| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
| |
The clamp value determines the returned predicate. Previously, the clamp value was fixed to 31 and the predicate was therefore always true. This is incorrect for partial warp reductions, but went unnoticed because the returned values happened to be zero (but it could be anything).
PiperOrigin-RevId: 285343160
|
|
|
|
|
|
| |
This cleans up the implementation of the various operation print methods. This is done via a combination of code cleanup, adding new streaming methods to the printer(e.g. operand ranges), etc.
PiperOrigin-RevId: 285285181
|
|
|
|
|
|
| |
Got the comment right but the code wrong :/
PiperOrigin-RevId: 285270561
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For example, a shuffle
%1 = vector.shuffle %arg0, %arg1 [0 : i32, 1 : i32] : vector<2xf32>, vector<2xf32>
becomes a direct LLVM shuffle
0 = llvm.shufflevector %arg0, %arg1 [0 : i32, 1 : i32] : !llvm<"<2 x float>">, !llvm<"<2 x float>">
but
%1 = vector.shuffle %a, %b[1 : i32, 0 : i32, 2: i32] : vector<1x4xf32>, vector<2x4xf32>
becomes the more elaborate (note the index permutation that drives
argument selection for the extract operations)
%0 = llvm.mlir.undef : !llvm<"[3 x <4 x float>]">
%1 = llvm.extractvalue %arg1[0] : !llvm<"[2 x <4 x float>]">
%2 = llvm.insertvalue %1, %0[0] : !llvm<"[3 x <4 x float>]">
%3 = llvm.extractvalue %arg0[0] : !llvm<"[1 x <4 x float>]">
%4 = llvm.insertvalue %3, %2[1] : !llvm<"[3 x <4 x float>]">
%5 = llvm.extractvalue %arg1[1] : !llvm<"[2 x <4 x float>]">
%6 = llvm.insertvalue %5, %4[2] : !llvm<"[3 x <4 x float>]">
PiperOrigin-RevId: 285268164
|
|
|
|
|
|
| |
Add variant that does invoke infer type op interface where defined. Also add entry function that invokes that different separate argument builders for wrapped, unwrapped and inference variant.
PiperOrigin-RevId: 285220709
|
|
|
|
|
|
| |
This type is not used anymore now that Linalg view and subview have graduated to std and that alignment is supported on alloc.
PiperOrigin-RevId: 285213424
|
|
|
|
| |
PiperOrigin-RevId: 285211797
|
|
|
|
|
|
|
| |
Closes tensorflow/mlir#312
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/312 from dfki-ehna:tanh 9e89b072ff91ff390ad739501745114feb3ac856
PiperOrigin-RevId: 285205674
|
|
|
|
|
|
|
|
| |
This allows reusing the implementation in various places by just including and permits more easily writing test functions without explicit template instantiations.
This also modifies UnrankedMemRefType to take a template type parameter since it cannot be type agnostic atm.
PiperOrigin-RevId: 285187711
|
|
|
|
| |
PiperOrigin-RevId: 285162061
|
|
|
|
|
|
|
| |
Both work for the current use case, but the latter allows implementing
prefix sums and is a little easier to understand for partial warps.
PiperOrigin-RevId: 285145287
|
|
|
|
|
|
| |
It is sometimes useful to create operations separately from the builder before insertion as it may be easier to erase them in isolation if necessary. One example use case for this is folding, as we will only want to insert newly generated constant operations on success. This has the added benefit of fixing some silent PatternRewriter failures related to cloning, as the OpBuilder 'clone' methods don't call createOperation.
PiperOrigin-RevId: 285086242
|
|
|
|
| |
PiperOrigin-RevId: 285073483
|
|
|
|
| |
PiperOrigin-RevId: 285039153
|
|
|
|
| |
PiperOrigin-RevId: 285036782
|
|
|
|
| |
PiperOrigin-RevId: 285036647
|
|
|
|
|
|
|
| |
Closes tensorflow/mlir#313
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/313 from denis0x0D:sandbox/lowering_std_farith 41715070a74d13bfa9401957478978c1bb8006c0
PiperOrigin-RevId: 285023586
|
|
|
|
|
|
|
| |
This CL adds more common information to StructuredOpsUtils.h
The n_view attribute is retired in favor of args_in + args_out but the CL is otherwise NFC.
PiperOrigin-RevId: 285000621
|
|
|
|
|
|
| |
Remove nested anonymous namespace.
