//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for inline asm statements. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/AST/TypeLoc.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCTargetAsmParser.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" using namespace clang; using namespace sema; /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently /// ignore "noop" casts in places where an lvalue is required by an inline asm. /// We emulate this behavior when -fheinous-gnu-extensions is specified, but /// provide a strong guidance to not use it. /// /// This method checks to see if the argument is an acceptable l-value and /// returns false if it is a case we can handle. static bool CheckAsmLValue(const Expr *E, Sema &S) { // Type dependent expressions will be checked during instantiation. if (E->isTypeDependent()) return false; if (E->isLValue()) return false; // Cool, this is an lvalue. // Okay, this is not an lvalue, but perhaps it is the result of a cast that we // are supposed to allow. const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); if (E != E2 && E2->isLValue()) { if (!S.getLangOpts().HeinousExtensions) S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue) << E->getSourceRange(); else S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue) << E->getSourceRange(); // Accept, even if we emitted an error diagnostic. return false; } // None of the above, just randomly invalid non-lvalue. return true; } /// isOperandMentioned - Return true if the specified operand # is mentioned /// anywhere in the decomposed asm string. static bool isOperandMentioned(unsigned OpNo, ArrayRef AsmStrPieces) { for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; if (!Piece.isOperand()) continue; // If this is a reference to the input and if the input was the smaller // one, then we have to reject this asm. if (Piece.getOperandNo() == OpNo) return true; } return false; } StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, IdentifierInfo **Names, MultiExprArg constraints, MultiExprArg exprs, Expr *asmString, MultiExprArg clobbers, SourceLocation RParenLoc) { unsigned NumClobbers = clobbers.size(); StringLiteral **Constraints = reinterpret_cast(constraints.data()); Expr **Exprs = exprs.data(); StringLiteral *AsmString = cast(asmString); StringLiteral **Clobbers = reinterpret_cast(clobbers.data()); SmallVector OutputConstraintInfos; // The parser verifies that there is a string literal here. if (!AsmString->isAscii()) return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character) << AsmString->getSourceRange()); for (unsigned i = 0; i != NumOutputs; i++) { StringLiteral *Literal = Constraints[i]; if (!Literal->isAscii()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); StringRef OutputName; if (Names[i]) OutputName = Names[i]->getName(); TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); if (!Context.getTargetInfo().validateOutputConstraint(Info)) return StmtError(Diag(Literal->getLocStart(), diag::err_asm_invalid_output_constraint) << Info.getConstraintStr()); // Check that the output exprs are valid lvalues. Expr *OutputExpr = Exprs[i]; if (CheckAsmLValue(OutputExpr, *this)) { return StmtError(Diag(OutputExpr->getLocStart(), diag::err_asm_invalid_lvalue_in_output) << OutputExpr->getSourceRange()); } OutputConstraintInfos.push_back(Info); } SmallVector InputConstraintInfos; for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { StringLiteral *Literal = Constraints[i]; if (!Literal->isAscii()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); StringRef InputName; if (Names[i]) InputName = Names[i]->getName(); TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(), NumOutputs, Info)) { return StmtError(Diag(Literal->getLocStart(), diag::err_asm_invalid_input_constraint) << Info.getConstraintStr()); } Expr *InputExpr = Exprs[i]; // Only allow void types for memory constraints. if (Info.allowsMemory() && !Info.allowsRegister()) { if (CheckAsmLValue(InputExpr, *this)) return