//===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the code that handles AST -> LLVM type lowering. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H #define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H #include "CGCall.h" #include "clang/Basic/ABI.h" #include "clang/CodeGen/CGFunctionInfo.h" #include "clang/Sema/Sema.h" #include "llvm/ADT/DenseMap.h" #include "llvm/IR/Module.h" namespace llvm { class FunctionType; class DataLayout; class Type; class LLVMContext; class StructType; } namespace clang { class ASTContext; template class CanQual; class CXXConstructorDecl; class CXXDestructorDecl; class CXXMethodDecl; class CodeGenOptions; class FieldDecl; class FunctionProtoType; class ObjCInterfaceDecl; class ObjCIvarDecl; class PointerType; class QualType; class RecordDecl; class TagDecl; class TargetInfo; class Type; typedef CanQual CanQualType; class GlobalDecl; namespace CodeGen { class ABIInfo; class CGCXXABI; class CGRecordLayout; class CodeGenModule; class RequiredArgs; enum class StructorType { Complete, // constructor or destructor Base, // constructor or destructor Deleting // destructor only }; inline CXXCtorType toCXXCtorType(StructorType T) { switch (T) { case StructorType::Complete: return Ctor_Complete; case StructorType::Base: return Ctor_Base; case StructorType::Deleting: llvm_unreachable("cannot have a deleting ctor"); } llvm_unreachable("not a StructorType"); } inline StructorType getFromCtorType(CXXCtorType T) { switch (T) { case Ctor_Complete: return StructorType::Complete; case Ctor_Base: return StructorType::Base; case Ctor_Comdat: llvm_unreachable("not expecting a COMDAT"); case Ctor_CopyingClosure: case Ctor_DefaultClosure: llvm_unreachable("not expecting a closure"); } llvm_unreachable("not a CXXCtorType"); } inline CXXDtorType toCXXDtorType(StructorType T) { switch (T) { case StructorType::Complete: return Dtor_Complete; case StructorType::Base: return Dtor_Base; case StructorType::Deleting: return Dtor_Deleting; } llvm_unreachable("not a StructorType"); } inline StructorType getFromDtorType(CXXDtorType T) { switch (T) { case Dtor_Deleting: return StructorType::Deleting; case Dtor_Complete: return StructorType::Complete; case Dtor_Base: return StructorType::Base; case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); } llvm_unreachable("not a CXXDtorType"); } /// This class organizes the cross-module state that is used while lowering /// AST types to LLVM types. class CodeGenTypes { CodeGenModule &CGM; // Some of this stuff should probably be left on the CGM. ASTContext &Context; llvm::Module &TheModule; const TargetInfo &Target; CGCXXABI &TheCXXABI; // This should not be moved earlier, since its initialization depends on some // of the previous reference members being already initialized const ABIInfo &TheABIInfo; /// The opaque type map for Objective-C interfaces. All direct /// manipulation is done by the runtime interfaces, which are /// responsible for coercing to the appropriate type; these opaque /// types are never refined. llvm::DenseMap InterfaceTypes; /// Maps clang struct type with corresponding record layout info. llvm::DenseMap CGRecordLayouts; /// Contains the LLVM IR type for any converted RecordDecl. llvm::DenseMap RecordDeclTypes; /// Hold memoized CGFunctionInfo results. llvm::FoldingSet FunctionInfos; /// This set keeps track of records that we're currently converting /// to an IR type. For example, when converting: /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B' /// types will be in this set. llvm::SmallPtrSet RecordsBeingLaidOut; llvm::SmallPtrSet FunctionsBeingProcessed; /// True if we didn't layout a function due to a being inside /// a recursive struct conversion, set this to true. bool SkippedLayout; SmallVector DeferredRecords; /// This map keeps cache of llvm::Types and maps clang::Type to /// corresponding llvm::Type. llvm::DenseMap TypeCache; llvm::SmallSet RecordsWithOpaqueMemberPointers; public: CodeGenTypes(CodeGenModule &cgm); ~CodeGenTypes(); const llvm::DataLayout &getDataLayout() const { return TheModule.getDataLayout(); } ASTContext &getContext() const { return Context; } const ABIInfo &getABIInfo() const { return TheABIInfo; } const TargetInfo &getTarget() const { return Target; } CGCXXABI &getCXXABI() const { return TheCXXABI; } llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); } const CodeGenOptions &getCodeGenOpts() const; /// Convert clang calling convention to LLVM callilng convention. unsigned ClangCallConvToLLVMCallConv(CallingConv CC); /// ConvertType - Convert type T into a llvm::Type. llvm::Type *ConvertType(QualType T); /// Converts the GlobalDecl into an llvm::Type. This should be used /// when we know the target of the function we want to convert. This is /// because some functions (explicitly, those with pass_object_size /// parameters) may not have the same signature as their type portrays, and /// can only be called directly. llvm::Type *ConvertFunctionType(QualType FT, const FunctionDecl *FD = nullptr); /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from /// ConvertType in that it is used to convert to the memory representation for /// a type. For example, the scalar representation for _Bool is i1, but the /// memory representation is usually i8 or i32, depending on the target. llvm::Type *ConvertTypeForMem(QualType T); /// GetFunctionType - Get the LLVM function type for \arg Info. llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info); llvm::FunctionType *GetFunctionType(GlobalDecl GD); /// isFuncTypeConvertible - Utility to check whether a function type can /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag /// type). bool isFuncTypeConvertible(const FunctionType *FT); bool isFuncParamTypeConvertible(QualType Ty); /// Determine if a C++ inheriting constructor should have parameters matching /// those of its inherited constructor. bool inheritingCtorHasParams(const InheritedConstructor &Inherited, CXXCtorType Type); /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable, /// given a CXXMethodDecl. If the method to has an incomplete return type, /// and/or incomplete argument