From f375e9a0924fd059792c6dccbb0412d5127bfc74 Mon Sep 17 00:00:00 2001 From: mike-m Date: Fri, 7 May 2010 00:28:04 +0000 Subject: Revert r103213. It broke several sections of live website. llvm-svn: 103219 --- llvm/docs/tutorial/LangImpl5.html | 1777 +++++++++++++++++++++++++++++++++++++ 1 file changed, 1777 insertions(+) create mode 100644 llvm/docs/tutorial/LangImpl5.html (limited to 'llvm/docs/tutorial/LangImpl5.html') diff --git a/llvm/docs/tutorial/LangImpl5.html b/llvm/docs/tutorial/LangImpl5.html new file mode 100644 index 00000000000..7136351bbb3 --- /dev/null +++ b/llvm/docs/tutorial/LangImpl5.html @@ -0,0 +1,1777 @@ + + + + + Kaleidoscope: Extending the Language: Control Flow + + + + + + + +
Kaleidoscope: Extending the Language: Control Flow
+ + + +
+

Written by Chris Lattner

+
+ + +
Chapter 5 Introduction
+ + +
+ +

Welcome to Chapter 5 of the "Implementing a language +with LLVM" tutorial. Parts 1-4 described the implementation of the simple +Kaleidoscope language and included support for generating LLVM IR, followed by +optimizations and a JIT compiler. Unfortunately, as presented, Kaleidoscope is +mostly useless: it has no control flow other than call and return. This means +that you can't have conditional branches in the code, significantly limiting its +power. In this episode of "build that compiler", we'll extend Kaleidoscope to +have an if/then/else expression plus a simple 'for' loop.

+ +
+ + +
If/Then/Else
+ + +
+ +

+Extending Kaleidoscope to support if/then/else is quite straightforward. It +basically requires adding lexer support for this "new" concept to the lexer, +parser, AST, and LLVM code emitter. This example is nice, because it shows how +easy it is to "grow" a language over time, incrementally extending it as new +ideas are discovered.

+ +

Before we get going on "how" we add this extension, lets talk about "what" we +want. The basic idea is that we want to be able to write this sort of thing: +

+ +
+
+def fib(x)
+  if x < 3 then
+    1
+  else
+    fib(x-1)+fib(x-2);
+
+
+ +

In Kaleidoscope, every construct is an expression: there are no statements. +As such, the if/then/else expression needs to return a value like any other. +Since we're using a mostly functional form, we'll have it evaluate its +conditional, then return the 'then' or 'else' value based on how the condition +was resolved. This is very similar to the C "?:" expression.

+ +

The semantics of the if/then/else expression is that it evaluates the +condition to a boolean equality value: 0.0 is considered to be false and +everything else is considered to be true. +If the condition is true, the first subexpression is evaluated and returned, if +the condition is false, the second subexpression is evaluated and returned. +Since Kaleidoscope allows side-effects, this behavior is important to nail down. +

+ +

Now that we know what we "want", lets break this down into its constituent +pieces.

+ +
+ + +
Lexer Extensions for +If/Then/Else
+ + + +
+ +

The lexer extensions are straightforward. First we add new enum values +for the relevant tokens:

+ +
+
+  // control
+  tok_if = -6, tok_then = -7, tok_else = -8,
+
+
+ +

Once we have that, we recognize the new keywords in the lexer. This is pretty simple +stuff:

+ +
+
+    ...
+    if (IdentifierStr == "def") return tok_def;
+    if (IdentifierStr == "extern") return tok_extern;
+    if (IdentifierStr == "if") return tok_if;
+    if (IdentifierStr == "then") return tok_then;
+    if (IdentifierStr == "else") return tok_else;
+    return tok_identifier;
+
+
+ +
+ + +
AST Extensions for + If/Then/Else
+ + +
+ +

To represent the new expression we add a new AST node for it:

+ +
+
+/// IfExprAST - Expression class for if/then/else.
+class IfExprAST : public ExprAST {
+  ExprAST *Cond, *Then, *Else;
+public:
+  IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+    : Cond(cond), Then(then), Else(_else) {}
+  virtual Value *Codegen();
+};
+
+
+ +

The AST node just has pointers to the various subexpressions.

+ +
+ + +
Parser Extensions for +If/Then/Else
+ + +
+ +

Now that we have the relevant tokens coming from the lexer and we have the +AST node to build, our parsing logic is relatively straightforward. First we +define a new parsing function:

+ +
+
+/// ifexpr ::= 'if' expression 'then' expression 'else' expression
+static ExprAST *ParseIfExpr() {
+  getNextToken();  // eat the if.
+  
+  // condition.
+  ExprAST *Cond = ParseExpression();
+  if (!Cond) return 0;
+  
+  if (CurTok != tok_then)
+    return Error("expected then");
+  getNextToken();  // eat the then
+  
+  ExprAST *Then = ParseExpression();
+  if (Then == 0) return 0;
+  
+  if (CurTok != tok_else)
+    return Error("expected else");
+  
+  getNextToken();
+  
+  ExprAST *Else = ParseExpression();
+  if (!Else) return 0;
+  
+  return new IfExprAST(Cond, Then, Else);
+}
+
+
+ +

Next we hook it up as a primary expression:

+ +
+
+static ExprAST *ParsePrimary() {
+  switch (CurTok) {
+  default: return Error("unknown token when expecting an expression");
+  case tok_identifier: return ParseIdentifierExpr();
+  case tok_number:     return ParseNumberExpr();
+  case '(':            return ParseParenExpr();
+  case tok_if:         return ParseIfExpr();
+  }
+}
+
+
+ +
+ + +
LLVM IR for If/Then/Else
+ + +
+ +

Now that we have it parsing and building the AST, the final piece is adding +LLVM code generation support. This is the most interesting part of the +if/then/else example, because this is where it starts to introduce new concepts. +All of the code above has been thoroughly described in previous chapters. +

+ +

To motivate the code we want to produce, lets take a look at a simple +example. Consider:

+ +
+
+extern foo();
+extern bar();
+def baz(x) if x then foo() else bar();
+
+
+ +