StmtError(Diag(InputExpr->getLocStart(), diag::err_asm_invalid_lvalue_in_input) << Info.getConstraintStr() << InputExpr->getSourceRange()); } if (Info.allowsRegister()) { if (InputExpr->getType()->isVoidType()) { return StmtError(Diag(InputExpr->getLocStart(), diag::err_asm_invalid_type_in_input) << InputExpr->getType() << Info.getConstraintStr() << InputExpr->getSourceRange()); } } ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); if (Result.isInvalid()) return StmtError(); Exprs[i] = Result.take(); InputConstraintInfos.push_back(Info); } // Check that the clobbers are valid. for (unsigned i = 0; i != NumClobbers; i++) { StringLiteral *Literal = Clobbers[i]; if (!Literal->isAscii()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); StringRef Clobber = Literal->getString(); if (!Context.getTargetInfo().isValidClobber(Clobber)) return StmtError(Diag(Literal->getLocStart(), diag::err_asm_unknown_register_name) << Clobber); } GCCAsmStmt *NS = new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs, AsmString, NumClobbers, Clobbers, RParenLoc); // Validate the asm string, ensuring it makes sense given the operands we // have. SmallVector Pieces; unsigned DiagOffs; if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) << AsmString->getSourceRange(); return StmtError(); } // Validate tied input operands for type mismatches. for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; // If this is a tied constraint, verify that the output and input have // either exactly the same type, or that they are int/ptr operands with the // same size (int/long, int*/long, are ok etc). if (!Info.hasTiedOperand()) continue; unsigned TiedTo = Info.getTiedOperand(); unsigned InputOpNo = i+NumOutputs; Expr *OutputExpr = Exprs[TiedTo]; Expr *InputExpr = Exprs[InputOpNo]; if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) continue; QualType InTy = InputExpr->getType(); QualType OutTy = OutputExpr->getType(); if (Context.hasSameType(InTy, OutTy)) continue; // All types can be tied to themselves. // Decide if the input and output are in the same domain (integer/ptr or // floating point. enum AsmDomain { AD_Int, AD_FP, AD_Other } InputDomain, OutputDomain; if (InTy->isIntegerType() || InTy->isPointerType()) InputDomain = AD_Int; else if (InTy->isRealFloatingType()) InputDomain = AD_FP; else InputDomain = AD_Other; if (OutTy->isIntegerType() || OutTy->isPointerType()) OutputDomain = AD_Int; else if (OutTy->isRealFloatingType()) OutputDomain = AD_FP; else OutputDomain = AD_Other; // They are ok if they are the same size and in the same domain. This // allows tying things like: // void* to int* // void* to int if they are the same size. // double to long double if they are the same size. // uint64_t OutSize = Context.getTypeSize(OutTy); uint64_t InSize = Context.getTypeSize(InTy); if (OutSize == InSize && InputDomain == OutputDomain && InputDomain != AD_Other) continue; // If the smaller input/output operand is not mentioned in the asm string, // then we can promote the smaller one to a larger input and the asm string // won't notice. bool SmallerValueMentioned = false; // If this is a reference to the input and if the input was the smaller // one, then we have to reject this asm. if (isOperandMentioned(InputOpNo, Pieces)) { // This is a use in the asm string of the smaller operand. Since we // codegen this by promoting to a wider value, the asm will get printed // "wrong". SmallerValueMentioned |= InSize < OutSize; } if (isOperandMentioned(TiedTo, Pieces)) { // If this is a reference to the output, and if the output is the larger // value, then it's ok because we'll promote the input to the larger type. SmallerValueMentioned |= OutSize < InSize; } // If the smaller value wasn't mentioned in the asm string, and if the // output was a register, just extend the shorter one to the size of the // larger one. if (!SmallerValueMentioned && InputDomain != AD_Other && OutputConstraintInfos[TiedTo].allowsRegister()) continue; // Either both of the operands