PiperOrigin-RevId: 284987357
|
|
|
|
|
|
| |
Fix the usage of the map size when appending to the map with [].
PiperOrigin-RevId: 284985916
|
|
|
|
| |
PiperOrigin-RevId: 284979684
|
|
|
|
|
|
| |
This enables combining the patterns with other patterns into larger lowerings.
PiperOrigin-RevId: 284979271
|
|
|
|
| |
PiperOrigin-RevId: 284949355
|
|
|
|
|
|
| |
Closes tensorflow/mlir#255
PiperOrigin-RevId: 284935454
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For example, an insert
%0 = vector.insert %arg0, %arg1[3 : i32] : f32 into vector<4xf32>
becomes
%0 = llvm.mlir.constant(3 : i32) : !llvm.i32
%1 = llvm.insertelement %arg0, %arg1[%0 : !llvm.i32] : !llvm<"<4 x float>">
A more elaborate example, inserting an element in a higher dimension
vector
%0 = vector.insert %arg0, %arg1[3 : i32, 7 : i32, 15 : i32] : f32 into vector<4x8x16xf32>
becomes
%0 = llvm.extractvalue %arg1[3 : i32, 7 : i32] : !llvm<"[4 x [8 x <16 x float>]]">
%1 = llvm.mlir.constant(15 : i32) : !llvm.i32
%2 = llvm.insertelement %arg0, %0[%1 : !llvm.i32] : !llvm<"<16 x float>">
%3 = llvm.insertvalue %2, %arg1[3 : i32, 7 : i32] : !llvm<"[4 x [8 x <16 x float>]]">
PiperOrigin-RevId: 284882443
|
|
|
|
|
|
| |
vector unroll size.
PiperOrigin-RevId: 284880592
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add one more simplification for floordiv and mod affine expressions.
Examples:
(2*d0 + 1) floordiv 2 is simplified to d0
(8*d0 + 4*d1 + d2) floordiv 4 simplified to 4*d0 + d1 + d2 floordiv 4.
etc.
Similarly, (4*d1 + 1) mod 2 is simplified to 1,
(2*d0 + 8*d1) mod 8 simplified to 2*d0 mod 8.
Change getLargestKnownDivisor to return int64_t to be consistent and
to avoid casting at call sites (since the return value is used in expressions
of int64_t/index type).
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closes tensorflow/mlir#202
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/202 from bondhugula:affine b13fcb2f1c00a39ca5434613a02408e085a80e77
PiperOrigin-RevId: 284866710
|
|
|
|
|
|
|
|
|
| |
Move the definition of gpu.launch_func operation from hand-rolled C++
implementation to the ODS framework. Also move the documentation. This only
performs the move and remains a non-functional change, a follow-up will clean
up the custom functions that can be auto-generated using ODS.
PiperOrigin-RevId: 284842252
|
|
|
|
|
|
| |
Centralize all patterns that test Linalg transforms in a single pass.
PiperOrigin-RevId: 284835938
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
indexed_accessor_range.
This has several benefits:
* The implementation is much cleaner and more efficient.
* The ranges now have support for many useful operations: operator[], slice, drop_front, size, etc.
* Value ranges can now directly query a range for their types via 'getTypes()': e.g:
void foo(Operation::operand_range operands) {
auto operandTypes = operands.getTypes();
}
PiperOrigin-RevId: 284834912
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch closes issue tensorflow/mlir#272
We add a standalone iterator permutation transformation to Linalg.
This transformation composes a permutation map with the maps in the
"indexing_maps" attribute. It also permutes "iterator_types"
accordingly.
Change-Id: I7c1e693b8203aeecc595a7c012e738ca1100c857
Closes tensorflow/mlir#307
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/307 from tetuante:issue272 f7908d58792f4111119721885e247045104f1131
PiperOrigin-RevId: 284824102
|
|
|
|
|
|
| |
This reorganizes the vector transformations to be more easily testable as patterns and more easily composable into fused passes in the future.
PiperOrigin-RevId: 284817474
|
|
|
|
|
|
| |
extracting constant values for const expressions.
PiperOrigin-RevId: 284809623
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add some convenience build methods to SPIR-V ops and update the
lowering to use these methods where possible.
For SPIRV::CompositeExtractOp move the method to deduce type of
element based on base and indices into a convenience function. Some
additional functionality needed to handle differences between parsing
and verification methods.
