//===-- CGCleanup.h - Classes for cleanups IR generation --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These classes support the generation of LLVM IR for cleanups. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_LIB_CODEGEN_CGCLEANUP_H #define LLVM_CLANG_LIB_CODEGEN_CGCLEANUP_H #include "EHScopeStack.h" #include "Address.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" namespace llvm { class BasicBlock; class Value; class ConstantInt; class AllocaInst; } namespace clang { class FunctionDecl; namespace CodeGen { class CodeGenModule; class CodeGenFunction; /// The MS C++ ABI needs a pointer to RTTI data plus some flags to describe the /// type of a catch handler, so we use this wrapper. struct CatchTypeInfo { llvm::Constant *RTTI; unsigned Flags; }; /// A protected scope for zero-cost EH handling. class EHScope { llvm::BasicBlock *CachedLandingPad; llvm::BasicBlock *CachedEHDispatchBlock; EHScopeStack::stable_iterator EnclosingEHScope; class CommonBitFields { friend class EHScope; unsigned Kind : 3; }; enum { NumCommonBits = 3 }; protected: class CatchBitFields { friend class EHCatchScope; unsigned : NumCommonBits; unsigned NumHandlers : 32 - NumCommonBits; }; class CleanupBitFields { friend class EHCleanupScope; unsigned : NumCommonBits; /// Whether this cleanup needs to be run along normal edges. unsigned IsNormalCleanup : 1; /// Whether this cleanup needs to be run along exception edges. unsigned IsEHCleanup : 1; /// Whether this cleanup is currently active. unsigned IsActive : 1; /// Whether this cleanup is a lifetime marker unsigned IsLifetimeMarker : 1; /// Whether the normal cleanup should test the activation flag. unsigned TestFlagInNormalCleanup : 1; /// Whether the EH cleanup should test the activation flag. unsigned TestFlagInEHCleanup : 1; /// The amount of extra storage needed by the Cleanup. /// Always a multiple of the scope-stack alignment. unsigned CleanupSize : 12; }; class FilterBitFields { friend class EHFilterScope; unsigned : NumCommonBits; unsigned NumFilters : 32 - NumCommonBits; }; union { CommonBitFields CommonBits; CatchBitFields CatchBits; CleanupBitFields CleanupBits; FilterBitFields FilterBits; }; public: enum Kind { Cleanup, Catch, Terminate, Filter, PadEnd }; EHScope(Kind kind, EHScopeStack::stable_iterator enclosingEHScope) : CachedLandingPad(nullptr), CachedEHDispatchBlock(nullptr), EnclosingEHScope(enclosingEHScope) { CommonBits.Kind = kind; } Kind getKind() const { return static_cast(CommonBits.Kind); } llvm::BasicBlock *getCachedLandingPad() const { return CachedLandingPad; } void setCachedLandingPad(llvm::BasicBlock *block) { CachedLandingPad = block; } llvm::BasicBlock *getCachedEHDispatchBlock() const { return CachedEHDispatchBlock; } void setCachedEHDispatchBlock(llvm::BasicBlock *block) { CachedEHDispatchBlock = block; } bool hasEHBranches() const { if (llvm::BasicBlock *block = getCachedEHDispatchBlock()) return !block->use_empty(); return false; } EHScopeStack::stable_iterator getEnclosingEHScope() const { return EnclosingEHScope; } }; /// A scope which attempts to handle some, possibly all, types of /// exceptions. /// /// Objective C \@finally blocks are represented using a cleanup scope /// after the catch scope. class EHCatchScope : public EHScope { // In effect, we have a flexible array member // Handler Handlers[0]; // But that's only standard in C99, not C++, so we have to do // annoying pointer arithmetic instead. public: struct Handler { /// A type info value, or null (C++ null, not an LLVM null pointer) /// for a catch-all. CatchTypeInfo Type; /// The catch handler for this