were mentioned or the smaller one was // mentioned. One more special case that we'll allow: if the tied input is // integer, unmentioned, and is a constant, then we'll allow truncating it // down to the size of the destination. if (InputDomain == AD_Int && OutputDomain == AD_Int && !isOperandMentioned(InputOpNo, Pieces) && InputExpr->isEvaluatable(Context)) { CastKind castKind = (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take(); Exprs[InputOpNo] = InputExpr; NS->setInputExpr(i, InputExpr); continue; } Diag(InputExpr->getLocStart(), diag::err_asm_tying_incompatible_types) << InTy << OutTy << OutputExpr->getSourceRange() << InputExpr->getSourceRange(); return StmtError(); } return Owned(NS); } // getSpelling - Get the spelling of the AsmTok token. static StringRef getSpelling(Sema &SemaRef, Token AsmTok) { StringRef Asm; SmallString<512> TokenBuf; TokenBuf.resize(512); bool StringInvalid = false; Asm = SemaRef.PP.getSpelling(AsmTok, TokenBuf, &StringInvalid); assert (!StringInvalid && "Expected valid string!"); return Asm; } // Build the inline assembly string. Returns true on error. static bool buildMSAsmString(Sema &SemaRef, SourceLocation AsmLoc, ArrayRef AsmToks, std::string &AsmString) { assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!"); SmallString<512> Asm; for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) { bool isNewAsm = ((i == 0) || AsmToks[i].isAtStartOfLine() || AsmToks[i].is(tok::kw_asm)); if (isNewAsm) { if (i != 0) Asm += "\n\t"; if (AsmToks[i].is(tok::kw_asm)) { i++; // Skip __asm if (i == e) { SemaRef.Diag(AsmLoc, diag::err_asm_empty); return true; } } } if (i && AsmToks[i].hasLeadingSpace() && !isNewAsm) Asm += ' '; StringRef Spelling = getSpelling(SemaRef, AsmToks[i]); Asm += Spelling; } AsmString = Asm.str(); return false; } namespace { enum AsmOpRewriteKind { AOK_Imm, AOK_Input, AOK_Output }; struct AsmOpRewrite { AsmOpRewriteKind Kind; llvm::SMLoc Loc; unsigned Len; public: AsmOpRewrite(AsmOpRewriteKind kind, llvm::SMLoc loc, unsigned len) : Kind(kind), Loc(loc), Len(len) { } }; } StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, ArrayRef AsmToks,SourceLocation EndLoc) { SmallVector Inputs; SmallVector Outputs; SmallVector Names; SmallVector InputConstraints; SmallVector OutputConstraints; SmallVector Constraints; unsigned NumOutputs; unsigned NumInputs; SmallVector InputExprs; SmallVector OutputExprs; SmallVector Exprs; SmallVector Clobbers; std::set ClobberRegs; SmallVector AsmStrRewrites; // Empty asm statements don't need to instantiate the AsmParser, etc. if (AsmToks.empty()) { StringRef EmptyAsmStr; MSAsmStmt *NS = new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true, /*IsVolatile*/ true, AsmToks, /*NumOutputs*/ 0, /*NumInputs*/ 0, Names, Constraints, Exprs, EmptyAsmStr, Clobbers, EndLoc); return Owned(NS); } std::string AsmString; if (buildMSAsmString(*this, AsmLoc, AsmToks, AsmString)) return StmtError(); // Get the target specific parser. std::string Error; const std::string &TT = Context.getTargetInfo().getTriple().getTriple(); const llvm::Target *TheTarget(llvm::TargetRegistry::lookupTarget(TT, Error)); OwningPtr MAI(TheTarget->createMCAsmInfo(TT)); OwningPtr MRI(TheTarget->createMCRegInfo(TT)); OwningPtr MOFI(new llvm::MCObjectFileInfo()); OwningPtr STI(TheTarget->createMCSubtargetInfo(TT, "", "")); llvm::SourceMgr SrcMgr; llvm::MCContext Ctx(*MAI, *MRI, MOFI.get(), &SrcMgr); llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(AsmString, ""); // Tell SrcMgr about this buffer, which is what the parser will pick up. SrcMgr.AddNewSourceBuffer(Buffer, llvm::SMLoc()); OwningPtr Str(createNullStreamer(Ctx)); OwningPtr Parser(createMCAsmParser(SrcMgr, Ctx, *Str.get(), *MAI)); OwningPtr TargetParser(TheTarget->createMCAsmParser(*STI, *Parser)); Parser->setParsingInlineAsm(true); // Get the instruction descriptor. const llvm::MCInstrInfo *MII = TheTarget->createMCInstrInfo(); llvm::MCInstPrinter *IP = TheTarget->createMCInstPrinter(1, *MAI, *MII, *MRI, *STI); // Change