//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Ted Kremenek and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the CFG and CFGBuilder classes for representing and // building Control-Flow Graphs (CFGs) from ASTs. // //===----------------------------------------------------------------------===// #include "clang/AST/CFG.h" #include "clang/AST/Expr.h" #include "clang/AST/StmtVisitor.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Config/config.h" #include #include #include #include using namespace clang; namespace { // SaveAndRestore - A utility class that uses RIIA to save and restore // the value of a variable. template struct SaveAndRestore { SaveAndRestore(T& x) : X(x), old_value(x) {} ~SaveAndRestore() { X = old_value; } T get() { return old_value; } T& X; T old_value; }; /// CFGBuilder - This class is implements CFG construction from an AST. /// The builder is stateful: an instance of the builder should be used to only /// construct a single CFG. /// /// Example usage: /// /// CFGBuilder builder; /// CFG* cfg = builder.BuildAST(stmt1); /// /// CFG construction is done via a recursive walk of an AST. /// We actually parse the AST in reverse order so that the successor /// of a basic block is constructed prior to its predecessor. This /// allows us to nicely capture implicit fall-throughs without extra /// basic blocks. /// class CFGBuilder : public StmtVisitor { CFG* cfg; CFGBlock* Block; CFGBlock* Succ; CFGBlock* ContinueTargetBlock; CFGBlock* BreakTargetBlock; CFGBlock* SwitchTerminatedBlock; unsigned NumBlocks; // LabelMap records the mapping from Label expressions to their blocks. typedef llvm::DenseMap LabelMapTy; LabelMapTy LabelMap; // A list of blocks that end with a "goto" that must be backpatched to // their resolved targets upon completion of CFG construction. typedef std::vector BackpatchBlocksTy; BackpatchBlocksTy BackpatchBlocks; // A list of labels whose address has been taken (for indirect gotos). typedef llvm::SmallPtrSet LabelSetTy; LabelSetTy AddressTakenLabels; public: explicit CFGBuilder() : cfg(NULL), Block(NULL), Succ(NULL), ContinueTargetBlock(NULL), BreakTargetBlock(NULL), SwitchTerminatedBlock(NULL), NumBlocks(0) { // Create an empty CFG. cfg = new CFG(); } ~CFGBuilder() { delete cfg; } // buildCFG - Used by external clients to construct the CFG. CFG* buildCFG(Stmt* Statement); // Visitors to walk an AST and construct the CFG. Called by // buildCFG. Do not call directly! CFGBlock* VisitStmt(Stmt* Statement); CFGBlock* VisitNullStmt(NullStmt* Statement); CFGBlock* VisitCompoundStmt(CompoundStmt* C); CFGBlock* VisitIfStmt(IfStmt* I); CFGBlock* VisitReturnStmt(ReturnStmt* R); CFGBlock* VisitLabelStmt(LabelStmt* L); CFGBlock* VisitGotoStmt(GotoStmt* G); CFGBlock* VisitForStmt(ForStmt* F); CFGBlock* VisitWhileStmt(WhileStmt* W); CFGBlock* VisitDoStmt(DoStmt* D); CFGBlock* VisitContinueStmt(ContinueStmt* C); CFGBlock* VisitBreakStmt(BreakStmt* B); CFGBlock* VisitSwitchStmt(SwitchStmt* S); CFGBlock* VisitSwitchCase(SwitchCase* S); CFGBlock* VisitIndirectGotoStmt(IndirectGotoStmt* I); private: CFGBlock* createBlock(bool add_successor = true); CFGBlock* addStmt(Stmt* S); CFGBlock* WalkAST(Stmt* S, bool AlwaysAddStmt); CFGBlock* WalkAST_VisitChildren(Stmt* S); CFGBlock* WalkAST_VisitVarDecl(VarDecl* D); CFGBlock* WalkAST_VisitStmtExpr(StmtExpr* S); void FinishBlock(CFGBlock* B); }; /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can /// represent an arbitrary statement. Examples include a single expression /// or a function body (compound statement). The ownership of the returned /// CFG is transferred to the caller. If CFG construction fails, this method /// returns NULL. CFG* CFGBuilder::buildCFG(Stmt* Statement) { assert (cfg); if (!Statement) return NULL; // Create an empty block that will serve as the exit block for the CFG. // Since this is the first block added to the CFG, it will be implicitly // registered as