//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// \brief This file implements semantic analysis for CUDA constructs. /// //===----------------------------------------------------------------------===// #include "clang/Sema/Sema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/ExprCXX.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/SemaDiagnostic.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" using namespace clang; ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, MultiExprArg ExecConfig, SourceLocation GGGLoc) { FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl(); if (!ConfigDecl) return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use) << "cudaConfigureCall"); QualType ConfigQTy = ConfigDecl->getType(); DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc); MarkFunctionReferenced(LLLLoc, ConfigDecl); return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr, /*IsExecConfig=*/true); } /// IdentifyCUDATarget - Determine the CUDA compilation target for this function Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) { if (D->hasAttr()) return CFT_InvalidTarget; if (D->hasAttr()) return CFT_Global; if (D->hasAttr()) { if (D->hasAttr()) return CFT_HostDevice; return CFT_Device; } else if (D->hasAttr()) { return CFT_Host; } else if (D->isImplicit()) { // Some implicit declarations (like intrinsic functions) are not marked. // Set the most lenient target on them for maximal flexibility. return CFT_HostDevice; } return CFT_Host; } // * CUDA Call preference table // // F - from, // T - to // Ph - preference in host mode // Pd - preference in device mode // H - handled in (x) // Preferences: N:native, HD:host-device, SS:same side, WS:wrong side, --:never. // // | F | T | Ph | Pd | H | // |----+----+-----+-----+-----+ // | d | d | N | N | (c) | // | d | g | -- | -- | (a) | // | d | h | -- | -- | (e) | // | d | hd | HD | HD | (b) | // | g | d | N | N | (c) | // | g | g | -- | -- | (a) | // | g | h | -- | -- | (e) | // | g | hd | HD | HD | (b) | // | h | d | -- | -- | (e) | // | h | g | N | N | (c) | // | h | h | N | N | (c) | // | h | hd | HD | HD | (b) | // | hd | d | WS | SS | (d) | // | hd | g | SS | -- |(d/a)| // | hd | h | SS | WS | (d) | // | hd | hd | HD | HD | (b) | Sema::CUDAFunctionPreference Sema::IdentifyCUDAPreference(const FunctionDecl *Caller, const FunctionDecl *Callee) { assert(getLangOpts().CUDATargetOverloads && "Should not be called w/o enabled target overloads."); assert(Callee && "Callee must be valid."); CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee); CUDAFunctionTarget CallerTarget = (Caller != nullptr) ? IdentifyCUDATarget(Caller) : Sema::CFT_Host; // If one of the targets is invalid, the check always fails, no matter what // the other target is. if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget) return CFP_Never; // (a) Can't call global from some contexts until we support CUDA's // dynamic parallelism. if (CalleeTarget == CFT_Global && (CallerTarget == CFT_Global || CallerTarget == CFT_Device || (CallerTarget == CFT_HostDevice && getLangOpts().CUDAIsDevice))) return CFP_Never; // (b) Calling HostDevice is OK for everyone. if (CalleeTarget == CFT_HostDevice) return CFP_HostDevice; // (c) Best case scenarios if (CalleeTarget == CallerTarget || (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) || (CallerTarget == CFT_Global && CalleeTarget == CFT_Device)) return CFP_Native; // (d) HostDevice behavior depends on compilation mode. if (CallerTarget == CFT_HostDevice) { // It's OK to call a compilation-mode matching function from an HD one. if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) || (!getLangOpts().CUDAIsDevice && (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))) return CFP_SameSide; // We'll allow calls to non-mode-matching functions if target call // checks are disabled. This is needed to avoid complaining about // HD->H calls when we compile for device side and vice versa. if (getLangOpts().CUDADisableTargetCallChecks) return CFP_WrongSide; return CFP_Never; } // (e) Calling across device/host boundary is not something you should do. if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) || (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) || (CallerTarget == CFT_Global && CalleeTarget == CFT_Host)) return CFP_Never; llvm_unreachable("All cases should've been handled by now."); } bool Sema::CheckCUDATarget(const FunctionDecl *Caller, const FunctionDecl *Callee) { // With target overloads enabled, we only disallow calling // combinations with CFP_Never. if (getLangOpts().CUDATargetOverloads) return IdentifyCUDAPreference(Caller,Callee) == CFP_Never; // The CUDADisableTargetCallChecks short-circuits this check: we assume all // cross-target calls are valid. if (getLangOpts().CUDADisableTargetCallChecks) return false; CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller), CalleeTarget = IdentifyCUDATarget(Callee); // If one of the targets is invalid, the check always fails, no matter what // the other target is. if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget) return true; // CUDA B.1.1 "The __device__ qualifier declares a function that is [...] // Callable from the device only." if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device) return true; // CUDA B.1.2 "The __global__ qualifier declares a function that is [...] // Callable from the host only." // CUDA B.1.3 "The __host__ qualifier declares a function that is [...] // Callable from the host only." if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) && (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)) return true; // CUDA B.1.3 "The __device__ and __host__ qualifiers can be used together // however, in which case the function is compiled for both the host and the // device. The __CUDA_ARCH__ macro [...] can be used to differentiate code // paths between host and device." if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice) { // If the caller is implicit then the check always passes. if (Caller->isImplicit()) return false; bool InDeviceMode = getLangOpts().CUDAIsDevice; if (!InDeviceMode && CalleeTarget != CFT_Host) return true; if (InDeviceMode && CalleeTarget != CFT_Device) { // Allow host device functions to call host functions if explicitly // requested. if (CalleeTarget == CFT_Host && getLangOpts().CUDAAllowHostCallsFromHostDevice) { Diag(Caller->getLocation(), diag::warn_host_calls_from_host_device) << Callee->getNameAsString() << Caller->getNameAsString(); return false; } return true; } } return false; } template static void EraseUnwantedCUDAMatchesImpl( Sema &S, const FunctionDecl *Caller, llvm::SmallVectorImpl &Matches, std::function FetchDecl) { assert(S.getLangOpts().CUDATargetOverloads && "Should not be called w/o enabled target overloads."); if (Matches.size() <= 1) return; // Gets the CUDA function preference for a call from Caller to Match. auto GetCFP = [&](const T &Match) { return S.IdentifyCUDAPreference(Caller, FetchDecl(Match)); }; // Find the best call preference among the functions in Matches. Sema::CUDAFunctionPreference BestCFP = GetCFP(*std::max_element( Matches.begin(), Matches.end(), [&](const T &M1, const T &M2) { return GetCFP(M1) < GetCFP(M2); })); // Erase all functions with lower priority. Matches.erase(llvm::remove_if( Matches, [&](const T &Match) { return GetCFP(Match) < BestCFP; })); } void Sema::EraseUnwantedCUDAMatches(const FunctionDecl *Caller, SmallVectorImpl &Matches){ EraseUnwantedCUDAMatchesImpl( *this, Caller, Matches, [](const FunctionDecl *item) { return item; }); } void Sema::EraseUnwantedCUDAMatches(const FunctionDecl *Caller, SmallVectorImpl &Matches) { EraseUnwantedCUDAMatchesImpl( *this, Caller, Matches, [](const DeclAccessPair &item) { return dyn_cast(item.getDecl()); }); } void Sema::EraseUnwantedCUDAMatches( const FunctionDecl *Caller, SmallVectorImpl> &Matches){ EraseUnwantedCUDAMatchesImpl>( *this, Caller, Matches, [](const std::pair &item) { return dyn_cast(item.second); }); } /// When an implicitly-declared special member has to invoke more than one /// base/field special member, conflicts may occur in the targets of these /// members. For example, if one base's member __host__ and another's is /// __device__, it's a conflict. /// This function figures out if the given targets \param Target1 and /// \param Target2 conflict, and if they do not it fills in /// \param ResolvedTarget with a target that resolves for both calls. /// \return true if there's a conflict, false otherwise. static bool resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1, Sema::CUDAFunctionTarget Target2, Sema::CUDAFunctionTarget *ResolvedTarget) { // Only free functions and static member functions may be global. assert(Target1 != Sema::CFT_Global); assert(Target2 != Sema::CFT_Global); if (Target1 == Sema::CFT_HostDevice) { *ResolvedTarget = Target2; } else if (Target2 == Sema::CFT_HostDevice) { *ResolvedTarget = Target1; } else if (Target1 != Target2) { return true; } else { *ResolvedTarget = Target1; } return false; } bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl, CXXSpecialMember CSM, CXXMethodDecl *MemberDecl, bool ConstRHS, bool Diagnose) { llvm::Optional InferredTarget; // We're going to invoke special member lookup; mark that these special // members are called from this one, and not from its caller. ContextRAII MethodContext(*this, MemberDecl); // Look for special members in base classes that should be invoked from here. // Infer the target of this member base on the ones it should call. // Skip direct and indirect virtual bases for abstract classes. llvm::SmallVector Bases; for (const auto &B : ClassDecl->bases()) { if (!B.isVirtual()) { Bases.push_back(&B); } } if (!ClassDecl->isAbstract()) { for (const auto &VB : ClassDecl->vbases()) { Bases.push_back(&VB); } } for (const auto *B : Bases) { const RecordType *BaseType = B->getType()->getAs(); if (!BaseType) { continue; } CXXRecordDecl *BaseClassDecl = cast(BaseType->getDecl()); Sema::SpecialMemberOverloadResult *SMOR = LookupSpecialMember(BaseClassDecl, CSM, /* ConstArg */ ConstRHS, /* VolatileArg */ false, /* RValueThis */ false, /* ConstThis */ false, /* VolatileThis */ false); if (!SMOR || !SMOR->getMethod()) { continue; } CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR->getMethod()); if (!InferredTarget.hasValue()) { InferredTarget = BaseMethodTarget; } else { bool ResolutionError = resolveCalleeCUDATargetConflict( InferredTarget.getValue(), BaseMethodTarget, InferredTarget.getPointer()); if (ResolutionError) { if (Diagnose) { Diag(ClassDecl->getLocation(), diag::note_implicit_member_target_infer_collision) << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget; } MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context)); return true; } } } // Same as for bases, but now for special members of fields. for (const auto *F : ClassDecl->fields()) { if (F->isInvalidDecl()) { continue; } const RecordType *FieldType = Context.getBaseElementType(F->getType())->getAs(); if (!FieldType) { continue; } CXXRecordDecl *FieldRecDecl = cast(FieldType->getDecl()); Sema::SpecialMemberOverloadResult *SMOR = LookupSpecialMember(FieldRecDecl, CSM, /* ConstArg */ ConstRHS && !F->isMutable(), /* VolatileArg */ false, /* RValueThis */ false, /* ConstThis */ false, /* VolatileThis */ false); if (!SMOR || !SMOR->getMethod()) { continue; } CUDAFunctionTarget FieldMethodTarget = IdentifyCUDATarget(SMOR->getMethod()); if (!InferredTarget.hasValue()) { InferredTarget = FieldMethodTarget; } else { bool ResolutionError = resolveCalleeCUDATargetConflict( InferredTarget.getValue(), FieldMethodTarget, InferredTarget.getPointer()); if (ResolutionError) { if (Diagnose) { Diag(ClassDecl->getLocation(), diag::note_implicit_member_target_infer_collision) << (unsigned)CSM << InferredTarget.getValue() << FieldMethodTarget; } MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context)); return true; } } } if (InferredTarget.hasValue()) { if (InferredTarget.getValue() == CFT_Device) { MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); } else if (InferredTarget.getValue() == CFT_Host) { MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); } else { MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); } } else { // If no target was inferred, mark this member as __host__ __device__; // it's the least restrictive option that can be invoked from any target. MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); } return false; } bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) { if (!CD->isDefined() && CD->isTemplateInstantiation()) InstantiateFunctionDefinition(Loc, CD->getFirstDecl()); // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered // empty at a point in the translation unit, if it is either a // trivial constructor if (CD->isTrivial()) return true; // ... or it satisfies all of the following conditions: // The constructor function has been defined. // The constructor function has no parameters, // and the function body is an empty compound statement. if (!(CD->hasTrivialBody() && CD->getNumParams() == 0)) return false; // Its class has no virtual functions and no virtual base classes. if (CD->getParent()->isDynamicClass()) return false; // The only form of initializer allowed is an empty constructor. // This will recursively checks all base classes and member initializers if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) { if (const CXXConstructExpr *CE = dyn_cast(CI->getInit())) return isEmptyCudaConstructor(Loc, CE->getConstructor()); return false; })) return false; return true; }