| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
| |
type lists and indexing maps to a target vector size.
Adds unit tests for unrolling the vector ContractionOp with different iteration orders.
PiperOrigin-RevId: 283747503
|
|
|
|
|
|
|
|
|
| |
This CL refactors some of the MLIR vector dependencies to allow decoupling VectorOps, vector analysis, vector transformations and vector conversions from each other.
This makes the system more modular and allows extracting VectorToVector into VectorTransforms that do not depend on vector conversions.
This refactoring exhibited a bunch of cyclic library dependencies that have been cleaned up.
PiperOrigin-RevId: 283660308
|
|
|
|
|
|
|
|
|
| |
This CL also did the following cleanup:
- Moved the test for spv.SubgroupBallotKHR to its own file
- Wrapped generated canonicalization patterns in anonymous namespace
- Updated header comments in SPVOps.td
PiperOrigin-RevId: 283650091
|
|
|
|
|
|
|
|
|
|
|
|
| |
Not all StandardOps can be lowered to SPIR-V. For example, subview op
implementation requires use of pointer bitcasts which is not valid
according to SPIR-V spec (or at least is ambiguous about it). Such ops
need to be removed/transformed before lowering to SPIR-V. The
SPIRVLegalizationPass is added a place where such legalizations can be
added. Current implementation folds the subview ops with load/stores
so that the lowering itself does not have to convert a subview op.
PiperOrigin-RevId: 283642981
|
|
|
|
|
|
| |
This prints out in case of any pass failure. Not just a crash.
PiperOrigin-RevId: 283616719
|
|
|
|
| |
PiperOrigin-RevId: 283591888
|
|
|
|
|
|
| |
In particular, print the successor number in the diagnostic.
PiperOrigin-RevId: 283585084
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The SPIR-V lowering used nested !spv.arrays to represented
multi-dimensional arrays, with the hope that in-conjunction with the
layout annotations, the shape and layout of memref can be represented
directly. It is unclear though how portable this representation will
end up being. It will rely on driver compilers implementing complex
index computations faithfully. A more portable approach is to use
linearized arrays to represent memrefs and explicitly instantiate all
the index computation in SPIR-V. This gives added benefit that we can
further optimize the generated code in MLIR before generating the
SPIR-V binary.
PiperOrigin-RevId: 283571167
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As described in the documentation, ViewOp is expected to take an optional
dynamic offset followed by a list of dynamic sizes. However, the ViewOp parser
did not include a check for the offset being a single value and accepeted a
list of values instead.
Furthermore, several tests have been exercising the wrong syntax of a ViewOp,
passing multiple values to the dyanmic stride list, which was not caught by the
parser. The trailing values could have been erronously interpreted as dynamic
sizes. This is likely due to resyntaxing of the ViewOp, with the previous
syntax taking the list of sizes before the offset. Update the tests to use the
syntax with the offset preceding the sizes.
Worse, the conversion of ViewOp to the LLVM dialect assumed the wrong order of
operands with offset in the trailing position, and erronously relied on the
permissive parsing that interpreted trailing dynamic offset values as leading
dynamic sizes. Fix the lowering to use the correct order of operands.
PiperOrigin-RevId: 283532506
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
tensorflow/mlir#162 introduced a bug that
incorrectly allowed fusion of producer loops with multiple outgoing
edges. This commit fixes that problem. It also introduces a new flag to
disable sibling loop fusion so that we can test producer-consumer fusion
in isolation.
Closes tensorflow/mlir#259
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/259 from dcaballe:dcaballe/fix_multi_out_edge_producer_fusion 578d5661705fd5c56c555832d5e0528df88c5282
PiperOrigin-RevId: 283531105
|
|
|
|
|
|
|
|
|
|
|
|
| |
stride
are constant (i.e., there are no size and stride operands).
We recently added canonicalization that rewrites constant size and stride operands to
SubViewOp into static information in the type, so these patterns now occur during code
generation.
PiperOrigin-RevId: 283524688
|
|
|
|
| |
PiperOrigin-RevId: 283522284
|
|
|
|
|
|
|
|
|
| |
A recent commit introduced the Linkage attribute to the LLVM dialect and used
it in the Global Op. Also use it in LLVMFuncOp. As per LLVM Language Reference,
if the linkage attribute is omitted, the function is assumed to have external
linkage.
PiperOrigin-RevId: 283493299
|
|
|
|
| |
PiperOrigin-RevId: 283360101
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Existing builders generated by ODS require attributes to be passed
in as mlir::Attribute or its subclasses. This is okay foraggregate-
parameter builders, which is primarily to be used by programmatic
C++ code generation; it is inconvenient for separate-parameter
builders meant to be called in manually written C++ code because
it requires developers to wrap raw values into mlir::Attribute by
themselves.