type. llvm::BasicBlock *Block; bool isCatchAll() const { return Type.RTTI == nullptr; } }; private: friend class EHScopeStack; Handler *getHandlers() { return reinterpret_cast(this+1); } const Handler *getHandlers() const { return reinterpret_cast(this+1); } public: static size_t getSizeForNumHandlers(unsigned N) { return sizeof(EHCatchScope) + N * sizeof(Handler); } EHCatchScope(unsigned numHandlers, EHScopeStack::stable_iterator enclosingEHScope) : EHScope(Catch, enclosingEHScope) { CatchBits.NumHandlers = numHandlers; assert(CatchBits.NumHandlers == numHandlers && "NumHandlers overflow?"); } unsigned getNumHandlers() const { return CatchBits.NumHandlers; } void setCatchAllHandler(unsigned I, llvm::BasicBlock *Block) { setHandler(I, CatchTypeInfo{nullptr, 0}, Block); } void setHandler(unsigned I, llvm::Constant *Type, llvm::BasicBlock *Block) { assert(I < getNumHandlers()); getHandlers()[I].Type = CatchTypeInfo{Type, 0}; getHandlers()[I].Block = Block; } void setHandler(unsigned I, CatchTypeInfo Type, llvm::BasicBlock *Block) { assert(I < getNumHandlers()); getHandlers()[I].Type = Type; getHandlers()[I].Block = Block; } const Handler &getHandler(unsigned I) const { assert(I < getNumHandlers()); return getHandlers()[I]; } // Clear all handler blocks. // FIXME: it's better to always call clearHandlerBlocks in DTOR and have a // 'takeHandler' or some such function which removes ownership from the // EHCatchScope object if the handlers should live longer than EHCatchScope. void clearHandlerBlocks() { for (unsigned I = 0, N = getNumHandlers(); I != N; ++I) delete getHandler(I).Block; } typedef const Handler *iterator; iterator begin() const { return getHandlers(); } iterator end() const { return getHandlers() + getNumHandlers(); } static bool classof(const EHScope *Scope) { return Scope->getKind() == Catch; } }; /// A cleanup scope which generates the cleanup blocks lazily. class alignas(8) EHCleanupScope : public EHScope { /// The nearest normal cleanup scope enclosing this one. EHScopeStack::stable_iterator EnclosingNormal; /// The nearest EH scope enclosing this one. EHScopeStack::stable_iterator EnclosingEH; /// The dual entry/exit block along the normal edge. This is lazily /// created if needed before the cleanup is popped. llvm::BasicBlock *NormalBlock; /// An optional i1 variable indicating whether this cleanup has been /// activated yet. llvm::AllocaInst *ActiveFlag; /// Extra information required for cleanups that have resolved /// branches through them. This has to be allocated on the side /// because everything on the cleanup stack has be trivially /// movable. struct ExtInfo { /// The destinations of normal branch-afters and branch-throughs. llvm::SmallPtrSet Branches; /// Normal branch-afters. SmallVector, 4> BranchAfters; }; mutable struct ExtInfo *ExtInfo; /// The number of fixups required by enclosing scopes (not including /// this one). If this is the top cleanup scope, all the fixups /// from this index onwards belong to this scope. unsigned FixupDepth; struct ExtInfo &getExtInfo() { if (!ExtInfo) ExtInfo = new struct ExtInfo(); return *ExtInfo; } const struct ExtInfo &getExtInfo() const { if (!ExtInfo) ExtInfo = new struct ExtInfo(); return *ExtInfo; } public: /// Gets the size required for a lazy cleanup scope with the given /// cleanup-data requirements. static size_t getSizeForCleanupSize(size_t Size) { return sizeof(EHCleanupScope) + Size; } size_t getAllocatedSize() const { return sizeof(EHCleanupScope) + CleanupBits.CleanupSize; } EHCleanupScope(bool isNormal, bool isEH, bool isActive, unsigned cleanupSize, unsigned