the exit block. Succ = createBlock(); assert (Succ == &cfg->getExit()); Block = NULL; // the EXIT block is empty. Create all other blocks lazily. // Visit the statements and create the CFG. if (CFGBlock* B = Visit(Statement)) { // Finalize the last constructed block. This usually involves // reversing the order of the statements in the block. if (Block) FinishBlock(B); // Backpatch the gotos whose label -> block mappings we didn't know // when we encountered them. for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(), E = BackpatchBlocks.end(); I != E; ++I ) { CFGBlock* B = *I; GotoStmt* G = cast(B->getTerminator()); LabelMapTy::iterator LI = LabelMap.find(G->getLabel()); // If there is no target for the goto, then we are looking at an // incomplete AST. Handle this by not registering a successor. if (LI == LabelMap.end()) continue; B->addSuccessor(LI->second); } // Add successors to the Indirect Goto Dispatch block (if we have one). if (CFGBlock* B = cfg->getIndirectGotoBlock()) for (LabelSetTy::iterator I = AddressTakenLabels.begin(), E = AddressTakenLabels.end(); I != E; ++I ) { // Lookup the target block. LabelMapTy::iterator LI = LabelMap.find(*I); // If there is no target block that contains label, then we are looking // at an incomplete AST. Handle this by not registering a successor. if (LI == LabelMap.end()) continue; B->addSuccessor(LI->second); } // Create an empty entry block that has no predecessors. if (B->pred_size() > 0) { Succ = B; cfg->setEntry(createBlock()); } else cfg->setEntry(B); // NULL out cfg so that repeated calls to the builder will fail and that // the ownership of the constructed CFG is passed to the caller. CFG* t = cfg; cfg = NULL; return t; } else return NULL; } /// createBlock - Used to lazily create blocks that are connected /// to the current (global) succcessor. CFGBlock* CFGBuilder::createBlock(bool add_successor) { CFGBlock* B = cfg->createBlock(NumBlocks++); if (add_successor && Succ) B->addSuccessor(Succ); return B; } /// FinishBlock - When the last statement has been added to the block, /// we must reverse the statements because they have been inserted /// in reverse order. void CFGBuilder::FinishBlock(CFGBlock* B) { assert (B); B->reverseStmts(); } /// addStmt - Used to add statements/expressions to the current CFGBlock /// "Block". This method calls WalkAST on the passed statement to see if it /// contains any short-circuit expressions. If so, it recursively creates /// the necessary blocks for such expressions. It returns the "topmost" block /// of the created blocks, or the original value of "Block" when this method /// was called if no additional blocks are created. CFGBlock* CFGBuilder::addStmt(Stmt* S) { assert (Block); return WalkAST(S,true); } /// WalkAST - Used by addStmt to walk the subtree of a statement and /// add extra blocks for ternary operators, &&, and ||. We also /// process "," and DeclStmts (which may contain nested control-flow). CFGBlock* CFGBuilder::WalkAST(Stmt* S, bool AlwaysAddStmt = false) { switch (S->getStmtClass()) { case Stmt::ConditionalOperatorClass: { ConditionalOperator* C = cast(S); CFGBlock* ConfluenceBlock = (Block) ? Block : createBlock(); ConfluenceBlock->appendStmt(C); FinishBlock(ConfluenceBlock); Succ = ConfluenceBlock; Block = NULL; CFGBlock* LHSBlock = Visit(C->getLHS()); Succ = ConfluenceBlock; Block = NULL; CFGBlock* RHSBlock = Visit(C->getRHS()); Block = createBlock(false); Block->addSuccessor(LHSBlock); Block->addSuccessor(RHSBlock); Block->setTerminator(C); return addStmt(C->getCond()); } case Stmt::DeclStmtClass: if (VarDecl* V = dyn_cast(cast(S)->getDecl())) { Block->appendStmt(S); return WalkAST_VisitVarDecl(V); } else return Block; case Stmt::AddrLabelExprClass: { AddrLabelExpr* A = cast(S); AddressTakenLabels.insert(A->getLabel()); if (AlwaysAddStmt) Block->appendStmt(S); return Block; } case Stmt::StmtExprClass: return WalkAST_VisitStmtExpr(cast(S)); case