//===-- CGCleanup.h - Classes for cleanups IR generation --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These classes support the generation of LLVM IR for cleanups. // //===----------------------------------------------------------------------===// #ifndef CLANG_CODEGEN_CGCLEANUP_H #define CLANG_CODEGEN_CGCLEANUP_H #include "clang/Basic/LLVM.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Value.h" #include "llvm/IR/Instructions.h" namespace clang { namespace CodeGen { class CodeGenFunction; /// A branch fixup. These are required when emitting a goto to a /// label which hasn't been emitted yet. The goto is optimistically /// emitted as a branch to the basic block for the label, and (if it /// occurs in a scope with non-trivial cleanups) a fixup is added to /// the innermost cleanup. When a (normal) cleanup is popped, any /// unresolved fixups in that scope are threaded through the cleanup. struct BranchFixup { /// The block containing the terminator which needs to be modified /// into a switch if this fixup is resolved into the current scope. /// If null, LatestBranch points directly to the destination. llvm::BasicBlock *OptimisticBranchBlock; /// The ultimate destination of the branch. /// /// This can be set to null to indicate that this fixup was /// successfully resolved. llvm::BasicBlock *Destination; /// The destination index value. unsigned DestinationIndex; /// The initial branch of the fixup. llvm::BranchInst *InitialBranch; }; template struct InvariantValue { typedef T type; typedef T saved_type; static bool needsSaving(type value) { return false; } static saved_type save(CodeGenFunction &CGF, type value) { return value; } static type restore(CodeGenFunction &CGF, saved_type value) { return value; } }; /// A metaprogramming class for ensuring that a value will dominate an /// arbitrary position in a function. template struct DominatingValue : InvariantValue {}; template ::value && !llvm::is_base_of::value && !llvm::is_base_of::value> struct DominatingPointer; template struct DominatingPointer : InvariantValue {}; // template struct DominatingPointer at end of file template struct DominatingValue : DominatingPointer {}; enum CleanupKind { EHCleanup = 0x1, NormalCleanup = 0x2, NormalAndEHCleanup = EHCleanup | NormalCleanup, InactiveCleanup = 0x4, InactiveEHCleanup = EHCleanup | InactiveCleanup, InactiveNormalCleanup = NormalCleanup | InactiveCleanup, InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup }; /// A stack of scopes which respond to exceptions, including cleanups /// and catch blocks. class EHScopeStack { public: /// A saved depth on the scope stack. This is necessary because /// pushing scopes onto the stack invalidates iterators. class stable_iterator { friend class EHScopeStack; /// Offset from StartOfData to EndOfBuffer. ptrdiff_t Size; stable_iterator(ptrdiff_t Size) : Size(Size) {} public: static stable_iterator invalid() { return stable_iterator(-1); } stable_iterator() : Size(-1) {} bool isValid() const { return Size >= 0; } /// Returns true if this scope encloses I. /// Returns false if I is invalid. /// This scope must be valid. bool encloses(stable_iterator I) const { return Size <= I.Size; } /// Returns true if this scope strictly encloses I: that is, /// if it encloses I and is not I. /// Returns false is I is invalid. /// This scope must be valid. bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } friend bool operator==(stable_iterator A, stable_iterator B) { return A.Size == B.Size; } friend bool operator!