReadCoverage(const std::string &DirPath) { Vector Files; GetSizedFilesFromDir(DirPath, &Files); for (auto &SF : Files) { auto Name = Basename(SF.File); if (Name == kFunctionsTxt) continue; if (!CorporaHashes.count(Name)) continue; std::ifstream IF(SF.File); Coverage.AppendCoverage(IF); } } static void DFTStringAppendToVector(Vector *DFT, const std::string &DFTString) { assert(DFT->size() == DFTString.size()); for (size_t I = 0, Len = DFT->size(); I < Len; I++) (*DFT)[I] = DFTString[I] == '1'; } // converts a string of '0' and '1' into a Vector static Vector DFTStringToVector(const std::string &DFTString) { Vector DFT(DFTString.size()); DFTStringAppendToVector(&DFT, DFTString); return DFT; } static std::ostream &operator<<(std::ostream &OS, const Vector &DFT) { for (auto B : DFT) OS << (B ? "1" : "0"); return OS; } static bool ParseError(const char *Err, const std::string &Line) { Printf("DataFlowTrace: parse error: %s: Line: %s\n", Err, Line.c_str()); return false; }; // TODO(metzman): replace std::string with std::string_view for // better performance. Need to figure our how to use string_view on Windows. static bool ParseDFTLine(const std::string &Line, size_t *FunctionNum, std::string *DFTString) { if (!Line.empty() && Line[0] != 'F') return false; // Ignore coverage. size_t SpacePos = Line.find(' '); if (SpacePos == std::string::npos) return ParseError("no space in the trace line", Line); if (Line.empty() || Line[0] != 'F') return ParseError("the trace line doesn't start with 'F'", Line); *FunctionNum = std::atol(Line.c_str() + 1); const char *Beg = Line.c_str() + SpacePos + 1; const char *End = Line.c_str() + Line.size(); assert(Beg < End); size_t Len = End - Beg; for (size_t I = 0; I < Len; I++) { if (Beg[I] != '0' && Beg[I] != '1') return ParseError("the trace should contain only 0 or 1", Line); } *DFTString = Beg; return true; } bool DataFlowTrace::Init(const std::string &DirPath, std::string *FocusFunction, Vector &CorporaFiles, Random &Rand) { if (DirPath.empty()) return false; Printf("INFO: DataFlowTrace: reading from '%s'\n", DirPath.c_str()); Vector Files; GetSizedFilesFromDir(DirPath, &Files); std::string L; size_t FocusFuncIdx = SIZE_MAX; Vector FunctionNames; // Collect the hashes of the corpus files. for (auto &SF : CorporaFiles) CorporaHashes.insert(Hash(FileToVector(SF.File))); // Read functions.txt std::ifstream IF(DirPlusFile(DirPath, kFunctionsTxt)); size_t NumFunctions = 0; while (std::getline(IF, L, '\n')) { FunctionNames.push_back(L); NumFunctions++; if (*FocusFunction == L) FocusFuncIdx = NumFunctions - 1; } if (!NumFunctions) return false; if (*FocusFunction == "auto") { // AUTOFOCUS works like this: // * reads the coverage data from the DFT files. // * assigns weights to functions based on coverage. // * chooses a random function according to the weights. ReadCoverage(DirPath); auto Weights = Coverage.FunctionWeights(NumFunctions); Vector Intervals(NumFunctions + 1); std::iota(Intervals.begin(), Intervals.end(), 0); auto Distribution = std::piecewise_constant_distribution( Intervals.begin(), Intervals.end(), Weights.begin()); FocusFuncIdx = static_cast(Distribution(Rand)); *FocusFunction = FunctionNames[FocusFuncIdx]; assert(FocusFuncIdx < NumFunctions); Printf("INFO: AUTOFOCUS: %zd %s\n", FocusFuncIdx, FunctionNames[FocusFuncIdx].c_str()); for (size_t i = 0; i < NumFunctions; i++) { if (!Weights[i]) continue; Printf(" [%zd] W %g\tBB-tot %u\tBB-cov %u\tEntryFreq %u:\t%s\n", i, Weights[i], Coverage.GetNumberOfBlocks(i), Coverage.GetNumberOfCoveredBlocks(i), Coverage.GetCounter(i, 0), FunctionNames[i].c_str()); } } if (!NumFunctions || FocusFuncIdx == SIZE_MAX || Files.size() <= 1) return false; // Read