Stmt::BinaryOperatorClass: { BinaryOperator* B = cast(S); if (B->isLogicalOp()) { // && or || CFGBlock* ConfluenceBlock = (Block) ? Block : createBlock(); ConfluenceBlock->appendStmt(B); FinishBlock(ConfluenceBlock); // create the block evaluating the LHS CFGBlock* LHSBlock = createBlock(false); LHSBlock->addSuccessor(ConfluenceBlock); LHSBlock->setTerminator(B); // create the block evaluating the RHS Succ = ConfluenceBlock; Block = NULL; CFGBlock* RHSBlock = Visit(B->getRHS()); LHSBlock->addSuccessor(RHSBlock); // Generate the blocks for evaluating the LHS. Block = LHSBlock; return addStmt(B->getLHS()); } else if (B->getOpcode() == BinaryOperator::Comma) { // , Block->appendStmt(B); addStmt(B->getRHS()); return addStmt(B->getLHS()); } // Fall through to the default case. } default: if (AlwaysAddStmt) Block->appendStmt(S); return WalkAST_VisitChildren(S); }; } /// WalkAST_VisitVarDecl - Utility method to handle VarDecls contained in /// DeclStmts. Because the initialization code for declarations can /// contain arbitrary expressions, we must linearize declarations /// to handle arbitrary control-flow induced by those expressions. CFGBlock* CFGBuilder::WalkAST_VisitVarDecl(VarDecl* V) { // We actually must parse the LAST declaration in a chain of // declarations first, because we are building the CFG in reverse // order. if (Decl* D = V->getNextDeclarator()) if (VarDecl* Next = cast(D)) Block = WalkAST_VisitVarDecl(Next); if (Expr* E = V->getInit()) return addStmt(E); assert (Block); return Block; } /// WalkAST_VisitChildren - Utility method to call WalkAST on the /// children of a Stmt. CFGBlock* CFGBuilder::WalkAST_VisitChildren(Stmt* S) { CFGBlock* B = Block; for (Stmt::child_iterator I = S->child_begin(), E = S->child_end() ; I != E; ++I) B = WalkAST(*I); return B; } /// WalkAST_VisitStmtExpr - Utility method to handle (nested) statement /// expressions (a GCC extension). CFGBlock* CFGBuilder::WalkAST_VisitStmtExpr(StmtExpr* S) { Block->appendStmt(S); return VisitCompoundStmt(S->getSubStmt()); } /// VisitStmt - Handle statements with no branching control flow. CFGBlock* CFGBuilder::VisitStmt(Stmt* Statement) { // We cannot assume that we are in the middle of a basic block, since // the CFG might only be constructed for this single statement. If // we have no current basic block, just create one lazily. if (!Block) Block = createBlock(); // Simply add the statement to the current block. We actually // insert statements in reverse order; this order is reversed later // when processing the containing element in the AST. addStmt(Statement); return Block; } CFGBlock* CFGBuilder::VisitNullStmt(NullStmt* Statement) { return Block; } CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) { // The value returned from this function is the last created CFGBlock // that represents the "entry" point for the translated AST node. CFGBlock* LastBlock; for (CompoundStmt::reverse_body_iterator I = C->body_rbegin(), E = C->body_rend(); I != E; ++I ) // Add the statement to the current block. if (!(LastBlock=Visit(*I))) return NULL; return LastBlock; } CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) { // We may see an if statement in the middle of a basic block, or // it may be the first statement we are processing. In either case, // we create a new basic block. First, we create the blocks for // the then...else statements, and then we create the block containing // the if statement. If we were in the middle of a block, we // stop processing that block and reverse its statements. That block // is then the implicit successor for the "then" and "else" clauses. // The block we were proccessing is now finished. Make it the // successor block. if (Block) { Succ = Block; FinishBlock(Block); } // Process the false branch. NULL out Block so that the recursive // call to Visit will create a new basic block. // Null out Block so that all successor CFGBlock* ElseBlock = Succ; if (Stmt* Else = I->getElse()) { SaveAndRestore sv(Succ); // NULL out Block so that the recursive call to Visit will // create a new basic block. Block = NULL; ElseBlock = Visit(Else); if (!ElseBlock) // Can occur when the Else body has all NullStmts. ElseBlock = sv.get(); else if (Block) FinishBlock(ElseBlock); } // Process the true branch. NULL out Block so that the recursive // call to Visit will create a new basic block. // Null out Block so that all successor CFGBlock* ThenBlock; { Stmt* Then = I->getThen(); assert (Then); SaveAndRestore sv(Succ); Block = NULL; ThenBlock = Visit(Then); if (!ThenBlock) // Can occur when the Then body has all NullStmts. ThenBlock = sv.get(); else if (Block) FinishBlock(ThenBlock); } // Now create a new block containing the if statement. Block = createBlock(false); // Set the terminator of the new block to the If statement. Block->setTerminator(I); // Now add the successors. Block->addSuccessor(ThenBlock); Block->addSuccessor(ElseBlock); // Add the condition as the last statement in the new block. This // may create new blocks as the condition may contain control-flow. Any // newly created blocks will be pointed to be "Block". return addStmt(I->getCond()); } CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) { // If we were in the middle of a block we stop processing that block // and reverse its statements. // // NOTE: If a "return" appears in the middle of a block, this means // that the code afterwards is DEAD (unreachable). We still // keep a basic block for that code; a simple "mark-and-sweep" // from the entry block will be able to report such dead // blocks. if (Block) FinishBlock(Block); // Create the new block. Block = createBlock(false); // The Exit block is the only successor. Block->addSuccessor(&cfg->getExit()); // Add the return statement to the block. This may create new blocks // if R contains control-flow (short-circuit operations). return addStmt(R); } CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) { // Get the block of the labeled statement. Add it to our map. CFGBlock* LabelBlock = Visit(L->getSubStmt()); assert (LabelBlock); assert (LabelMap.find(L) == LabelMap.end() && "label already in map"); LabelMap[ L ] = LabelBlock; // Labels partition blocks, so this is the end of the basic block // we were processing (L is the block's label). Because this is // label (and we have already processed the substatement) there is no // extra control-flow to worry about. LabelBlock->setLabel(L); FinishBlock(LabelBlock); // We set Block to NULL to allow lazy creation of a new block // (if necessary); Block = NULL; // This block is now the implicit successor of other blocks. Succ = LabelBlock; return LabelBlock; } CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) { // Goto is a control-flow statement. Thus we stop processing the // current block and create a new one. if (Block) FinishBlock(Block); Block = createBlock(false); Block->setTerminator(G); // If we already know the mapping to the label block add the // successor now. LabelMapTy::iterator I = LabelMap.find(G->getLabel()); if (I == LabelMap.end()) // We will need to backpatch this block later. BackpatchBlocks.push_back(Block); else Block->addSuccessor(I->second); return Block; } CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) { // "for" is a control-flow statement. Thus we stop processing the // current block. CFGBlock* LoopSuccessor = NULL; if (Block) { FinishBlock(Block); LoopSuccessor = Block; } else LoopSuccessor = Succ; // Because of short-circuit evaluation, the condition of the loop // can span multiple basic blocks. Thus we need the "Entry" and "Exit" // blocks that evaluate the condition. CFGBlock* ExitConditionBlock = createBlock(false); CFGBlock* EntryConditionBlock = ExitConditionBlock; // Set the terminator for the "exit" condition block. ExitConditionBlock->setTerminator(F); // Now add the actual condition to the condition block. Because