=(stable_iterator A, stable_iterator B) { return A.Size != B.Size; } }; /// Information for lazily generating a cleanup. Subclasses must be /// POD-like: cleanups will not be destructed, and they will be /// allocated on the cleanup stack and freely copied and moved /// around. /// /// Cleanup implementations should generally be declared in an /// anonymous namespace. class Cleanup { // Anchor the construction vtable. virtual void anchor(); public: /// Generation flags. class Flags { enum { F_IsForEH = 0x1, F_IsNormalCleanupKind = 0x2, F_IsEHCleanupKind = 0x4 }; unsigned flags; public: Flags() : flags(0) {} /// isForEH - true if the current emission is for an EH cleanup. bool isForEHCleanup() const { return flags & F_IsForEH; } bool isForNormalCleanup() const { return !isForEHCleanup(); } void setIsForEHCleanup() { flags |= F_IsForEH; } bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } /// isEHCleanupKind - true if the cleanup was pushed as an EH /// cleanup. bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } }; // Provide a virtual destructor to suppress a very common warning // that unfortunately cannot be suppressed without this. Cleanups // should not rely on this destructor ever being called. virtual ~Cleanup() {} /// Emit the cleanup. For normal cleanups, this is run in the /// same EH context as when the cleanup was pushed, i.e. the /// immediately-enclosing context of the cleanup scope. For /// EH cleanups, this is run in a terminate context. /// // \param flags cleanup kind. virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; }; /// ConditionalCleanupN stores the saved form of its N parameters, /// then restores them and performs the cleanup. template class ConditionalCleanup1 : public Cleanup { typedef typename DominatingValue::saved_type A0_saved; A0_saved a0_saved; void Emit(CodeGenFunction &CGF, Flags flags) { A0 a0 = DominatingValue::restore(CGF, a0_saved); T(a0).Emit(CGF, flags); } public: ConditionalCleanup1(A0_saved a0) : a0_saved(a0) {} }; template class ConditionalCleanup2 : public Cleanup { typedef typename DominatingValue::saved_type A0_saved; typedef typename DominatingValue::saved_type A1_saved; A0_saved a0_saved; A1_saved a1_saved; void Emit(CodeGenFunction &CGF, Flags flags) { A0 a0 = DominatingValue::restore(CGF, a0_saved); A1 a1 = DominatingValue::restore(CGF, a1_saved); T(a0, a1).Emit(CGF, flags); } public: ConditionalCleanup2(A0_saved a0, A1_saved a1) : a0_saved(a0), a1_saved(a1) {} }; template class ConditionalCleanup3 : public Cleanup { typedef typename DominatingValue::saved_type A0_saved; typedef typename DominatingValue::saved_type A1_saved; typedef typename DominatingValue::saved_type A2_saved; A0_saved a0_saved; A1_saved a1_saved; A2_saved a2_saved; void Emit(CodeGenFunction &CGF, Flags flags) { A0 a0 = DominatingValue::restore(CGF, a0_saved); A1 a1 = DominatingValue::restore(CGF, a1_saved); A2 a2 = DominatingValue::restore(CGF, a2_saved); T(a0, a1, a2).Emit(CGF, flags); } public: ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} }; template class ConditionalCleanup4 : public Cleanup { typedef typename DominatingValue::saved_type A0_saved; typedef typename DominatingValue::saved_type A1_saved; typedef typename DominatingValue::saved_type A2_saved; typedef typename DominatingValue::saved_type A3_saved; A0_saved a0_saved; A1_saved a1_saved; A2_saved a2_saved; A3_saved a3_saved; void Emit(CodeGenFunction &CGF, Flags flags) { A0 a0 = DominatingValue::restore(CGF, a0_saved); A1 a1 = DominatingValue::restore(CGF, a1_saved); A2 a2 = DominatingValue::restore(CGF, a2_saved); A3 a3 = DominatingValue::restore(CGF, a3_saved); T(a0, a1, a2, a3).Emit(CGF, flags); } public: ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} }; private: // The implementation for this class is in CGException.h and // CGException.cpp; the definition is here because it's used as a // member of CodeGenFunction. /// The start of the scope-stack buffer, i.e. the allocated pointer /// for the buffer. All of these pointers are either simultaneously /// null or simultaneously valid. char *StartOfBuffer; /// The end of the buffer. char *EndOfBuffer; /// The first valid entry in the buffer. char *StartOfData; /// The innermost normal cleanup on the stack. stable_iterator InnermostNormalCleanup; /// The innermost EH scope on