This CL extends to generate additional builder methods that
take raw values for attributes and handles the wrapping in the
builder implementation. Additionally, if an attribute appears
late in the arguments list and has a default value, the default
value is supplied in the declaration if possible.
PiperOrigin-RevId: 283355919
|
|
|
|
|
|
|
|
| |
Right now op argument matching in DRR is position-based, meaning we need to
specify N arguments for an op with N ODS-declared argument. This can be annoying
when we don't want to capture all the arguments. `$_` is to remedy the situation.
PiperOrigin-RevId: 283339992
|
|
|
|
| |
PiperOrigin-RevId: 283328994
|
|
|
|
|
|
|
|
|
|
|
| |
LLVM IR supports linkage on global objects such as global variables and
functions. Introduce the Linkage attribute into the LLVM dialect, backed by an
integer storage. Use this attribute on LLVM::GlobalOp and make it mandatory.
Implement parsing/printing of the attribute and conversion to LLVM IR.
See tensorflow/mlir#277.
PiperOrigin-RevId: 283309328
|
|
|
|
|
|
|
|
|
| |
folding.
Closes tensorflow/mlir#281
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/281 from denis0x0D:sandbox/composite_ex_fold d02d73658bd1b9eaa515eb4e0aee34bc41d4252b
PiperOrigin-RevId: 282971563
|
|
|
|
|
|
|
|
|
|
| |
This addresses issue tensorflow/mlir#270. Linalg is updated to take the same form
of iterator_types than vector contraction.
Closes tensorflow/mlir#280
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/280 from tetuante:PRissue270 d26d88d090d3765d3b9884bfabdd023143f27287
PiperOrigin-RevId: 282905396
|
|
|
|
|
|
|
|
|
| |
Adding zero and multiplying one can be common when generating code
for index calculation.
This CL also sorted canonicalize.mlir to alphabetical order.
PiperOrigin-RevId: 282828055
|
|
|
|
| |
PiperOrigin-RevId: 282810649
|
|
|
|
|
|
| |
This CL rewrites the linalg ops to loops transformations as patterns that can be targeted directly from Tablegen. Reliance on OpFolder is removed and to cope with it we introduce local folding patterns that are applied greedily.
PiperOrigin-RevId: 282765550
|
|
|
|
|
|
|
|
| |
Since second argument is always fully overwritten and
shape is define in "to" clause, it is not needed.
Also renamed "into" to "to" now that arg is dropped.
PiperOrigin-RevId: 282686475
|
|
|
|
| |
PiperOrigin-RevId: 282643305
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These changes to SPIR-V lowering while adding support for lowering
SUbViewOp, but are not directly related.
- Change the lowering of MemRefType to
!spv.ptr<!spv.struct<!spv.array<...>[offset]>, ..>
This is consistent with the Vulkan spec.
- To enable testing a simple pattern of lowering functions is added to
ConvertStandardToSPIRVPass. This is just used to convert the type of
the arguments of the function. The added function lowering itself is
not meant to be the way functions are eventually lowered into SPIR-V
dialect.
PiperOrigin-RevId: 282589644
|
|
|
|
| |
PiperOrigin-RevId: 282574110
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The affine_apply operation is currently "doubly" affine and conflates two things:
1. it applies an affine map to a list of values of type `index` that are defined as either dim or symbol
2. it restricts (and propagates constraints on) the provenance of dims and symbols to a small subset of ops for which more restrictive polyhedral constraints apply.
Point 2. is related to the ability to form so-called static control parts and is related to dependence analysis and legality of transformations.
Point 1. however is completely independent, the only local implication of dims and symbol for affine_apply is that dims compose while symbols concatenate as well as the structural constraint that dims may not be multiplied.
The properties of composition and canonicalization in affine_apply are more generally useful. This CL relaxes the verifier on affine_apply so it can be used more generally.
The relevant affine.for/if/load/store op verifiers already implement the dim and symbol checking.
See this thread for the related discussion: https://groups.google.com/a/tensorflow.org/g/mlir/c/HkwCbV8D9N0/m/8srUNrX6CAAJ
PiperOrigin-RevId: 282562517
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Certain operations can have multiple variadic operands and their size
relationship is not always known statically. For such cases, we need
a per-op-instance specification to divide the operands into logical
groups or segments. This can be modeled by attributes.