If you disable optimizations, the code you'll (soon) get from Kaleidoscope +looks like this:

+ +
+
+declare double @foo()
+
+declare double @bar()
+
+define double @baz(double %x) {
+entry:
+	%ifcond = fcmp one double %x, 0.000000e+00
+	br i1 %ifcond, label %then, label %else
+
+then:		; preds = %entry
+	%calltmp = call double @foo()
+	br label %ifcont
+
+else:		; preds = %entry
+	%calltmp1 = call double @bar()
+	br label %ifcont
+
+ifcont:		; preds = %else, %then
+	%iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
+	ret double %iftmp
+}
+
+
+ +

To visualize the control flow graph, you can use a nifty feature of the LLVM +'opt' tool. If you put this LLVM IR +into "t.ll" and run "llvm-as < t.ll | opt -analyze -view-cfg", a window will pop up and you'll +see this graph:

+ +
Example CFG
+ +

Another way to get this is to call "F->viewCFG()" or +"F->viewCFGOnly()" (where F is a "Function*") either by +inserting actual calls into the code and recompiling or by calling these in the +debugger. LLVM has many nice features for visualizing various graphs.

+ +

Getting back to the generated code, it is fairly simple: the entry block +evaluates the conditional expression ("x" in our case here) and compares the +result to 0.0 with the "fcmp one" +instruction ('one' is "Ordered and Not Equal"). Based on the result of this +expression, the code jumps to either the "then" or "else" blocks, which contain +the expressions for the true/false cases.

+ +

Once the then/else blocks are finished executing, they both branch back to the +'ifcont' block to execute the code that happens after the if/then/else. In this +case the only thing left to do is to return to the caller of the function. The +question then becomes: how does the code know which expression to return?

+ +

The answer to this question involves an important SSA operation: the +Phi +operation. If you're not familiar with SSA, the wikipedia +article is a good introduction and there are various other introductions to +it available on your favorite search engine. The short version is that +"execution" of the Phi operation requires "remembering" which block control came +from. The Phi operation takes on the value corresponding to the input control +block. In this case, if control comes in from the "then" block, it gets the +value of "calltmp". If control comes from the "else" block, it gets the value +of "calltmp1".

+ +

At this point, you are probably starting to think "Oh no! This means my +simple and elegant front-end will have to start generating SSA form in order to +use LLVM!". Fortunately, this is not the case, and we strongly advise +not implementing an SSA construction algorithm in your front-end +unless there is an amazingly good reason to do so. In practice, there are two +sorts of values that float around in code written for your average imperative +programming language that might need Phi nodes:

+ +
    +
  1. Code that involves user variables: x = 1; x = x + 1;
  2. +
  3. Values that are implicit in the structure of your AST, such as the Phi node +in this case.
  4. +
+ +

In Chapter 7 of this tutorial ("mutable +variables"), we'll talk about #1 +in depth. For now, just believe me that you don't need SSA construction to +handle this case. For #2, you have the choice of using the techniques that we will +describe for #1, or you can insert Phi nodes directly, if convenient. In this +case, it is really really easy to generate the Phi node, so we choose to do it +directly.

+ +

Okay, enough of the motivation and overview, lets generate code!

+ +
+ + +
Code Generation for +If/Then/Else
+ + +
+ +

In order to generate code for this, we implement the Codegen method +for IfExprAST:

+ +
+
+Value *IfExprAST::Codegen() {
+  Value *CondV = Cond->Codegen();
+  if (CondV == 0) return 0;
+  
+  // Convert condition to a bool by comparing equal to 0.0.
+  CondV = Builder.CreateFCmpONE(CondV, 
+                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+                                "ifcond");
+
+
+ +

This code is straightforward and similar to what we saw before. We emit the +expression for the condition, then compare that value to zero to get a truth +value as a 1-bit (bool) value.

+ +
+
+  Function *TheFunction = Builder.GetInsertBlock()->getParent();
+  
+  // Create blocks for the then and else cases.  Insert the 'then' block at the
+  // end of the function.
+  BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
+  BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
+  BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
+
+  Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+
+ +

This code creates the basic blocks that are related to the if/then/else +statement, and correspond directly to the blocks in the example above. The +first line gets the current Function object that is being built. It +gets this by asking the builder for the current BasicBlock, and asking that +block for its "parent" (the function it is currently embedded into).

+ +

Once it has that, it creates three blocks. Note that it passes "TheFunction" +into the constructor for the "then" block. This causes the constructor to +automatically insert the new block into the end of the specified function. The +other two blocks are created, but aren't yet inserted into the function.

+ +

Once the blocks are created, we can emit the conditional branch that chooses +between them. Note that creating new blocks does not implicitly affect the +IRBuilder, so it is still inserting into the block that the condition +went into. Also note that it is creating a branch to the "then" block and the +"else" block, even though the "else" block isn't inserted into the function yet. +This is all ok: it is the standard way that LLVM supports forward +references.

+ +
+
+  // Emit then value.
+  Builder.SetInsertPoint(ThenBB);
+  
+  Value *ThenV = Then->Codegen();
+  if (ThenV == 0) return 0;
+  
+  Builder.CreateBr(MergeBB);
+  // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+  ThenBB = Builder.GetInsertBlock();
+
+
+ +

After the conditional branch is inserted, we move the builder to start +inserting into the "then" block. Strictly speaking, this call moves the +insertion point to be at the end of the specified block. However, since the +"then" block is empty, it also starts out by inserting at the beginning of the +block. :)

+ +

Once the insertion point is set, we recursively codegen the "then" expression +from the AST. To finish off the "then" block, we create an unconditional branch +to the merge block. One interesting (and very important) aspect of the LLVM IR +is that it requires all basic blocks +to be "terminated" with a control flow +instruction such as return or branch. This means that all control flow, +including fall throughs must be made explicit in the LLVM IR. If you +violate this rule, the verifier will emit an error.