the stack. stable_iterator InnermostEHScope; /// The current set of branch fixups. A branch fixup is a jump to /// an as-yet unemitted label, i.e. a label for which we don't yet /// know the EH stack depth. Whenever we pop a cleanup, we have /// to thread all the current branch fixups through it. /// /// Fixups are recorded as the Use of the respective branch or /// switch statement. The use points to the final destination. /// When popping out of a cleanup, these uses are threaded through /// the cleanup and adjusted to point to the new cleanup. /// /// Note that branches are allowed to jump into protected scopes /// in certain situations; e.g. the following code is legal: /// struct A { ~A(); }; // trivial ctor, non-trivial dtor /// goto foo; /// A a; /// foo: /// bar(); SmallVector BranchFixups; char *allocate(size_t Size); void *pushCleanup(CleanupKind K, size_t DataSize); public: EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), InnermostNormalCleanup(stable_end()), InnermostEHScope(stable_end()) {} ~EHScopeStack() { delete[] StartOfBuffer; } // Variadic templates would make this not terrible. /// Push a lazily-created cleanup on the stack. template void pushCleanup(CleanupKind Kind) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(); (void) Obj; } /// Push a lazily-created cleanup on the stack. template void pushCleanup(CleanupKind Kind, A0 a0) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0); (void) Obj; } /// Push a lazily-created cleanup on the stack. template void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0, a1); (void) Obj; } /// Push a lazily-created cleanup on the stack. template void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0, a1, a2); (void) Obj; } /// Push a lazily-created cleanup on the stack. template void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); (void) Obj; } /// Push a lazily-created cleanup on the stack. template void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); (void) Obj; } // Feel free to add more variants of the following: /// Push a cleanup with non-constant storage requirements on the /// stack. The cleanup type must provide an additional static method: /// static size_t getExtraSize(size_t); /// The argument to this method will be the value N, which will also /// be passed as the first argument to the constructor. /// /// The data stored in the extra storage must obey the same /// restrictions as normal cleanup member data. /// /// The pointer returned from this method is valid until the cleanup /// stack is modified. template T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); return new (Buffer) T(N, a0, a1, a2); } void pushCopyOfCleanup(CleanupKind Kind, const void *Cleanup, size_t Size) { void *Buffer = pushCleanup(Kind, Size); std::memcpy(Buffer, Cleanup, Size); } /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. void popCleanup(); /// Push a set of catch handlers on the stack. The catch is /// uninitialized and will need to have the given number of handlers /// set on it. class EHCatchScope *pushCatch(unsigned NumHandlers); /// Pops a catch scope off the stack. This is private to CGException.cpp. void popCatch(); /// Push an exceptions filter on the stack. class EHFilterScope *pushFilter(unsigned NumFilters); /// Pops an exceptions filter off the stack. void popFilter(); /// Push a terminate handler on the stack. void pushTerminate(); /// Pops a terminate handler off the stack. void popTerminate(); /// Determines whether the exception-scopes stack is empty. bool empty() const { return StartOfData == EndOfBuffer; } bool requiresLandingPad() const { return InnermostEHScope != stable_end(); } /// Determines whether there are any normal cleanups on the stack. bool hasNormalCleanups() const { return InnermostNormalCleanup != stable_end(); } /// Returns the innermost normal cleanup on the stack, or /// stable_end() if there are no normal cleanups. stable_iterator