the // condition itself may contain control-flow, new blocks may be created. if (Stmt* C = F->getCond()) { Block = ExitConditionBlock; EntryConditionBlock = addStmt(C); if (Block) FinishBlock(EntryConditionBlock); } // The condition block is the implicit successor for the loop body as // well as any code above the loop. Succ = EntryConditionBlock; // Now create the loop body. { assert (F->getBody()); // Save the current values for Block, Succ, and continue and break targets SaveAndRestore save_Block(Block), save_Succ(Succ), save_continue(ContinueTargetBlock), save_break(BreakTargetBlock); // All continues within this loop should go to the condition block ContinueTargetBlock = EntryConditionBlock; // All breaks should go to the code following the loop. BreakTargetBlock = LoopSuccessor; // Create a new block to contain the (bottom) of the loop body. Block = createBlock(); // If we have increment code, insert it at the end of the body block. if (Stmt* I = F->getInc()) Block = addStmt(I); // Now populate the body block, and in the process create new blocks // as we walk the body of the loop. CFGBlock* BodyBlock = Visit(F->getBody()); assert (BodyBlock); if (Block) FinishBlock(BodyBlock); // This new body block is a successor to our "exit" condition block. ExitConditionBlock->addSuccessor(BodyBlock); } // Link up the condition block with the code that follows the loop. // (the false branch). ExitConditionBlock->addSuccessor(LoopSuccessor); // If the loop contains initialization, create a new block for those // statements. This block can also contain statements that precede // the loop. if (Stmt* I = F->getInit()) { Block = createBlock(); return addStmt(I); } else { // There is no loop initialization. We are thus basically a while // loop. NULL out Block to force lazy block construction. Block = NULL; return EntryConditionBlock; } } CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) { // "while" is a control-flow statement. Thus we stop processing the // current block. CFGBlock* LoopSuccessor = NULL; if (Block) { FinishBlock(Block); LoopSuccessor = Block; } else LoopSuccessor = Succ; // Because of short-circuit evaluation, the condition of the loop // can span multiple basic blocks. Thus we need the "Entry" and "Exit" // blocks that evaluate the condition. CFGBlock* ExitConditionBlock = createBlock(false); CFGBlock* EntryConditionBlock = ExitConditionBlock; // Set the terminator for the "exit" condition block. ExitConditionBlock->setTerminator(W); // Now add the actual condition to the condition block. Because the // condition itself may contain control-flow, new blocks may be created. // Thus we update "Succ" after adding the condition. if (Stmt* C = W->getCond()) { Block = ExitConditionBlock; EntryConditionBlock = addStmt(C); if (Block) FinishBlock(EntryConditionBlock); } // The condition block is the implicit successor for the loop body as // well as any code above the loop. Succ = EntryConditionBlock; // Process the loop body. { assert (W->getBody()); // Save the current values for Block, Succ, and continue and break targets SaveAndRestore save_Block(Block), save_Succ(Succ), save_continue(ContinueTargetBlock), save_break(BreakTargetBlock); // All continues within this loop should go to the condition block ContinueTargetBlock = EntryConditionBlock; // All breaks should go to the code following the loop. BreakTargetBlock = LoopSuccessor; // NULL out Block to force lazy instantiation of blocks for the body. Block = NULL; // Create the body. The returned block is the entry to the loop body. CFGBlock* BodyBlock = Visit(W->getBody()); assert (BodyBlock); if (Block) FinishBlock(BodyBlock); // Add the loop body entry as a successor to the condition. ExitConditionBlock->addSuccessor(BodyBlock); } // Link up the condition block with the code that follows the loop. // (the false branch). ExitConditionBlock->addSuccessor(LoopSuccessor); // There can be no more statements