+ +

The final line here is quite subtle, but is very important. The basic issue +is that when we create the Phi node in the merge block, we need to set up the +block/value pairs that indicate how the Phi will work. Importantly, the Phi +node expects to have an entry for each predecessor of the block in the CFG. Why +then, are we getting the current block when we just set it to ThenBB 5 lines +above? The problem is that the "Then" expression may actually itself change the +block that the Builder is emitting into if, for example, it contains a nested +"if/then/else" expression. Because calling Codegen recursively could +arbitrarily change the notion of the current block, we are required to get an +up-to-date value for code that will set up the Phi node.

+ +
+
+  // Emit else block.
+  TheFunction->getBasicBlockList().push_back(ElseBB);
+  Builder.SetInsertPoint(ElseBB);
+  
+  Value *ElseV = Else->Codegen();
+  if (ElseV == 0) return 0;
+  
+  Builder.CreateBr(MergeBB);
+  // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+  ElseBB = Builder.GetInsertBlock();
+
+
+ +

Code generation for the 'else' block is basically identical to codegen for +the 'then' block. The only significant difference is the first line, which adds +the 'else' block to the function. Recall previously that the 'else' block was +created, but not added to the function. Now that the 'then' and 'else' blocks +are emitted, we can finish up with the merge code:

+ +
+
+  // Emit merge block.
+  TheFunction->getBasicBlockList().push_back(MergeBB);
+  Builder.SetInsertPoint(MergeBB);
+  PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()),
+                                  "iftmp");
+  
+  PN->addIncoming(ThenV, ThenBB);
+  PN->addIncoming(ElseV, ElseBB);
+  return PN;
+}
+
+
+ +

The first two lines here are now familiar: the first adds the "merge" block +to the Function object (it was previously floating, like the else block above). +The second block changes the insertion point so that newly created code will go +into the "merge" block. Once that is done, we need to create the PHI node and +set up the block/value pairs for the PHI.

+ +

Finally, the CodeGen function returns the phi node as the value computed by +the if/then/else expression. In our example above, this returned value will +feed into the code for the top-level function, which will create the return +instruction.

+ +

Overall, we now have the ability to execute conditional code in +Kaleidoscope. With this extension, Kaleidoscope is a fairly complete language +that can calculate a wide variety of numeric functions. Next up we'll add +another useful expression that is familiar from non-functional languages...

+ +
+ + +
'for' Loop Expression
+ + +
+ +

Now that we know how to add basic control flow constructs to the language, +we have the tools to add more powerful things. Lets add something more +aggressive, a 'for' expression:

+ +
+
+ extern putchard(char)
+ def printstar(n)
+   for i = 1, i < n, 1.0 in
+     putchard(42);  # ascii 42 = '*'
+     
+ # print 100 '*' characters
+ printstar(100);
+
+
+ +

This expression defines a new variable ("i" in this case) which iterates from +a starting value, while the condition ("i < n" in this case) is true, +incrementing by an optional step value ("1.0" in this case). If the step value +is omitted, it defaults to 1.0. While the loop is true, it executes its +body expression. Because we don't have anything better to return, we'll just +define the loop as always returning 0.0. In the future when we have mutable +variables, it will get more useful.

+ +

As before, lets talk about the changes that we need to Kaleidoscope to +support this.

+ +
+ + +
Lexer Extensions for +the 'for' Loop
+ + +
+ +

The lexer extensions are the same sort of thing as for if/then/else:

+ +
+
+  ... in enum Token ...
+  // control
+  tok_if = -6, tok_then = -7, tok_else = -8,
+  tok_for = -9, tok_in = -10
+
+  ... in gettok ...
+  if (IdentifierStr == "def") return tok_def;
+  if (IdentifierStr == "extern") return tok_extern;
+  if (IdentifierStr == "if") return tok_if;
+  if (IdentifierStr == "then") return tok_then;
+  if (IdentifierStr == "else") return tok_else;
+  if (IdentifierStr == "for") return tok_for;
+  if (IdentifierStr == "in") return tok_in;
+  return tok_identifier;
+
+
+ +
+ + +
AST Extensions for +the 'for' Loop
+ + +
+ +

The AST node is just as simple. It basically boils down to capturing +the variable name and the constituent expressions in the node.

+ +
+
+/// ForExprAST - Expression class for for/in.
+class ForExprAST : public ExprAST {
+  std::string VarName;
+  ExprAST *Start, *End, *Step, *Body;
+public:
+  ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
+             ExprAST *step, ExprAST *body)
+    : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+  virtual Value *Codegen();
+};
+
+
+ +
+ + +
Parser Extensions for +the 'for' Loop
+ + +
+ +

The parser code is also fairly standard. The only interesting thing here is +handling of the optional step value. The parser code handles it by checking to +see if the second comma is present. If not, it sets the step value to null in +the AST node:

+ +
+
+/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+static ExprAST *ParseForExpr() {
+  getNextToken();  // eat the for.
+
+  if (CurTok != tok_identifier)
+    return Error("expected identifier after for");
+  
+  std::string IdName = IdentifierStr;
+  getNextToken();  // eat identifier.
+  
+  if (CurTok != '=')
+    return Error("expected '=' after for");
+  getNextToken();  // eat '='.
+  
+  
+  ExprAST *Start = ParseExpression();
+  if (Start == 0) return 0;
+  if (CurTok != ',')
+    return Error("expected ',' after for start value");
+  getNextToken();
+  
+  ExprAST *End = ParseExpression();
+  if (End == 0) return 0;
+  
+  // The step value is optional.
+  ExprAST *Step = 0;
+  if (CurTok == ',') {
+    getNextToken();
+    Step = ParseExpression();
+    if (Step == 0) return 0;
+  }
+  
+  if (CurTok != tok_in)
+    return Error("expected 'in' after for");
+  getNextToken();  // eat 'in'.
+  
+  ExprAST *Body = ParseExpression();
+  if (Body == 0) return 0;
+
+  return new ForExprAST(IdName, Start, End, Step, Body);
+}
+
+
+ +
+ + +
LLVM IR for +the 'for' Loop
+ + +
+ +

Now we get to the good part: the LLVM IR we want to generate for this thing. +With the simple example above, we get this LLVM IR (note that this dump is +generated with optimizations disabled for clarity): +

+ +
+
+declare double @putchard(double)
+
+define double @printstar(double %n) {
+entry:
+        ; initial value = 1.0 (inlined into phi)
+	br label %loop
+
+loop:		; preds = %loop, %entry
+	%i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
+        ; body
+	%calltmp = call double @putchard( double 4.200000e+01 )
+        ; increment
+	%nextvar = fadd double %i, 1.000000e+00
+
+        ; termination test
+	%cmptmp = fcmp ult double %i, %n
+	%booltmp = uitofp i1 %cmptmp to double
+	%loopcond = fcmp one double %booltmp, 0.000000e+00
+	br i1 %loopcond, label %loop, label %afterloop
+
+afterloop:		; preds = %loop
+        ; loop always returns 0.0
+	ret double 0.000000e+00
+}
+
+
+ +

This loop contains all the same constructs we saw before: a phi node, several +expressions, and some basic blocks. Lets see how this fits together.