getInnermostNormalCleanup() const { return InnermostNormalCleanup; } stable_iterator getInnermostActiveNormalCleanup() const; stable_iterator getInnermostEHScope() const { return InnermostEHScope; } stable_iterator getInnermostActiveEHScope() const; /// An unstable reference to a scope-stack depth. Invalidated by /// pushes but not pops. class iterator; /// Returns an iterator pointing to the innermost EH scope. iterator begin() const; /// Returns an iterator pointing to the outermost EH scope. iterator end() const; /// Create a stable reference to the top of the EH stack. The /// returned reference is valid until that scope is popped off the /// stack. stable_iterator stable_begin() const { return stable_iterator(EndOfBuffer - StartOfData); } /// Create a stable reference to the bottom of the EH stack. static stable_iterator stable_end() { return stable_iterator(0); } /// Translates an iterator into a stable_iterator. stable_iterator stabilize(iterator it) const; /// Turn a stable reference to a scope depth into a unstable pointer /// to the EH stack. iterator find(stable_iterator save) const; /// Removes the cleanup pointed to by the given stable_iterator. void removeCleanup(stable_iterator save); /// Add a branch fixup to the current cleanup scope. BranchFixup &addBranchFixup() { assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); BranchFixups.push_back(BranchFixup()); return BranchFixups.back(); } unsigned getNumBranchFixups() const { return BranchFixups.size(); } BranchFixup &getBranchFixup(unsigned I) { assert(I < getNumBranchFixups()); return BranchFixups[I]; } /// Pops lazily-removed fixups from the end of the list. This /// should only be called by procedures which have just popped a /// cleanup or resolved one or more fixups. void popNullFixups(); /// Clears the branch-fixups list. This should only be called by /// ResolveAllBranchFixups. void clearFixups() { BranchFixups.clear(); } }; /// A protected scope for zero-cost EH handling. class EHScope { llvm::BasicBlock *CachedLandingPad; llvm::BasicBlock *CachedEHDispatchBlock; EHScopeStack::stable_iterator EnclosingEHScope; class CommonBitFields { friend class EHScope; unsigned Kind : 2; }; enum { NumCommonBits = 2 }; protected: class CatchBitFields { friend class EHCatchScope; unsigned : NumCommonBits; unsigned NumHandlers : 32 - NumCommonBits; }; class CleanupBitFields { friend class EHCleanupScope; unsigned : NumCommonBits; /// Whether this cleanup needs to be run along normal edges. unsigned IsNormalCleanup : 1; /// Whether this cleanup needs to be run along exception edges. unsigned IsEHCleanup : 1; /// Whether this cleanup is currently active. unsigned IsActive : 1; /// Whether the normal cleanup should test the activation flag. unsigned TestFlagInNormalCleanup : 1; /// Whether the EH cleanup should test the activation flag. unsigned TestFlagInEHCleanup : 1; /// The amount of extra storage needed by the Cleanup. /// Always a multiple of the scope-stack alignment. unsigned CleanupSize : 12; /// The number of fixups required by enclosing scopes (not including /// this one). If this is the top cleanup scope, all the fixups /// from this index onwards belong to this scope. unsigned FixupDepth : 32 - 17 - NumCommonBits; // currently 13 }; class FilterBitFields { friend class EHFilterScope; unsigned : NumCommonBits; unsigned NumFilters : 32 - NumCommonBits; }; union { CommonBitFields CommonBits; CatchBitFields CatchBits; CleanupBitFields CleanupBits; FilterBitFields FilterBits; }; public: enum Kind { Cleanup, Catch, Terminate, Filter }; EHScope(Kind kind, EHScopeStack::stable_iterator enclosingEHScope) : CachedLandingPad(0), CachedEHDispatchBlock(0), EnclosingEHScope(enclosingEHScope) { CommonBits.Kind = kind; } Kind getKind() const { return static_cast(CommonBits.Kind); } llvm::BasicBlock *getCachedLandingPad() const { return CachedLandingPad; } void setCachedLandingPad(llvm::BasicBlock *block) { CachedLandingPad = block; } llvm::BasicBlock *getCachedEHDispatchBlock() const { return CachedEHDispatchBlock; } void setCachedEHDispatchBlock(llvm::BasicBlock *block) { CachedEHDispatchBlock = block; } bool hasEHBranches() const { if (llvm::BasicBlock *block = getCachedEHDispatchBlock()) return !block->use_empty(); return false; } EHScopeStack::stable_iterator getEnclosingEHScope() const { return EnclosingEHScope; } }; /// A scope which attempts to handle some, possibly all, types of /// exceptions. /// /// Objective C \@finally blocks are represented using a cleanup scope /// after the catch scope. class EHCatchScope : public EHScope { // In effect, we have a flexible array member // Handler Handlers[0]; // But that's only standard in C99, not C++, so we have to do // annoying pointer arithmetic instead. public: struct Handler { /// A type info value, or null (C++ null, not an LLVM null pointer) /// for a catch-all. llvm::Value *Type; /// The catch handler for this type. llvm::BasicBlock *Block; bool isCatchAll() const { return Type == 0; } }; private: friend class EHScopeStack; Handler *getHandlers() { return reinterpret_cast(this+1); } const Handler *getHandlers() const { return reinterpret_cast(this+1); } public: static size_t getSizeForNumHandlers(unsigned N) { return sizeof(EHCatchScope) + N * sizeof(Handler); } EHCatchScope(unsigned numHandlers, EHScopeStack::stable_iterator enclosingEHScope) : EHScope(Catch, enclosingEHScope) { CatchBits.NumHandlers = numHandlers; } unsigned getNumHandlers() const { return CatchBits.NumHandlers; } void setCatchAllHandler(unsigned I, llvm::BasicBlock *Block) { setHandler(I, /*catchall*/ 0, Block); } void setHandler(unsigned I, llvm::Value *Type, llvm::BasicBlock *Block) { assert(I < getNumHandlers()); getHandlers()[I].Type = Type; getHandlers()[I].Block = Block; } const Handler &getHandler(unsigned I) const { assert(I < getNumHandlers()); return getHandlers()[I]; } typedef const Handler *iterator; iterator begin() const { return getHandlers(); } iterator end() const { return getHandlers() + getNumHandlers(); } static bool classof(const EHScope *Scope) { return Scope->getKind() == Catch; } }; /// A cleanup scope which generates the cleanup blocks lazily. class EHCleanupScope : public EHScope { /// The nearest normal cleanup scope enclosing this one. EHScopeStack::stable_iterator EnclosingNormal; /// The nearest EH scope enclosing this one. EHScopeStack::stable_iterator EnclosingEH; /// The dual entry/exit block along the normal edge. This is lazily /// created if needed before the cleanup is popped. llvm::BasicBlock *NormalBlock; /// An optional i1 variable indicating whether this cleanup has been /// activated yet. llvm::AllocaInst *ActiveFlag; /// Extra information required for cleanups that have resolved /// branches through them. This has to be allocated on the side /// because everything on the cleanup stack has be trivially /// movable. struct ExtInfo { /// The destinations of normal branch-afters and branch-throughs. llvm::SmallPtrSet Branches; /// Normal branch-afters. SmallVector, 4> BranchAfters; }; mutable struct ExtInfo *ExtInfo; struct ExtInfo &getExtInfo() { if (!ExtInfo) ExtInfo = new struct ExtInfo(); return *ExtInfo; } const struct ExtInfo &getExtInfo() const { if (!ExtInfo) ExtInfo = new struct ExtInfo(); return *ExtInfo; } public: /// Gets the size required for a lazy cleanup scope with the given /// cleanup-data requirements. static size_t getSizeForCleanupSize(size_t Size) { return sizeof(EHCleanupScope) + Size; } size_t getAllocatedSize() const { return sizeof(EHCleanupScope) + CleanupBits.CleanupSize; } EHCleanupScope(bool isNormal, bool isEH, bool isActive, unsigned cleanupSize, unsigned fixupDepth, EHScopeStack::stable_iterator enclosingNormal, EHScopeStack::stable_iterator enclosingEH) : EHScope(EHScope::Cleanup, enclosingEH), EnclosingNormal(enclosingNormal), NormalBlock(0), ActiveFlag(0), ExtInfo(0) { CleanupBits.IsNormalCleanup = isNormal; CleanupBits.IsEHCleanup = isEH; CleanupBits.IsActive = isActive; CleanupBits.TestFlagInNormalCleanup = false; CleanupBits.TestFlagInEHCleanup = false; CleanupBits.CleanupSize = cleanupSize; CleanupBits.FixupDepth = fixupDepth; assert(CleanupBits.CleanupSize == cleanupSize && "cleanup size overflow"); } ~EHCleanupScope() { delete ExtInfo; } bool isNormalCleanup() const { return CleanupBits.IsNormalCleanup; } llvm::BasicBlock *getNormalBlock() const { return NormalBlock; } void setNormalBlock(llvm::BasicBlock *BB) { NormalBlock = BB; } bool isEHCleanup() const { return CleanupBits.IsEHCleanup; } llvm::BasicBlock *getEHBlock() const { return getCachedEHDispatchBlock(); } void setEHBlock(llvm::BasicBlock *BB) { setCachedEHDispatchBlock(BB); } bool isActive() const { return CleanupBits.IsActive; } void setActive(bool A) { CleanupBits.IsActive = A; } llvm::AllocaInst *getActiveFlag() const { return ActiveFlag; } void setActiveFlag(llvm::AllocaInst *Var) { ActiveFlag = Var; } void setTestFlagInNormalCleanup() { CleanupBits.TestFlagInNormalCleanup = true; } bool shouldTestFlagInNormalCleanup() const { return CleanupBits.TestFlagInNormalCleanup; } void setTestFlagInEHCleanup() { CleanupBits.TestFlagInEHCleanup = true; } bool shouldTestFlagInEHCleanup() const { return CleanupBits.TestFlagInEHCleanup; } unsigned getFixupDepth() const { return CleanupBits.FixupDepth; } EHScopeStack::stable_iterator getEnclosingNormalCleanup() const { return EnclosingNormal; } size_t getCleanupSize() const { return CleanupBits.CleanupSize; } void *getCleanupBuffer() { return this + 1; } EHScopeStack::Cleanup *getCleanup() { return reinterpret_cast(getCleanupBuffer()); } /// True if this cleanup scope has any branch-afters or branch-throughs. bool hasBranches() const { return ExtInfo && !ExtInfo->Branches.empty(); } /// Add a branch-after to this cleanup scope. A branch-after is a /// branch from a point protected by this (normal) cleanup to a /// point in the normal cleanup scope immediately containing it. /// For example, /// for (;;) { A a; break; } /// contains a branch-after. /// /// Branch-afters each have their own destination out of the /// cleanup, guaranteed distinct from anything else threaded through /// it. Therefore branch-afters usually force a switch after the /// cleanup. void addBranchAfter(llvm::ConstantInt *Index, llvm::BasicBlock *Block) { struct ExtInfo &ExtInfo = getExtInfo(); if (ExtInfo.Branches.insert(Block)) ExtInfo.BranchAfters.push_back(std::make_pair(Block, Index)); } /// Return the number of unique branch-afters on this scope. unsigned getNumBranchAfters() const { return ExtInfo ? ExtInfo->BranchAfters.size() : 0; } llvm::BasicBlock *getBranchAfterBlock(unsigned I) const { assert(I < getNumBranchAfters()); return ExtInfo->BranchAfters[I].first; } llvm::ConstantInt *getBranchAfterIndex(unsigned I) const { assert(I < getNumBranchAfters()); return ExtInfo->BranchAfters[I].second; } /// Add a branch-through to this cleanup scope. A branch-through is /// a branch from a scope protected by this (normal) cleanup to an /// enclosing scope other than the immediately-enclosing normal /// cleanup scope. /// /// In the following example, the branch through B's scope is a /// branch-through, while the branch through A's scope is a /// branch-after: /// for (;;) { A a; B b; break; } /// /// All branch-throughs have a common destination out of the /// cleanup, one possibly shared with the fall-through. Therefore /// branch-throughs usually don't force a switch after the cleanup. /// /// \return true if the branch-through was new to this scope bool addBranchThrough(llvm::BasicBlock *Block) { return getExtInfo().Branches.insert(Block); } /// Determines if this cleanup scope has any branch throughs. bool hasBranchThroughs() const { if (!ExtInfo) return false; return (ExtInfo->BranchAfters.size() != ExtInfo->Branches.size()); } static bool classof(const EHScope *Scope) { return (Scope->getKind() == Cleanup); } }; /// An exceptions scope which filters exceptions thrown through it. /// Only exceptions matching the filter types will be permitted to be /// thrown. /// /// This is used to implement C++ exception specifications. class EHFilterScope : public EHScope { // Essentially ends in a flexible array member: // llvm::Value *FilterTypes[0]; llvm::Value **getFilters() { return reinterpret_cast(this+1); } llvm::Value * const *getFilters() const { return reinterpret_cast(this+1); } public: EHFilterScope(unsigned numFilters) : EHScope(Filter, EHScopeStack::stable_end()) { FilterBits.NumFilters = numFilters; } static size_t getSizeForNumFilters(unsigned numFilters) { return sizeof(EHFilterScope) + numFilters * sizeof(llvm::Value*); } unsigned getNumFilters() const { return FilterBits.NumFilters; } void setFilter(unsigned i, llvm::Value *filterValue) { assert(i < getNumFilters()); getFilters()[i] = filterValue; } llvm::Value *getFilter(unsigned i) const { assert(i < getNumFilters()); return getFilters()[i]; } static bool classof(const EHScope *scope) { return scope->getKind() == Filter; } }; /// An exceptions scope which calls std::terminate if any exception /// reaches it. class EHTerminateScope : public EHScope { public: EHTerminateScope(EHScopeStack::stable_iterator enclosingEHScope) : EHScope(Terminate, enclosingEHScope) {} static size_t getSize() { return sizeof(EHTerminateScope); } static bool classof(const EHScope *scope) { return scope->getKind() == Terminate; } }; /// A non-stable pointer into the scope stack. class EHScopeStack::iterator { char *Ptr; friend class EHScopeStack; explicit iterator(char *Ptr) : Ptr(Ptr) {} public: iterator() : Ptr(0) {} EHScope *get() const { return reinterpret_cast(Ptr); } EHScope *operator->() const { return get(); } EHScope &operator*() const { return *get(); } iterator &operator++() { switch (get()->getKind()) { case EHScope::Catch: Ptr += EHCatchScope::getSizeForNumHandlers( static_cast(get())->getNumHandlers()); break; case EHScope::Filter: Ptr += EHFilterScope::getSizeForNumFilters( static_cast(get())->getNumFilters()); break; case EHScope::Cleanup: Ptr += static_cast(get()) ->getAllocatedSize(); break; case EHScope::Terminate: Ptr += EHTerminateScope::getSize(); break; } return *this; } iterator next() { iterator copy = *this; ++copy; return copy; } iterator operator++(int) { iterator copy = *this; operator++(); return copy; } bool encloses(iterator other) const { return Ptr >= other.Ptr; } bool strictlyEncloses(iterator other) const { return Ptr > other.Ptr; } bool operator==(iterator other) const { return Ptr == other.Ptr; } bool operator!=(iterator other) const { return Ptr != other.Ptr; } }; inline EHScopeStack::iterator EHScopeStack::begin() const { return iterator(StartOfData); } inline EHScopeStack::iterator EHScopeStack::end() const { return iterator(EndOfBuffer); } inline void EHScopeStack::popCatch() { assert(!empty() && "popping exception stack when not empty"); EHCatchScope &scope = cast(*begin()); InnermostEHScope = scope.getEnclosingEHScope(); StartOfData += EHCatchScope::getSizeForNumHandlers(scope.getNumHandlers()); } inline void EHScopeStack::popTerminate() { assert(!empty() && "popping exception stack when not empty"); EHTerminateScope &scope = cast(*begin()); InnermostEHScope = scope.getEnclosingEHScope(); StartOfData += EHTerminateScope::getSize(); } inline EHScopeStack::iterator EHScopeStack::find(stable_iterator sp) const { assert(sp.isValid() && "finding invalid savepoint"); assert(sp.Size <= stable_begin().Size && "finding savepoint after pop"); return iterator(EndOfBuffer - sp.Size); } inline EHScopeStack::stable_iterator EHScopeStack::stabilize(iterator ir) const { assert(StartOfData <= ir.Ptr && ir.Ptr <= EndOfBuffer); return stable_iterator(EndOfBuffer - ir.Ptr); } } } #endif