in the condition block // since we loop back to this block. NULL out Block to force // lazy creation of another block. Block = NULL; // Return the condition block, which is the dominating block for the loop. return EntryConditionBlock; } CFGBlock* CFGBuilder::VisitDoStmt(DoStmt* D) { // "do...while" is a control-flow statement. Thus we stop processing the // current block. CFGBlock* LoopSuccessor = NULL; if (Block) { FinishBlock(Block); LoopSuccessor = Block; } else LoopSuccessor = Succ; // Because of short-circuit evaluation, the condition of the loop // can span multiple basic blocks. Thus we need the "Entry" and "Exit" // blocks that evaluate the condition. CFGBlock* ExitConditionBlock = createBlock(false); CFGBlock* EntryConditionBlock = ExitConditionBlock; // Set the terminator for the "exit" condition block. ExitConditionBlock->setTerminator(D); // Now add the actual condition to the condition block. Because the // condition itself may contain control-flow, new blocks may be created. if (Stmt* C = D->getCond()) { Block = ExitConditionBlock; EntryConditionBlock = addStmt(C); if (Block) FinishBlock(EntryConditionBlock); } // The condition block is the implicit successor for the loop body as // well as any code above the loop. Succ = EntryConditionBlock; // Process the loop body. CFGBlock* BodyBlock = NULL; { assert (D->getBody()); // Save the current values for Block, Succ, and continue and break targets SaveAndRestore save_Block(Block), save_Succ(Succ), save_continue(ContinueTargetBlock), save_break(BreakTargetBlock); // All continues within this loop should go to the condition block ContinueTargetBlock = EntryConditionBlock; // All breaks should go to the code following the loop. BreakTargetBlock = LoopSuccessor; // NULL out Block to force lazy instantiation of blocks for the body. Block = NULL; // Create the body. The returned block is the entry to the loop body. BodyBlock = Visit(D->getBody()); assert (BodyBlock); if (Block) FinishBlock(BodyBlock); // Add the loop body entry as a successor to the condition. ExitConditionBlock->addSuccessor(BodyBlock); } // Link up the condition block with the code that follows the loop. // (the false branch). ExitConditionBlock->addSuccessor(LoopSuccessor); // There can be no more statements in the body block(s) // since we loop back to the body. NULL out Block to force // lazy creation of another block. Block = NULL; // Return the loop body, which is the dominating block for the loop. return BodyBlock; } CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) { // "continue" is a control-flow statement. Thus we stop processing the // current block. if (Block) FinishBlock(Block); // Now create a new block that ends with the continue statement. Block = createBlock(false); Block->setTerminator(C); // If there is no target for the continue, then we are looking at an // incomplete AST. Handle this by not registering a successor. if (ContinueTargetBlock) Block->addSuccessor(ContinueTargetBlock); return Block; } CFGBlock* CFGBuilder::VisitBreakStmt(BreakStmt* B) { // "break" is a control-flow statement. Thus we stop processing the // current block. if (Block) FinishBlock(Block); // Now create a new block that ends with the continue statement. Block = createBlock(false); Block->setTerminator(B); // If there is no target for the break, then we are looking at an // incomplete AST. Handle this by not registering a successor. if (BreakTargetBlock) Block->addSuccessor(BreakTargetBlock); return Block; } CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* S) { // "switch" is a control-flow statement. Thus we stop processing the // current block. CFGBlock* SwitchSuccessor = NULL; if (Block) { FinishBlock(Block); SwitchSuccessor = Block; } else SwitchSuccessor = Succ; // Save the current "switch" context. SaveAndRestore save_switch(SwitchTerminatedBlock), save_break(BreakTargetBlock); // Create a new block that will contain the