to the Intel dialect. Parser->setAssemblerDialect(1); Parser->setTargetParser(*TargetParser.get()); Parser->setParsingInlineAsm(true); // Prime the lexer. Parser->Lex(); // While we have input, parse each statement. unsigned InputIdx = 0; unsigned OutputIdx = 0; while (Parser->getLexer().isNot(llvm::AsmToken::Eof)) { if (Parser->ParseStatement()) { // FIXME: The AsmParser should report errors, but we could potentially be // more verbose here. break; } if (Parser->isInstruction()) { const llvm::MCInstrDesc &Desc = MII->get(Parser->getOpcode()); // Build the list of clobbers, outputs and inputs. for (unsigned i = 1, e = Parser->getNumParsedOperands(); i != e; ++i) { llvm::MCParsedAsmOperand &Operand = Parser->getParsedOperand(i); // Immediate. if (Operand.isImm()) { AsmStrRewrites.push_back(AsmOpRewrite(AOK_Imm, Operand.getStartLoc(), Operand.getNameLen())); continue; } // Register operand. if (Operand.isReg()) { unsigned NumDefs = Desc.getNumDefs(); // Clobber. if (NumDefs && Operand.getMCOperandNum() < NumDefs) { std::string Reg; llvm::raw_string_ostream OS(Reg); IP->printRegName(OS, Operand.getReg()); StringRef Clobber(OS.str()); if (!Context.getTargetInfo().isValidClobber(Clobber)) return StmtError( Diag(AsmLoc, diag::err_asm_unknown_register_name) << Clobber); ClobberRegs.insert(Reg); } continue; } // Expr/Input or Output. StringRef Name = Operand.getName(); if (IdentifierInfo *II = &Context.Idents.get(Name)) { CXXScopeSpec SS; UnqualifiedId Id; SourceLocation Loc; Id.setIdentifier(II, AsmLoc); ExprResult Result = ActOnIdExpression(getCurScope(), SS, Loc, Id, false, false); if (!Result.isInvalid()) { bool isOutput = (i == 1) && Desc.mayStore(); if (isOutput) { std::string Constraint = "="; ++InputIdx; Outputs.push_back(II); OutputExprs.push_back(Result.take()); Constraint += Operand.getConstraint().str(); OutputConstraints.push_back(Constraint); AsmStrRewrites.push_back(AsmOpRewrite(AOK_Output, Operand.getStartLoc(), Operand.getNameLen())); } else { Inputs.push_back(II); InputExprs.push_back(Result.take()); InputConstraints.push_back(Operand.getConstraint().str()); AsmStrRewrites.push_back(AsmOpRewrite(AOK_Input, Operand.getStartLoc(), Operand.getNameLen())); } } } } Parser->freeParsedOperands(); } } // Set the number of Outputs and Inputs. NumOutputs = Outputs.size(); NumInputs = Inputs.size(); // Set the unique clobbers. for (std::set::iterator I = ClobberRegs.begin(), E = ClobberRegs.end(); I != E; ++I) Clobbers.push_back(*I); // Merge the various outputs and inputs. Output are expected first. Names.resize(NumOutputs + NumInputs); Constraints.resize(NumOutputs + NumInputs); Exprs.resize(NumOutputs + NumInputs); for (unsigned i = 0; i < NumOutputs; ++i) { Names[i] = Outputs[i]; Constraints[i] = OutputConstraints[i]; Exprs[i] = OutputExprs[i]; } for (unsigned i = 0, j = NumOutputs; i < NumInputs; ++i, ++j) { Names[j] = Inputs[i]; Constraints[j] = InputConstraints[i]; Exprs[j] = InputExprs[i]; } // Build the IR assembly string. std::string AsmStringIR; llvm::raw_string_ostream OS(AsmStringIR); const char *Start = AsmString.c_str(); for (SmallVectorImpl::iterator I = AsmStrRewrites.begin(), E = AsmStrRewrites.end(); I != E; ++I) { const char *Loc = (*I).Loc.getPointer(); // Emit everything up to the immediate/expression. OS << StringRef(Start, Loc - Start); // Rewrite expressions in $N notation. switch ((*I).Kind) { case AOK_Imm: OS << Twine("$$") + StringRef(Loc, (*I).Len); break; case AOK_Input: OS << '$'; OS << InputIdx++; break; case AOK_Output: OS << '$'; OS << OutputIdx++; break; } // Skip the original expression. Start = Loc + (*I).Len; } // Emit the remainder of the asm string. const char *AsmEnd = AsmString.c_str() + AsmString.size(); if (Start != AsmEnd) OS << StringRef(Start, AsmEnd - Start); AsmString = OS.str(); MSAsmStmt *NS = new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true, /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, Names, Constraints, Exprs, AsmString, Clobbers, EndLoc); return Owned(NS); }