traces. size_t NumTraceFiles = 0; size_t NumTracesWithFocusFunction = 0; for (auto &SF : Files) { auto Name = Basename(SF.File); if (Name == kFunctionsTxt) continue; if (!CorporaHashes.count(Name)) continue; // not in the corpus. NumTraceFiles++; // Printf("=== %s\n", Name.c_str()); std::ifstream IF(SF.File); while (std::getline(IF, L, '\n')) { size_t FunctionNum = 0; std::string DFTString; if (ParseDFTLine(L, &FunctionNum, &DFTString) && FunctionNum == FocusFuncIdx) { NumTracesWithFocusFunction++; if (FunctionNum >= NumFunctions) return ParseError("N is greater than the number of functions", L); Traces[Name] = DFTStringToVector(DFTString); // Print just a few small traces. if (NumTracesWithFocusFunction <= 3 && DFTString.size() <= 16) Printf("%s => |%s|\n", Name.c_str(), std::string(DFTString).c_str()); break; // No need to parse the following lines. } } } Printf("INFO: DataFlowTrace: %zd trace files, %zd functions, " "%zd traces with focus function\n", NumTraceFiles, NumFunctions, NumTracesWithFocusFunction); return NumTraceFiles > 0; } int CollectDataFlow(const std::string &DFTBinary, const std::string &DirPath, const Vector &CorporaFiles) { Printf("INFO: collecting data flow: bin: %s dir: %s files: %zd\n", DFTBinary.c_str(), DirPath.c_str(), CorporaFiles.size()); MkDir(DirPath); auto Temp = TempPath(".dft"); for (auto &F : CorporaFiles) { // For every input F we need to collect the data flow and the coverage. // Data flow collection may fail if we request too many DFSan tags at once. // So, we start from requesting all tags in range [0,Size) and if that fails // we then request tags in [0,Size/2) and [Size/2, Size), and so on. // Function number => DFT. std::unordered_map> DFTMap; std::unordered_set Cov; std::queue> Q; Q.push({0, F.Size}); while (!Q.empty()) { auto R = Q.front(); Printf("\n\n\n********* Trying: [%zd, %zd)\n", R.first, R.second); Q.pop(); Command Cmd; Cmd.addArgument(DFTBinary); Cmd.addArgument(std::to_string(R.first)); Cmd.addArgument(std::to_string(R.second)); Cmd.addArgument(F.File); Cmd.addArgument(Temp); Printf("CMD: %s\n", Cmd.toString().c_str()); if (ExecuteCommand(Cmd)) { // DFSan has failed, collect tags for two subsets. if (R.second - R.first >= 2) { size_t Mid = (R.second + R.first) / 2; Q.push({R.first, Mid}); Q.push({Mid, R.second}); } } else { Printf("********* Success: [%zd, %zd)\n", R.first, R.second); std::ifstream IF(Temp); std::string L; while (std::getline(IF, L, '\n')) { // Data flow collection has succeeded. // Merge the results with the other runs. if (L.empty()) continue; if (L[0] == 'C') { // Take coverage lines as is, they will be the same in all attempts. Cov.insert(L); } else if (L[0] == 'F') { size_t FunctionNum = 0; std::string DFTString; if (ParseDFTLine(L, &FunctionNum, &DFTString)) { auto &DFT = DFTMap[FunctionNum]; if (DFT.empty()) { // Haven't seen this function before, take DFT as is. DFT = DFTStringToVector(DFTString); } else if (DFT.size() == DFTString.size()) { // Have seen this function already, merge DFTs. DFTStringAppendToVector(&DFT, DFTString); } } } } } } auto OutPath = DirPlusFile(DirPath, Hash(FileToVector(F.File))); // Dump combined DFT to disk. Printf("Producing DFT for %s\n", OutPath.c_str()); std::ofstream OF(OutPath); for (auto &DFT: DFTMap) OF << "F" << DFT.first << " " << DFT.second << std::endl; for (auto &C : Cov) OF << C << std::endl; } RemoveFile(Temp); // Write functions.txt if it's currently empty or doesn't exist. auto FunctionsTxtPath = DirPlusFile(DirPath, kFunctionsTxt); if (FileToString(FunctionsTxtPath).empty()) { Command Cmd; Cmd.addArgument(DFTBinary); Cmd.setOutputFile(FunctionsTxtPath); ExecuteCommand(Cmd); } return 0; } } // namespace fuzzer