fixupDepth, EHScopeStack::stable_iterator enclosingNormal, EHScopeStack::stable_iterator enclosingEH) : EHScope(EHScope::Cleanup, enclosingEH), EnclosingNormal(enclosingNormal), NormalBlock(nullptr), ActiveFlag(nullptr), ExtInfo(nullptr), FixupDepth(fixupDepth) { CleanupBits.IsNormalCleanup = isNormal; CleanupBits.IsEHCleanup = isEH; CleanupBits.IsActive = isActive; CleanupBits.IsLifetimeMarker = false; CleanupBits.TestFlagInNormalCleanup = false; CleanupBits.TestFlagInEHCleanup = false; CleanupBits.CleanupSize = cleanupSize; assert(CleanupBits.CleanupSize == cleanupSize && "cleanup size overflow"); } void Destroy() { delete ExtInfo; } // Objects of EHCleanupScope are not destructed. Use Destroy(). ~EHCleanupScope() = delete; bool isNormalCleanup() const { return CleanupBits.IsNormalCleanup; } llvm::BasicBlock *getNormalBlock() const { return NormalBlock; } void setNormalBlock(llvm::BasicBlock *BB) { NormalBlock = BB; } bool isEHCleanup() const { return CleanupBits.IsEHCleanup; } bool isActive() const { return CleanupBits.IsActive; } void setActive(bool A) { CleanupBits.IsActive = A; } bool isLifetimeMarker() const { return CleanupBits.IsLifetimeMarker; } void setLifetimeMarker() { CleanupBits.IsLifetimeMarker = true; } bool hasActiveFlag() const { return ActiveFlag != nullptr; } Address getActiveFlag() const { return Address(ActiveFlag, CharUnits::One()); } void setActiveFlag(Address Var) { assert(Var.getAlignment().isOne()); ActiveFlag = cast(Var.getPointer()); } void setTestFlagInNormalCleanup() { CleanupBits.TestFlagInNormalCleanup = true; } bool shouldTestFlagInNormalCleanup() const { return CleanupBits.TestFlagInNormalCleanup; } void setTestFlagInEHCleanup() { CleanupBits.TestFlagInEHCleanup = true; } bool shouldTestFlagInEHCleanup() const { return CleanupBits.TestFlagInEHCleanup; } unsigned getFixupDepth() const { return FixupDepth; } EHScopeStack::stable_iterator getEnclosingNormalCleanup() const { return EnclosingNormal; } size_t getCleanupSize() const { return CleanupBits.CleanupSize; } void *getCleanupBuffer() { return this + 1; } EHScopeStack::Cleanup *getCleanup() { return reinterpret_cast(getCleanupBuffer()); } /// True if this cleanup scope has any branch-afters or branch-throughs. bool hasBranches() const { return ExtInfo && !ExtInfo->Branches.empty(); } /// Add a branch-after to this cleanup scope. A branch-after is a /// branch from a point protected by this (normal) cleanup to a /// point in the normal cleanup scope immediately containing it. /// For example, /// for (;;) { A a; break; } /// contains a branch-after. /// /// Branch-afters each have their own destination out of the /// cleanup, guaranteed distinct from anything else threaded through /// it. Therefore branch-afters usually force a switch after the /// cleanup. void addBranchAfter(llvm::ConstantInt *Index, llvm::BasicBlock *Block) { struct ExtInfo &ExtInfo = getExtInfo(); if (ExtInfo.Branches.insert(Block).second) ExtInfo.BranchAfters.push_back(std::make_pair(Block, Index)); } /// Return the number of unique branch-afters on this scope. unsigned getNumBranchAfters() const { return ExtInfo ? ExtInfo->BranchAfters.size() : 0; } llvm::BasicBlock *getBranchAfterBlock(unsigned I) const { assert(I < getNumBranchAfters()); return ExtInfo->BranchAfters[I].first; } llvm::ConstantInt *getBranchAfterIndex(unsigned I) const { assert(I < getNumBranchAfters()); return ExtInfo->BranchAfters[I].second; } /// Add a branch-through to this cleanup scope. A branch-through is /// a branch from a scope protected by this (normal) cleanup to an /// enclosing scope other than the immediately-enclosing normal /// cleanup scope. /// /// In the following example, the branch through B's scope is a /// branch-through, while the branch through A's scope is a /// branch-after: /// for (;;) { A a; B b; break; } /// /// All branch-throughs have a common destination out of the /// cleanup, one possibly shared with the fall-through. Therefore /// branch-throughs usually don't force a switch after the cleanup. /// /// \return true if the branch-through was new to this scope bool addBranchThrough(llvm::BasicBlock *Block) { return getExtInfo().Branches.insert(Block).second; } /// Determines if this cleanup scope has any branch throughs. bool hasBranchThroughs() const { if (!ExtInfo) return false; return (ExtInfo->BranchAfters.size() != ExtInfo->Branches.size()); } static bool classof(const EHScope *Scope) { return (Scope->getKind() == Cleanup); } }; // NOTE: there's a bunch of different data classes tacked on after an // EHCleanupScope. It is asserted (in EHScopeStack::pushCleanup*) that // they don't require greater alignment than ScopeStackAlignment. So, // EHCleanupScope ought to have alignment equal to that -- not more // (would be misaligned by the stack allocator), and not less (would // break the appended classes). static_assert(alignof(EHCleanupScope) == EHScopeStack::ScopeStackAlignment, "EHCleanupScope expected alignment"); /// An exceptions scope which filters exceptions thrown through it. /// Only exceptions matching the filter types will be permitted to be /// thrown. /// /// This is used to implement C++ exception specifications. class EHFilterScope : public EHScope { // Essentially ends in a flexible array member: // llvm::Value *FilterTypes[0]; llvm::Value **getFilters() { return reinterpret_cast(this+1); } llvm::Value * const *getFilters() const { return reinterpret_cast(this+1); } public: EHFilterScope(unsigned numFilters) : EHScope(Filter, EHScopeStack::stable_end()) { FilterBits.NumFilters = numFilters; assert(FilterBits.NumFilters == numFilters && "NumFilters overflow"); } static size_t getSizeForNumFilters(unsigned numFilters) { return sizeof(EHFilterScope) + numFilters * sizeof(llvm::Value*); } unsigned getNumFilters() const { return FilterBits.NumFilters; } void setFilter(unsigned i, llvm::Value *filterValue) { assert(i < getNumFilters()); getFilters()[i] = filterValue; } llvm::Value *getFilter(unsigned i) const { assert(i < getNumFilters()); return getFilters()[i]; } static bool classof(const EHScope *scope) { return scope->getKind() == Filter; } }; /// An exceptions scope which calls std::terminate if any exception /// reaches it. class EHTerminateScope : public EHScope { public: EHTerminateScope(EHScopeStack::stable_iterator enclosingEHScope) : EHScope(Terminate, enclosingEHScope) {} static size_t getSize() { return sizeof(EHTerminateScope); } static bool classof(const EHScope *scope) { return scope->getKind() == Terminate; } }; class EHPadEndScope : public EHScope { public: EHPadEndScope(EHScopeStack::stable_iterator enclosingEHScope) : EHScope(PadEnd, enclosingEHScope) {} static size_t getSize() { return sizeof(EHPadEndScope); } static bool classof(const EHScope *scope) { return scope->getKind() == PadEnd; } }; /// A non-stable pointer into the scope stack. class EHScopeStack::iterator { char *Ptr; friend class EHScopeStack; explicit iterator(char *Ptr) : Ptr(Ptr) {} public: iterator() : Ptr(nullptr) {} EHScope *get() const { return reinterpret_cast(Ptr); } EHScope *operator->() const { return get(); } EHScope &operator*() const { return *get(); } iterator &operator++() { size_t Size; switch (get()->getKind()) { case EHScope::Catch: Size = EHCatchScope::getSizeForNumHandlers( static_cast(get())->getNumHandlers()); break; case EHScope::Filter: Size = EHFilterScope::getSizeForNumFilters( static_cast(get())->getNumFilters()); break; case EHScope::Cleanup: Size = static_cast(get())->getAllocatedSize(); break; case EHScope::Terminate: Size = EHTerminateScope::getSize(); break; case EHScope::PadEnd: Size = EHPadEndScope::getSize(); break; } Ptr += llvm::alignTo(Size, ScopeStackAlignment); return *this; } iterator next() { iterator copy = *this; ++copy; return copy; } iterator operator++(int) { iterator copy = *this; operator++(); return copy; } bool encloses(iterator other) const { return Ptr >= other.Ptr; } bool strictlyEncloses(iterator other) const { return Ptr > other.Ptr; } bool operator==(iterator other) const { return Ptr == other.Ptr; } bool operator!=(iterator other) const { return Ptr != other.Ptr; } }; inline EHScopeStack::iterator EHScopeStack::begin() const { return iterator(StartOfData); } inline EHScopeStack::iterator EHScopeStack::end() const { return iterator(EndOfBuffer); } inline void EHScopeStack::popCatch() { assert(!empty() && "popping exception stack when not empty"); EHCatchScope &scope = cast(*begin()); InnermostEHScope = scope.getEnclosingEHScope(); deallocate(EHCatchScope::getSizeForNumHandlers(scope.getNumHandlers())); } inline void EHScopeStack::popTerminate() { assert(!empty() && "popping exception stack when not empty"); EHTerminateScope &scope = cast(*begin()); InnermostEHScope = scope.getEnclosingEHScope(); deallocate(EHTerminateScope::getSize()); } inline EHScopeStack::iterator EHScopeStack::find(stable_iterator sp) const { assert(sp.isValid() && "finding invalid savepoint"); assert(sp.Size <= stable_begin().Size && "finding savepoint after pop"); return iterator(EndOfBuffer - sp.Size); } inline EHScopeStack::stable_iterator EHScopeStack::stabilize(iterator ir) const { assert(StartOfData <= ir.Ptr && ir.Ptr <= EndOfBuffer); return stable_iterator(EndOfBuffer - ir.Ptr); } /// The exceptions personality for a function. struct EHPersonality { const char *PersonalityFn; // If this is non-null, this personality requires a non-standard // function for rethrowing an exception after a catchall cleanup. // This function must have prototype void(void*). const char *CatchallRethrowFn; static const EHPersonality &get(CodeGenModule &CGM, const FunctionDecl *FD); static const EHPersonality &get(CodeGenFunction &CGF); static const EHPersonality GNU_C; static const EHPersonality GNU_C_SJLJ; static const EHPersonality GNU_C_SEH; static const EHPersonality GNU_ObjC; static const EHPersonality GNU_ObjC_SJLJ; static const EHPersonality GNU_ObjC_SEH; static const EHPersonality GNUstep_ObjC; static const EHPersonality GNU_ObjCXX; static const EHPersonality NeXT_ObjC; static const EHPersonality GNU_CPlusPlus; static const EHPersonality GNU_CPlusPlus_SJLJ; static const EHPersonality GNU_CPlusPlus_SEH; static const EHPersonality MSVC_except_handler; static const EHPersonality MSVC_C_specific_handler; static const EHPersonality MSVC_CxxFrameHandler3; static const EHPersonality GNU_Wasm_CPlusPlus; /// Does this personality use landingpads or the family of pad instructions /// designed to form funclets? bool usesFuncletPads() const { return isMSVCPersonality() || isWasmPersonality(); } bool isMSVCPersonality() const { return this == &MSVC_except_handler || this == &MSVC_C_specific_handler || this == &MSVC_CxxFrameHandler3; } bool isWasmPersonality() const { return this == &GNU_Wasm_CPlusPlus; } bool isMSVCXXPersonality() const { return this == &MSVC_CxxFrameHandler3; } }; } } #endif