PiperOrigin-RevId: 284794404
|
|
|
|
|
|
| |
Closes tensorflow/mlir#263
PiperOrigin-RevId: 284760931
|
|
|
|
|
|
|
| |
These come from a non-standard extenion that is not available on Github, so it
only clutters the documentation source with {.mlir} or {.ebnf} tags.
PiperOrigin-RevId: 284733003
|
|
|
|
|
|
| |
Avoid `error: could not convert ?(const char*)"reduction"? from ?const char*? to ?llvm::StringLiteral?`. Tested with gcc-5.5.
PiperOrigin-RevId: 284677810
|
|
|
|
|
|
|
|
|
|
| |
For example
%0 = vector.shuffle %x, %y [3 : i32, 2 : i32, 1 : i32, 0 : i32] : vector<2xf32>, vector<2xf32>
yields a vector<4xf32> result with a permutation of the elements of %x and %y
PiperOrigin-RevId: 284657191
|
|
|
|
| |
PiperOrigin-RevId: 284652653
|
|
|
|
|
|
| |
Each of the support classes for Block are now moved into a new header BlockSupport.h. The successor iterator class is also reimplemented as an indexed_accessor_range. This makes the class more efficient, and expands on its available functionality.
PiperOrigin-RevId: 284646792
|
|
|
|
|
|
|
|
| |
simplify defining index-able ranges.
Many ranges want similar functionality from a range type(e.g. slice/drop_front/operator[]/etc.), so these classes provide a generic implementation that may be used by many different types of ranges. This removes some code duplication, and also empowers many of the existing range types in MLIR(e.g. result type ranges, operand ranges, ElementsAttr ranges, etc.). This change only updates RegionRange and ValueRange, more ranges will be updated in followup commits.
PiperOrigin-RevId: 284615679
|
|
|
|
|
|
|
| |
Closes tensorflow/mlir#306
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/306 from shanshanpt:master 11430c2131281d84a432f45e854e29917b336e8d
PiperOrigin-RevId: 284613648
|
|
|
|
|
|
|
| |
Closes tensorflow/mlir#308
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/308 from denis0x0D:sandbox/composite_construct 9ef7180f77f9374bcd05afc4f9e6c1d2d72d02b7
PiperOrigin-RevId: 284613617
|
|
|
|
|
|
|
| |
The patterns to be folded away can be commonly generated
during lowering to SPIR-V.
PiperOrigin-RevId: 284604855
|
|
|
|
|
|
| |
This CL starts extracting commonalities between dialects that use the structured ops abstractions. Also fixes an OSS build issue where StringRef were incorrectly used with constexpr.
PiperOrigin-RevId: 284591114
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently named accessors are generated for attributes returning a consumer
friendly type. But sometimes the attributes are used while transforming an
existing op and then the returned type has to be converted back into an
attribute or the raw `getAttr` needs to be used. Generate raw named accessor
for attributes to reference the raw attributes without having to use the string
interface for better compile time verification. This allows calling
`blahAttr()` instead of `getAttr("blah")`.
Raw here refers to returning the underlying storage attribute.
PiperOrigin-RevId: 284583426
|
|
|
|
|
|
|
|
|
|
|
| |
The existing GPU to SPIR-V lowering created a spv.module for every
function with gpu.kernel attribute. A better approach is to lower the
module that the function lives in (which has the attribute
gpu.kernel_module) to a spv.module operation. This better captures the
host-device separation modeled by GPU dialect and simplifies the
lowering as well.
PiperOrigin-RevId: 284574688
|
|
|
|
|
|
|
| |
Unifies vector op unrolling transformation, by using the same unrolling implementation for contraction and elementwise operations.
Removes fakefork/join operations which are non longer needed now that we have the InsertStridedSlice operation.
PiperOrigin-RevId: 284570784
|
|
|
|
|
|
| |
Closes tensorflow/mlir#304
PiperOrigin-RevId: 284568358
|
|
|
|
|
|
|
|
|
|
|
| |
linalg.generic form of matmul to vector form.
This CL uses the newly expanded matcher support to easily detect when a linalg.generic has a multiply-accumulate body. A linalg.generic with such a body is rewritten as a vector contraction.
This CL additionally limits the rewrite to the case of matrix multiplication on contiguous and statically shaped memrefs for now.
Before expanding further, we should harden the infrastructure for expressing custom ops with the structured ops abstraction.
PiperOrigin-RevId: 284566659
|