+ +
+ + +
Code Generation for +the 'for' Loop
+ + +
+ +

The first part of Codegen is very simple: we just output the start expression +for the loop value:

+ +
+
+Value *ForExprAST::Codegen() {
+  // Emit the start code first, without 'variable' in scope.
+  Value *StartVal = Start->Codegen();
+  if (StartVal == 0) return 0;
+
+
+ +

With this out of the way, the next step is to set up the LLVM basic block +for the start of the loop body. In the case above, the whole loop body is one +block, but remember that the body code itself could consist of multiple blocks +(e.g. if it contains an if/then/else or a for/in expression).

+ +
+
+  // Make the new basic block for the loop header, inserting after current
+  // block.
+  Function *TheFunction = Builder.GetInsertBlock()->getParent();
+  BasicBlock *PreheaderBB = Builder.GetInsertBlock();
+  BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
+  
+  // Insert an explicit fall through from the current block to the LoopBB.
+  Builder.CreateBr(LoopBB);
+
+
+ +

This code is similar to what we saw for if/then/else. Because we will need +it to create the Phi node, we remember the block that falls through into the +loop. Once we have that, we create the actual block that starts the loop and +create an unconditional branch for the fall-through between the two blocks.

+ +
+
+  // Start insertion in LoopBB.
+  Builder.SetInsertPoint(LoopBB);
+  
+  // Start the PHI node with an entry for Start.
+  PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), VarName.c_str());
+  Variable->addIncoming(StartVal, PreheaderBB);
+
+
+ +

Now that the "preheader" for the loop is set up, we switch to emitting code +for the loop body. To begin with, we move the insertion point and create the +PHI node for the loop induction variable. Since we already know the incoming +value for the starting value, we add it to the Phi node. Note that the Phi will +eventually get a second value for the backedge, but we can't set it up yet +(because it doesn't exist!).

+ +
+
+  // Within the loop, the variable is defined equal to the PHI node.  If it
+  // shadows an existing variable, we have to restore it, so save it now.
+  Value *OldVal = NamedValues[VarName];
+  NamedValues[VarName] = Variable;
+  
+  // Emit the body of the loop.  This, like any other expr, can change the
+  // current BB.  Note that we ignore the value computed by the body, but don't
+  // allow an error.
+  if (Body->Codegen() == 0)
+    return 0;
+
+
+ +

Now the code starts to get more interesting. Our 'for' loop introduces a new +variable to the symbol table. This means that our symbol table can now contain +either function arguments or loop variables. To handle this, before we codegen +the body of the loop, we add the loop variable as the current value for its +name. Note that it is possible that there is a variable of the same name in the +outer scope. It would be easy to make this an error (emit an error and return +null if there is already an entry for VarName) but we choose to allow shadowing +of variables. In order to handle this correctly, we remember the Value that +we are potentially shadowing in OldVal (which will be null if there is +no shadowed variable).

+ +

Once the loop variable is set into the symbol table, the code recursively +codegen's the body. This allows the body to use the loop variable: any +references to it will naturally find it in the symbol table.

+ +
+
+  // Emit the step value.
+  Value *StepVal;
+  if (Step) {
+    StepVal = Step->Codegen();
+    if (StepVal == 0) return 0;
+  } else {
+    // If not specified, use 1.0.
+    StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
+  }
+  
+  Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar");
+
+
+ +

Now that the body is emitted, we compute the next value of the iteration +variable by adding the step value, or 1.0 if it isn't present. 'NextVar' +will be the value of the loop variable on the next iteration of the loop.

+ +
+
+  // Compute the end condition.
+  Value *EndCond = End->Codegen();
+  if (EndCond == 0) return EndCond;
+  
+  // Convert condition to a bool by comparing equal to 0.0.
+  EndCond = Builder.CreateFCmpONE(EndCond, 
+                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+                                  "loopcond");
+
+
+ +

Finally, we evaluate the exit value of the loop, to determine whether the +loop should exit. This mirrors the condition evaluation for the if/then/else +statement.

+ +
+
+  // Create the "after loop" block and insert it.
+  BasicBlock *LoopEndBB = Builder.GetInsertBlock();
+  BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
+  
+  // Insert the conditional branch into the end of LoopEndBB.
+  Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+  
+  // Any new code will be inserted in AfterBB.
+  Builder.SetInsertPoint(AfterBB);
+
+
+ +

With the code for the body of the loop complete, we just need to finish up +the control flow for it. This code remembers the end block (for the phi node), then creates the block for the loop exit ("afterloop"). Based on the value of the +exit condition, it creates a conditional branch that chooses between executing +the loop again and exiting the loop. Any future code is emitted in the +"afterloop" block, so it sets the insertion position to it.

+ +
+
+  // Add a new entry to the PHI node for the backedge.
+  Variable->addIncoming(NextVar, LoopEndBB);
+  
+  // Restore the unshadowed variable.
+  if (OldVal)
+    NamedValues[VarName] = OldVal;
+  else
+    NamedValues.erase(VarName);
+  
+  // for expr always returns 0.0.
+  return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
+}
+
+
+ +

The final code handles various cleanups: now that we have the "NextVar" +value, we can add the incoming value to the loop PHI node. After that, we +remove the loop variable from the symbol table, so that it isn't in scope after +the for loop. Finally, code generation of the for loop always returns 0.0, so +that is what we return from ForExprAST::Codegen.