switch statement. SwitchTerminatedBlock = createBlock(false); // Now process the switch body. The code after the switch is the implicit // successor. Succ = SwitchSuccessor; BreakTargetBlock = SwitchSuccessor; // When visiting the body, the case statements should automatically get // linked up to the switch. We also don't keep a pointer to the body, // since all control-flow from the switch goes to case/default statements. assert (S->getBody() && "switch must contain a non-NULL body"); Block = NULL; CFGBlock *BodyBlock = Visit(S->getBody()); if (Block) FinishBlock(BodyBlock); // Add the terminator and condition in the switch block. SwitchTerminatedBlock->setTerminator(S); assert (S->getCond() && "switch condition must be non-NULL"); Block = SwitchTerminatedBlock; return addStmt(S->getCond()); } CFGBlock* CFGBuilder::VisitSwitchCase(SwitchCase* S) { // A SwitchCase is either a "default" or "case" statement. We handle // both in the same way. They are essentially labels, so they are the // first statement in a block. CFGBlock* CaseBlock = Visit(S->getSubStmt()); assert (CaseBlock); // Cases/Default statements partition block, so this is the top of // the basic block we were processing (the case/default is the label). CaseBlock->setLabel(S); FinishBlock(CaseBlock); // Add this block to the list of successors for the block with the // switch statement. if (SwitchTerminatedBlock) SwitchTerminatedBlock->addSuccessor(CaseBlock); // We set Block to NULL to allow lazy creation of a new block (if necessary) Block = NULL; // This block is now the implicit successor of other blocks. Succ = CaseBlock; return CaseBlock; } CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) { // Lazily create the indirect-goto dispatch block if there isn't one // already. CFGBlock* IBlock = cfg->getIndirectGotoBlock(); if (!IBlock) { IBlock = createBlock(false); cfg->setIndirectGotoBlock(IBlock); } // IndirectGoto is a control-flow statement. Thus we stop processing the // current block and create a new one. if (Block) FinishBlock(Block); Block = createBlock(false); Block->setTerminator(I); Block->addSuccessor(IBlock); return addStmt(I->getTarget()); } } // end anonymous namespace /// createBlock - Constructs and adds a new CFGBlock to the CFG. The /// block has no successors or predecessors. If this is the first block /// created in the CFG, it is automatically set to be the Entry and Exit /// of the CFG. CFGBlock* CFG::createBlock(unsigned blockID) { bool first_block = begin() == end(); // Create the block. Blocks.push_front(CFGBlock(blockID)); // If this is the first block, set it as the Entry and Exit. if (first_block) Entry = Exit = &front(); // Return the block. return &front(); } /// buildCFG - Constructs a CFG from an AST. Ownership of the returned /// CFG is returned to the caller. CFG* CFG::buildCFG(Stmt* Statement) { CFGBuilder Builder; return Builder.buildCFG(Statement); } /// reverseStmts - Reverses the orders of statements within a CFGBlock. void CFGBlock::reverseStmts() { std::reverse(Stmts.begin(),Stmts.end()); } //===----------------------------------------------------------------------===// // CFG pretty printing //===----------------------------------------------------------------------===// /// dump - A simple pretty printer of a CFG that outputs to stderr. void CFG::dump() const { print(std::cerr); } /// print - A simple pretty printer of a CFG that outputs to an ostream. void CFG::print(std::ostream& OS) const { // Print the entry block. getEntry().print(OS,this); // Iterate through the CFGBlocks and print them one by one. for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) { // Skip the entry block, because we already printed it. if (&(*I) == &getEntry() || &(*I) == &getExit()) continue; I->print(OS,this); } // Print the exit block. getExit().print(OS,this); } namespace { class CFGBlockTerminatorPrint : public StmtVisitor { std::ostream& OS; public: CFGBlockTerminatorPrint(std::ostream& os) : OS(os) {} void VisitIfStmt(IfStmt* I) { OS << "if "; I->getCond()->printPretty(OS); OS << "\n"; } // Default case. void VisitStmt(Stmt* S) { S->printPretty(OS); } void VisitForStmt(ForStmt* F) { OS << "for (" ; if (Stmt* I = F->getInit()) I->printPretty(OS); OS << " ; "; if (Stmt* C = F->getCond()) C->printPretty(OS); OS << " ; "; if (Stmt* I = F->getInc()) I->printPretty(OS); OS << ")\n"; } void VisitWhileStmt(WhileStmt* W) { OS << "while " ; if (Stmt* C = W->getCond()) C->printPretty(OS); OS << "\n"; } void VisitDoStmt(DoStmt* D) { OS << "do ... while "; if (Stmt* C = D->getCond()) C->printPretty(OS); OS << '\n'; } void VisitSwitchStmt(SwitchStmt* S) { OS << "switch "; S->getCond()->printPretty(OS); OS << '\n'; } void VisitExpr(Expr* E) { E->printPretty(OS); OS << '\n'; } }; } // end anonymous namespace /// dump - A simply pretty printer of a CFGBlock that outputs to stderr. void CFGBlock::dump(const CFG* cfg) const { print(std::cerr,cfg); } /// print - A simple pretty printer of a CFGBlock that outputs to an ostream. /// Generally this will only be called from CFG::print. void CFGBlock::print(std::ostream& OS, const CFG* cfg, bool print_edges) const { // Print the header. OS << "\n [ B" << getBlockID(); if (this == &cfg->getEntry()) { OS << " (ENTRY) ]\n"; } else if (this == &cfg->getExit()) { OS << " (EXIT) ]\n"; } else if (this == cfg->getIndirectGotoBlock()) { OS << " (INDIRECT GOTO DISPATCH) ]\n"; } else OS << " ]\n"; // Print the label of this block. if (Stmt* S = const_cast(getLabel())) { if (print_edges) OS << " "; if (LabelStmt* L = dyn_cast(S)) OS << L->getName(); else if (CaseStmt* C = dyn_cast(S)) { OS << "case "; C->getLHS()->printPretty(OS); if (C->getRHS()) { OS << " ... "; C->getRHS()->printPretty(OS); } } else if (DefaultStmt* D = dyn_cast(D)) { OS << "default"; } else assert(false && "Invalid label statement in CFGBlock."); OS << ":\n"; } // Iterate through the statements in the block and print them. unsigned j = 1; for (const_iterator I = Stmts.begin(), E = Stmts.end() ; I != E ; ++I, ++j ) { // Print the statement # in the basic block and the statement itself. if (print_edges) OS << " "; OS << std::setw(3) << j << ": "; (*I)->printPretty(OS); // Expressions need a newline. if (isa(*I)) OS << '\n'; } // Print the terminator of this block. if (getTerminator()) { if (print_edges) OS << " "; OS << " T: "; CFGBlockTerminatorPrint(OS).Visit(const_cast(getTerminator())); } if (print_edges) { // Print the predecessors of this block. OS << " Predecessors (" << pred_size() << "):"; unsigned i = 0; for (const_pred_iterator I = pred_begin(), E = pred_end(); I != E; ++I, ++i) { if (i == 8 || (i-8) == 0) { OS << "\n "; } OS << " B" << (*I)->getBlockID(); } OS << '\n'; // Print the successors of this block. OS << " Successors (" << succ_size() << "):"; i = 0; for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I, ++i) { if (i == 8 || (i-8) % 10 == 0) { OS << "\n "; } OS << " B" << (*I)->getBlockID(); } OS << '\n'; } } //===----------------------------------------------------------------------===// // CFG Graphviz Visualization //===----------------------------------------------------------------------===// namespace llvm { template<> struct DOTGraphTraits : public DefaultDOTGraphTraits { static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) { std::ostringstream Out; Node->print(Out,Graph,false); std::string OutStr = Out.str(); if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); // Process string output to make it nicer... for (unsigned i = 0; i != OutStr.length(); ++i) if (OutStr[i] == '\n') { // Left justify OutStr[i] = '\\'; OutStr.insert(OutStr.begin()+i+1, 'l'); } return OutStr; } }; } // end namespace llvm void CFG::viewCFG() const { #ifndef NDEBUG llvm::ViewGraph(this,"CFG"); #else std::cerr << "CFG::viewCFG is only available in debug builds on " << "systems with Graphviz or gv!" << std::endl; #endif }