types, this will return the opaque type. llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD); const CGRecordLayout &getCGRecordLayout(const RecordDecl*); /// UpdateCompletedType - When we find the full definition for a TagDecl, /// replace the 'opaque' type we previously made for it if applicable. void UpdateCompletedType(const TagDecl *TD); /// Remove stale types from the type cache when an inheritance model /// gets assigned to a class. void RefreshTypeCacheForClass(const CXXRecordDecl *RD); // The arrangement methods are split into three families: // - those meant to drive the signature and prologue/epilogue // of a function declaration or definition, // - those meant for the computation of the LLVM type for an abstract // appearance of a function, and // - those meant for performing the IR-generation of a call. // They differ mainly in how they deal with optional (i.e. variadic) // arguments, as well as unprototyped functions. // // Key points: // - The CGFunctionInfo for emitting a specific call site must include // entries for the optional arguments. // - The function type used at the call site must reflect the formal // signature of the declaration being called, or else the call will // go awry. // - For the most part, unprototyped functions are called by casting to // a formal signature inferred from the specific argument types used // at the call-site. However, some targets (e.g. x86-64) screw with // this for compatibility reasons. const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD); /// Given a function info for a declaration, return the function info /// for a call with the given arguments. /// /// Often this will be able to simply return the declaration info. const CGFunctionInfo &arrangeCall(const CGFunctionInfo &declFI, const CallArgList &args); /// Free functions are functions that are compatible with an ordinary /// C function pointer type. const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD); const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args, const FunctionType *Ty, bool ChainCall); const CGFunctionInfo &arrangeFreeFunctionType(CanQual Ty, const FunctionDecl *FD); const CGFunctionInfo &arrangeFreeFunctionType(CanQual Ty); /// A nullary function is a freestanding function of type 'void ()'. /// This method works for both calls and declarations. const CGFunctionInfo &arrangeNullaryFunction(); /// A builtin function is a freestanding function using the default /// C conventions. const CGFunctionInfo & arrangeBuiltinFunctionDeclaration(QualType resultType, const FunctionArgList &args); const CGFunctionInfo & arrangeBuiltinFunctionDeclaration(CanQualType resultType, ArrayRef argTypes); const CGFunctionInfo &arrangeBuiltinFunctionCall(QualType resultType, const CallArgList &args); /// Objective-C methods are C functions with some implicit parameters. const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD); const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, QualType receiverType); const CGFunctionInfo &arrangeUnprototypedObjCMessageSend( QualType returnType, const CallArgList &args); /// Block invocation functions are C functions with an implicit parameter. const CGFunctionInfo &arrangeBlockFunctionDeclaration( const FunctionProtoType *type, const FunctionArgList &args); const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args, const FunctionType *type); /// C++ methods have some special rules and also have implicit parameters. const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD); const CGFunctionInfo &arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, StructorType Type); const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args, const CXXConstructorDecl *D, CXXCtorType CtorKind, unsigned ExtraPrefixArgs, unsigned ExtraSuffixArgs, bool PassProtoArgs = true); const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args, const FunctionProtoType *type, RequiredArgs required, unsigned numPrefixArgs); const CGFunctionInfo & arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD); const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD, CXXCtorType CT); const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD, const FunctionProtoType *FTP, const CXXMethodDecl *MD); /// "Arrange" the LLVM information for a call or type with the given /// signature. This is largely an internal method; other clients /// should use one of the above routines, which ultimately defer to /// this. /// /// \param argTypes - must all actually be canonical as params const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType, bool instanceMethod, bool chainCall, ArrayRef argTypes, FunctionType::ExtInfo info, ArrayRef paramInfos, RequiredArgs args); /// Compute a new LLVM record layout object for the given record. CGRecordLayout *ComputeRecordLayout(const RecordDecl *D, llvm::StructType *Ty); /// addRecordTypeName - Compute a name from the given record decl with an /// optional suffix and name the given LLVM type using it. void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty, StringRef suffix); public: // These are internal details of CGT that shouldn't be used externally. /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD); /// getExpandedTypes - Expand the type \arg Ty into the LLVM /// argument types it would be passed as. See ABIArgInfo::Expand. void getExpandedTypes(QualType Ty, SmallVectorImpl::iterator &TI); /// IsZeroInitializable - Return whether a type can be /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer. bool isZeroInitializable(QualType T); /// Check if the pointer type can be zero-initialized (in the C++ sense) /// with an LLVM zeroinitializer. bool isPointerZeroInitializable(QualType T); /// IsZeroInitializable - Return whether a record type can be /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer. bool isZeroInitializable(const RecordDecl *RD); bool isRecordLayoutComplete(const Type *Ty) const; bool noRecordsBeingLaidOut() const { return RecordsBeingLaidOut.empty(); } bool isRecordBeingLaidOut(const Type *Ty) const { return RecordsBeingLaidOut.count(Ty); } }; } // end namespace CodeGen } // end namespace clang #endif