+ +

With this, we conclude the "adding control flow to Kaleidoscope" chapter of +the tutorial. In this chapter we added two control flow constructs, and used them to motivate a couple of aspects of the LLVM IR that are important for front-end implementors +to know. In the next chapter of our saga, we will get a bit crazier and add +user-defined operators to our poor innocent +language.

+ +
+ + +
Full Code Listing
+ + +
+ +

+Here is the complete code listing for our running example, enhanced with the +if/then/else and for expressions.. To build this example, use: +

+ +
+
+   # Compile
+   g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
+   # Run
+   ./toy
+
+
+ +

Here is the code:

+ +
+
+#include "llvm/DerivedTypes.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/JIT.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetSelect.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Support/IRBuilder.h"
+#include <cstdio>
+#include <string>
+#include <map>
+#include <vector>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Lexer
+//===----------------------------------------------------------------------===//
+
+// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+// of these for known things.
+enum Token {
+  tok_eof = -1,
+
+  // commands
+  tok_def = -2, tok_extern = -3,
+
+  // primary
+  tok_identifier = -4, tok_number = -5,
+  
+  // control
+  tok_if = -6, tok_then = -7, tok_else = -8,
+  tok_for = -9, tok_in = -10
+};
+
+static std::string IdentifierStr;  // Filled in if tok_identifier
+static double NumVal;              // Filled in if tok_number
+
+/// gettok - Return the next token from standard input.
+static int gettok() {
+  static int LastChar = ' ';
+
+  // Skip any whitespace.
+  while (isspace(LastChar))
+    LastChar = getchar();
+
+  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+    IdentifierStr = LastChar;
+    while (isalnum((LastChar = getchar())))
+      IdentifierStr += LastChar;
+
+    if (IdentifierStr == "def") return tok_def;
+    if (IdentifierStr == "extern") return tok_extern;
+    if (IdentifierStr == "if") return tok_if;
+    if (IdentifierStr == "then") return tok_then;
+    if (IdentifierStr == "else") return tok_else;
+    if (IdentifierStr == "for") return tok_for;
+    if (IdentifierStr == "in") return tok_in;
+    return tok_identifier;
+  }
+
+  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
+    std::string NumStr;
+    do {
+      NumStr += LastChar;
+      LastChar = getchar();
+    } while (isdigit(LastChar) || LastChar == '.');
+
+    NumVal = strtod(NumStr.c_str(), 0);
+    return tok_number;
+  }
+
+  if (LastChar == '#') {
+    // Comment until end of line.
+    do LastChar = getchar();
+    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+    
+    if (LastChar != EOF)
+      return gettok();
+  }
+  
+  // Check for end of file.  Don't eat the EOF.
+  if (LastChar == EOF)
+    return tok_eof;
+
+  // Otherwise, just return the character as its ascii value.
+  int ThisChar = LastChar;
+  LastChar = getchar();
+  return ThisChar;
+}
+
+//===----------------------------------------------------------------------===//
+// Abstract Syntax Tree (aka Parse Tree)
+//===----------------------------------------------------------------------===//
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+  virtual ~ExprAST() {}
+  virtual Value *Codegen() = 0;
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+  double Val;
+public:
+  NumberExprAST(double val) : Val(val) {}
+  virtual Value *Codegen();
+};
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+  std::string Name;
+public:
+  VariableExprAST(const std::string &name) : Name(name) {}
+  virtual Value *Codegen();
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+  char Op;
+  ExprAST *LHS, *RHS;
+public:
+  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
+    : Op(op), LHS(lhs), RHS(rhs) {}
+  virtual Value *Codegen();
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+  std::string Callee;
+  std::vector<ExprAST*> Args;
+public:
+  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+    : Callee(callee), Args(args) {}
+  virtual Value *Codegen();
+};
+
+/// IfExprAST - Expression class for if/then/else.
+class IfExprAST : public ExprAST {
+  ExprAST *Cond, *Then, *Else;
+public:
+  IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+  : Cond(cond), Then(then), Else(_else) {}
+  virtual Value *Codegen();
+};
+
+/// ForExprAST - Expression class for for/in.
+class ForExprAST : public ExprAST {
+  std::string VarName;
+  ExprAST *Start, *End, *Step, *Body;
+public:
+  ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
+             ExprAST *step, ExprAST *body)
+    : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+  virtual Value *Codegen();
+};
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its name, and its argument names (thus implicitly the number
+/// of arguments the function takes).
+class PrototypeAST {
+  std::string Name;
+  std::vector<std::string> Args;
+public:
+  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
+    : Name(name), Args(args) {}
+  
+  Function *Codegen();
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+  PrototypeAST *Proto;
+  ExprAST *Body;
+public:
+  FunctionAST(PrototypeAST *proto, ExprAST *body)
+    : Proto(proto), Body(body) {}
+  
+  Function *Codegen();
+};
+
+//===----------------------------------------------------------------------===//
+// Parser
+//===----------------------------------------------------------------------===//
+
+/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
+/// token the parser is looking at.  getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+  return CurTok = gettok();
+}
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map<char, int> BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+  if (!isascii(CurTok))
+    return -1;
+  
+  // Make sure it's a declared binop.
+  int TokPrec = BinopPrecedence[CurTok];
+  if (TokPrec <= 0) return -1;
+  return TokPrec;
+}
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+static ExprAST *ParseExpression();
+
+/// identifierexpr
+///   ::= identifier
+///   ::= identifier '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+  std::string IdName = IdentifierStr;
+  
+  getNextToken();  // eat identifier.
+  
+  if (CurTok != '(') // Simple variable ref.
+    return new VariableExprAST(IdName);
+  
+  // Call.
+  getNextToken();  // eat (
+  std::vector<ExprAST*> Args;
+  if (CurTok != ')') {
+    while (1) {
+      ExprAST *Arg = ParseExpression();
+      if (!Arg) return 0;
+      Args.push_back(Arg);
+
+      if (CurTok == ')') break;
+
+      if (CurTok != ',')
+        return Error("Expected ')' or ',' in argument list");
+      getNextToken();
+    }
+  }
+
+  // Eat the ')'.
+  getNextToken();
+  
+  return new CallExprAST(IdName, Args);
+}
+
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+  ExprAST *Result = new NumberExprAST(NumVal);
+  getNextToken(); // consume the number
+  return Result;
+}
+
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+  getNextToken();  // eat (.
+  ExprAST *V = ParseExpression();
+  if (!V) return 0;
+  
+  if (CurTok != ')')
+    return Error("expected ')'");
+  getNextToken();  // eat ).
+  return V;
+}
+
+/// ifexpr ::= 'if' expression 'then' expression 'else' expression
+static ExprAST *ParseIfExpr() {
+  getNextToken();  // eat the if.
+  
+  // condition.
+  ExprAST *Cond = ParseExpression();
+  if (!Cond) return 0;
+  
+  if (CurTok != tok_then)
+    return Error("expected then");
+  getNextToken();  // eat the then
+  
+  ExprAST *Then = ParseExpression();
+  if (Then == 0) return 0;
+  
+  if (CurTok != tok_else)
+    return Error("expected else");
+  
+  getNextToken();
+  
+  ExprAST *Else = ParseExpression();
+  if (!Else) return 0;
+  
+  return new IfExprAST(Cond, Then, Else);
+}
+
+/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+static ExprAST *ParseForExpr() {
+  getNextToken();  // eat the for.
+
+  if (CurTok != tok_identifier)
+    return Error("expected identifier after for");
+  
+  std::string IdName = IdentifierStr;
+  getNextToken();  // eat identifier.
+  
+  if (CurTok != '=')
+    return Error("expected '=' after for");
+  getNextToken();  // eat '='.
+  
+  
+  ExprAST *Start = ParseExpression();
+  if (Start == 0) return 0;
+  if (CurTok != ',')
+    return Error("expected ',' after for start value");
+  getNextToken();
+  
+  ExprAST *End = ParseExpression();
+  if (End == 0) return 0;
+  
+  // The step value is optional.
+  ExprAST *Step = 0;
+  if (CurTok == ',') {
+    getNextToken();
+    Step = ParseExpression();
+    if (Step == 0) return 0;
+  }
+  
+  if (CurTok != tok_in)
+    return Error("expected 'in' after for");
+  getNextToken();  // eat 'in'.
+  
+  ExprAST *Body = ParseExpression();
+  if (Body == 0) return 0;
+
+  return new ForExprAST(IdName, Start, End, Step, Body);
+}
+
+/// primary
+///   ::= identifierexpr
+///   ::= numberexpr
+///   ::= parenexpr
+///   ::= ifexpr
+///   ::= forexpr
+static ExprAST *ParsePrimary() {
+  switch (CurTok) {
+  default: return Error("unknown token when expecting an expression");
+  case tok_identifier: return ParseIdentifierExpr();
+  case tok_number:     return ParseNumberExpr();
+  case '(':            return ParseParenExpr();
+  case tok_if:         return ParseIfExpr();
+  case tok_for:        return ParseForExpr();
+  }
+}
+
+/// binoprhs
+///   ::= ('+' primary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+  // If this is a binop, find its precedence.
+  while (1) {
+    int TokPrec = GetTokPrecedence();
+    
+    // If this is a binop that binds at least as tightly as the current binop,
+    // consume it, otherwise we are done.
+    if (TokPrec < ExprPrec)
+      return LHS;
+    
+    // Okay, we know this is a binop.
+    int BinOp = CurTok;
+    getNextToken();  // eat binop
+    
+    // Parse the primary expression after the binary operator.
+    ExprAST *RHS = ParsePrimary();
+    if (!RHS) return 0;
+    
+    // If BinOp binds less tightly with RHS than the operator after RHS, let
+    // the pending operator take RHS as its LHS.
+    int NextPrec = GetTokPrecedence();
+    if (TokPrec < NextPrec) {
+      RHS = ParseBinOpRHS(TokPrec+1, RHS);
+      if (RHS == 0) return 0;
+    }
+    
+    // Merge LHS/RHS.
+    LHS = new BinaryExprAST(BinOp, LHS, RHS);
+  }
+}
+
+/// expression
+///   ::= primary binoprhs
+///
+static ExprAST *ParseExpression() {
+  ExprAST *LHS = ParsePrimary();
+  if (!LHS) return 0;
+  
+  return ParseBinOpRHS(0, LHS);
+}
+
+/// prototype
+///   ::= id '(' id* ')'
+static PrototypeAST *ParsePrototype() {
+  if (CurTok != tok_identifier)
+    return ErrorP("Expected function name in prototype");
+
+  std::string FnName = IdentifierStr;
+  getNextToken();
+  
+  if (CurTok != '(')
+    return ErrorP("Expected '(' in prototype");
+  
+  std::vector<std::string> ArgNames;
+  while (getNextToken() == tok_identifier)
+    ArgNames.push_back(IdentifierStr);
+  if (CurTok != ')')
+    return ErrorP("Expected ')' in prototype");
+  
+  // success.
+  getNextToken();  // eat ')'.
+  
+  return new PrototypeAST(FnName, ArgNames);
+}
+
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+  getNextToken();  // eat def.
+  PrototypeAST *Proto = ParsePrototype();
+  if (Proto == 0) return 0;
+
+  if (ExprAST *E = ParseExpression())
+    return new FunctionAST(Proto, E);
+  return 0;
+}
+
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+  if (ExprAST *E = ParseExpression()) {
+    // Make an anonymous proto.
+    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+    return new FunctionAST(Proto, E);
+  }
+  return 0;
+}
+
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+  getNextToken();  // eat extern.
+  return ParsePrototype();
+}
+
+//===----------------------------------------------------------------------===//
+// Code Generation
+//===----------------------------------------------------------------------===//
+
+static Module *TheModule;
+static IRBuilder<> Builder(getGlobalContext());
+static std::map<std::string, Value*> NamedValues;
+static FunctionPassManager *TheFPM;
+
+Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+Value *NumberExprAST::Codegen() {
+  return ConstantFP::get(getGlobalContext(), APFloat(Val));
+}
+
+Value *VariableExprAST::Codegen() {
+  // Look this variable up in the function.
+  Value *V = NamedValues[Name];
+  return V ? V : ErrorV("Unknown variable name");
+}
+
+Value *BinaryExprAST::Codegen() {
+  Value *L = LHS->Codegen();
+  Value *R = RHS->Codegen();
+  if (L == 0 || R == 0) return 0;
+  
+  switch (Op) {
+  case '+': return Builder.CreateAdd(L, R, "addtmp");
+  case '-': return Builder.CreateSub(L, R, "subtmp");
+  case '*': return Builder.CreateMul(L, R, "multmp");
+  case '<':
+    L = Builder.CreateFCmpULT(L, R, "cmptmp");
+    // Convert bool 0/1 to double 0.0 or 1.0
+    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+                                "booltmp");
+  default: return ErrorV("invalid binary operator");
+  }
+}
+
+Value *CallExprAST::Codegen() {
+  // Look up the name in the global module table.
+  Function *CalleeF = TheModule->getFunction(Callee);
+  if (CalleeF == 0)
+    return ErrorV("Unknown function referenced");
+  
+  // If argument mismatch error.
+  if (CalleeF->arg_size() != Args.size())
+    return ErrorV("Incorrect # arguments passed");
+
+  std::vector<Value*> ArgsV;
+  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+    ArgsV.push_back(Args[i]->Codegen());
+    if (ArgsV.back() == 0) return 0;
+  }
+  
+  return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
+}
+
+Value *IfExprAST::Codegen() {
+  Value *CondV = Cond->Codegen();
+  if (CondV == 0) return 0;
+  
+  // Convert condition to a bool by comparing equal to 0.0.
+  CondV = Builder.CreateFCmpONE(CondV, 
+                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+                                "ifcond");
+  
+  Function *TheFunction = Builder.GetInsertBlock()->getParent();
+  
+  // Create blocks for the then and else cases.  Insert the 'then' block at the
+  // end of the function.
+  BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
+  BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
+  BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
+  
+  Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+  
+  // Emit then value.
+  Builder.SetInsertPoint(ThenBB);
+  
+  Value *ThenV = Then->Codegen();
+  if (ThenV == 0) return 0;
+  
+  Builder.CreateBr(MergeBB);
+  // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+  ThenBB = Builder.GetInsertBlock();
+  
+  // Emit else block.
+  TheFunction->getBasicBlockList().push_back(ElseBB);
+  Builder.SetInsertPoint(ElseBB);
+  
+  Value *ElseV = Else->Codegen();
+  if (ElseV == 0) return 0;
+  
+  Builder.CreateBr(MergeBB);
+  // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+  ElseBB = Builder.GetInsertBlock();
+  
+  // Emit merge block.
+  TheFunction->getBasicBlockList().push_back(MergeBB);
+  Builder.SetInsertPoint(MergeBB);
+  PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()),
+                                  "iftmp");
+  
+  PN->addIncoming(ThenV, ThenBB);
+  PN->addIncoming(ElseV, ElseBB);
+  return PN;
+}
+
+Value *ForExprAST::Codegen() {
+  // Output this as:
+  //   ...
+  //   start = startexpr
+  //   goto loop
+  // loop: 
+  //   variable = phi [start, loopheader], [nextvariable, loopend]
+  //   ...
+  //   bodyexpr
+  //   ...
+  // loopend:
+  //   step = stepexpr
+  //   nextvariable = variable + step
+  //   endcond = endexpr
+  //   br endcond, loop, endloop
+  // outloop:
+  
+  // Emit the start code first, without 'variable' in scope.
+  Value *StartVal = Start->Codegen();
+  if (StartVal == 0) return 0;
+  
+  // Make the new basic block for the loop header, inserting after current
+  // block.
+  Function *TheFunction = Builder.GetInsertBlock()->getParent();
+  BasicBlock *PreheaderBB = Builder.GetInsertBlock();
+  BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
+  
+  // Insert an explicit fall through from the current block to the LoopBB.
+  Builder.CreateBr(LoopBB);
+
+  // Start insertion in LoopBB.
+  Builder.SetInsertPoint(LoopBB);
+  
+  // Start the PHI node with an entry for Start.
+  PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), VarName.c_str());
+  Variable->addIncoming(StartVal, PreheaderBB);
+  
+  // Within the loop, the variable is defined equal to the PHI node.  If it
+  // shadows an existing variable, we have to restore it, so save it now.
+  Value *OldVal = NamedValues[VarName];
+  NamedValues[VarName] = Variable;
+  
+  // Emit the body of the loop.  This, like any other expr, can change the
+  // current BB.  Note that we ignore the value computed by the body, but don't
+  // allow an error.
+  if (Body->Codegen() == 0)
+    return 0;
+  
+  // Emit the step value.
+  Value *StepVal;
+  if (Step) {
+    StepVal = Step->Codegen();
+    if (StepVal == 0) return 0;
+  } else {
+    // If not specified, use 1.0.
+    StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
+  }
+  
+  Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar");
+
+  // Compute the end condition.
+  Value *EndCond = End->Codegen();
+  if (EndCond == 0) return EndCond;
+  
+  // Convert condition to a bool by comparing equal to 0.0.
+  EndCond = Builder.CreateFCmpONE(EndCond, 
+                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+                                  "loopcond");
+  
+  // Create the "after loop" block and insert it.
+  BasicBlock *LoopEndBB = Builder.GetInsertBlock();
+  BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
+  
+  // Insert the conditional branch into the end of LoopEndBB.
+  Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+  
+  // Any new code will be inserted in AfterBB.
+  Builder.SetInsertPoint(AfterBB);
+  
+  // Add a new entry to the PHI node for the backedge.
+  Variable->addIncoming(NextVar, LoopEndBB);
+  
+  // Restore the unshadowed variable.
+  if (OldVal)
+    NamedValues[VarName] = OldVal;
+  else
+    NamedValues.erase(VarName);
+
+  
+  // for expr always returns 0.0.
+  return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
+}
+
+Function *PrototypeAST::Codegen() {
+  // Make the function type:  double(double,double) etc.
+  std::vector<const Type*> Doubles(Args.size(),
+                                   Type::getDoubleTy(getGlobalContext()));
+  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+                                       Doubles, false);
+  
+  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+  
+  // If F conflicted, there was already something named 'Name'.  If it has a
+  // body, don't allow redefinition or reextern.
+  if (F->getName() != Name) {
+    // Delete the one we just made and get the existing one.
+    F->eraseFromParent();
+    F = TheModule->getFunction(Name);
+    
+    // If F already has a body, reject this.
+    if (!F->empty()) {
+      ErrorF("redefinition of function");
+      return 0;
+    }
+    
+    // If F took a different number of args, reject.
+    if (F->arg_size() != Args.size()) {
+      ErrorF("redefinition of function with different # args");
+      return 0;
+    }
+  }
+  
+  // Set names for all arguments.
+  unsigned Idx = 0;
+  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+       ++AI, ++Idx) {
+    AI->setName(Args[Idx]);
+    
+    // Add arguments to variable symbol table.
+    NamedValues[Args[Idx]] = AI;
+  }
+  
+  return F;
+}
+
+Function *FunctionAST::Codegen() {
+  NamedValues.clear();
+  
+  Function *TheFunction = Proto->Codegen();
+  if (TheFunction == 0)
+    return 0;
+  
+  // Create a new basic block to start insertion into.
+  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+  Builder.SetInsertPoint(BB);
+  
+  if (Value *RetVal = Body->Codegen()) {
+    // Finish off the function.
+    Builder.CreateRet(RetVal);
+
+    // Validate the generated code, checking for consistency.
+    verifyFunction(*TheFunction);
+
+    // Optimize the function.
+    TheFPM->run(*TheFunction);
+    
+    return TheFunction;
+  }
+  
+  // Error reading body, remove function.
+  TheFunction->eraseFromParent();
+  return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level parsing and JIT Driver
+//===----------------------------------------------------------------------===//
+
+static ExecutionEngine *TheExecutionEngine;
+
+static void HandleDefinition() {
+  if (FunctionAST *F = ParseDefinition()) {
+    if (Function *LF = F->Codegen()) {
+      fprintf(stderr, "Read function definition:");
+      LF->dump();
+    }
+  } else {
+    // Skip token for error recovery.
+    getNextToken();
+  }
+}
+
+static void HandleExtern() {
+  if (PrototypeAST *P = ParseExtern()) {
+    if (Function *F = P->Codegen()) {
+      fprintf(stderr, "Read extern: ");
+      F->dump();
+    }
+  } else {
+    // Skip token for error recovery.
+    getNextToken();
+  }
+}
+
+static void HandleTopLevelExpression() {
+  // Evaluate a top-level expression into an anonymous function.
+  if (FunctionAST *F = ParseTopLevelExpr()) {
+    if (Function *LF = F->Codegen()) {
+      // JIT the function, returning a function pointer.
+      void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
+      
+      // Cast it to the right type (takes no arguments, returns a double) so we
+      // can call it as a native function.
+      double (*FP)() = (double (*)())(intptr_t)FPtr;
+      fprintf(stderr, "Evaluated to %f\n", FP());
+    }
+  } else {
+    // Skip token for error recovery.
+    getNextToken();
+  }
+}
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+  while (1) {
+    fprintf(stderr, "ready> ");
+    switch (CurTok) {
+    case tok_eof:    return;
+    case ';':        getNextToken(); break;  // ignore top-level semicolons.
+    case tok_def:    HandleDefinition(); break;
+    case tok_extern: HandleExtern(); break;
+    default:         HandleTopLevelExpression(); break;
+    }
+  }
+}
+
+//===----------------------------------------------------------------------===//
+// "Library" functions that can be "extern'd" from user code.
+//===----------------------------------------------------------------------===//
+
+/// putchard - putchar that takes a double and returns 0.
+extern "C" 
+double putchard(double X) {
+  putchar((char)X);
+  return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Main driver code.
+//===----------------------------------------------------------------------===//
+
+int main() {
+  InitializeNativeTarget();
+  LLVMContext &Context = getGlobalContext();
+
+  // Install standard binary operators.
+  // 1 is lowest precedence.
+  BinopPrecedence['<'] = 10;
+  BinopPrecedence['+'] = 20;
+  BinopPrecedence['-'] = 20;
+  BinopPrecedence['*'] = 40;  // highest.
+
+  // Prime the first token.
+  fprintf(stderr, "ready> ");
+  getNextToken();
+
+  // Make the module, which holds all the code.
+  TheModule = new Module("my cool jit", Context);
+
+  // Create the JIT.  This takes ownership of the module.
+  std::string ErrStr;
+  TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
+  if (!TheExecutionEngine) {
+    fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
+    exit(1);
+  }
+
+  FunctionPassManager OurFPM(TheModule);
+
+  // Set up the optimizer pipeline.  Start with registering info about how the
+  // target lays out data structures.
+  OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
+  // Do simple "peephole" optimizations and bit-twiddling optzns.
+  OurFPM.add(createInstructionCombiningPass());
+  // Reassociate expressions.
+  OurFPM.add(createReassociatePass());
+  // Eliminate Common SubExpressions.
+  OurFPM.add(createGVNPass());
+  // Simplify the control flow graph (deleting unreachable blocks, etc).
+  OurFPM.add(createCFGSimplificationPass());
+
+  OurFPM.doInitialization();
+
+  // Set the global so the code gen can use this.
+  TheFPM = &OurFPM;
+
+  // Run the main "interpreter loop" now.
+  MainLoop();
+
+  TheFPM = 0;
+
+  // Print out all of the generated code.
+  TheModule->dump();
+
+  return 0;
+}
+
+
+ +Next: Extending the language: user-defined operators +
+ + +
+
+ Valid CSS! + Valid HTML 4.01! + + Chris Lattner
+ The LLVM Compiler Infrastructure
+ Last modified: $Date$ +
+ + -- cgit v1.2.3