This CL introduces C++ trait AttrSizedOperandSegments for operands and
AttrSizedResultSegments for results. The C++ trait just guarantees
such size attribute has the correct type (1D vector) and values
(non-negative), etc. It serves as the basis for ODS sugaring that
with ODS argument declarations we can further verify the number of
elements match the number of ODS-declared operands and we can generate
handy getter methods.
PiperOrigin-RevId: 282467075
|
|
|
|
|
|
|
|
| |
This CL uses the recently added op to finish the implementation of Vector -> Vector unrolling by replacing the "fake join op" by a series of InsertStridedSliceOp.
Test is updated accordingly
PiperOrigin-RevId: 282451126
|
|
|
|
|
|
| |
This new op is the counterpart of vector.StridedSliceOp and will be used for in the pattern rewrites for vector unrolling.
PiperOrigin-RevId: 282447414
|
|
|
|
|
|
| |
Also change the text format a bit, so that indices are braced by squares.
PiperOrigin-RevId: 282437095
|
|
|
|
| |
PiperOrigin-RevId: 282434465
|
|
|
|
|
|
| |
attributes compatible with linalg ops.
PiperOrigin-RevId: 282412311
|
|
|
|
|
|
|
| |
Moving cuda-runtime-wrappers.so into subdirectory to match libmlir_runner_utils.so.
Provide parent directory when running test and load .so from subdirectory.
PiperOrigin-RevId: 282410749
|
|
|
|
|
|
|
| |
EnumAttr should provide meaningful defaults so concrete instances
do not need to duplicate the fields.
PiperOrigin-RevId: 282398431
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To simplify the lowering into SPIR-V, while still respecting the ABI
requirements of SPIR-V/Vulkan, split the process into two
1) While lowering a function to SPIR-V (when the function is an entry
point function), allow specifying attributes on arguments and
function itself that describe the ABI of the function.
2) Add a pass that materializes the ABI described in the function.
Two attributes are needed.
1) Attribute on arguments of the entry point function that describe
the descriptor_set, binding, storage class, etc, of the
spv.globalVariable this argument will be replaced by
2) Attribute on function that specifies workgroup size, etc. (for now
only workgroup size).
Add the pass -spirv-lower-abi-attrs to materialize the ABI described
by the attributes.
This change makes the SPIRVBasicTypeConverter class unnecessary and is
removed, further simplifying the SPIR-V lowering path.
PiperOrigin-RevId: 282387587
|
|
|
|
|
|
|
|
| |
Memref_cast supports cast from static shape to dynamic shape
memrefs. The same should be true for strides as well, i.e a memref
with static strides can be casted to a memref with dynamic strides.
PiperOrigin-RevId: 282381862
|
|
|
|
|
|
|
|
|
| |
This is the counterpart of vector.extractelement op and has the same
limitations at the moment (static I64IntegerArrayAttr to express position).
This restriction will be filterd in the future.
LLVM lowering will be added in a subsequent commit.
PiperOrigin-RevId: 282365760
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce a new function-like operation to the GPU dialect to provide a
placeholder for the execution semantic description and to add support for GPU
memory hierarchy. This aligns with the overall goal of the dialect to expose
the common abstraction layer for GPU devices, in particular by providing an
MLIR unit of semantics (i.e. an operation) for memory modeling.
This proposal has been discussed in the mailing list:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/RfXNP7Hklsc/MBNN7KhjAgAJ
As decided, the "convergence" aspect of the execution model will be factored
out into a new discussion and therefore is not included in this commit. This
commit only introduces the operation but does not hook it up with the remaining
flow. The intention is to develop the new flow while keeping the old flow
operational and do the switch in a simple, separately reversible commit.
PiperOrigin-RevId: 282357599
|
|
|
|
| |
PiperOrigin-RevId: 282270243
|
|
|
|
| |
PiperOrigin-RevId: 282132339
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The check in isValidSymbol, as far as a DimOp result went, checked if
the dim op was on a top-level memref. However, any alloc'ed, view, or
subview memref would be fine as long as the corresponding dimension of
that memref is either a static one or was in turn created using a valid
symbol in the case of dynamic dimensions.
Reported-by: Jose Gomez
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closes tensorflow/mlir#252
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/252 from bondhugula:symbol 7b57dc394df9375e651f497231c6e4525a32a662
PiperOrigin-RevId: 282097114
|
|
|
|
|
|
| |
Support for including a file multiple times was added in tablegen, removing the need for these extra guards. This is because we already insert c/c++ style header guards within each of the specific .td files.
PiperOrigin-RevId: 282076728
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a canonicalizer for `spirv::LogicalNotOp`.
Converts:
* spv.LogicalNot(spv.IEqual(...)) -> spv.INotEqual(...)
* spv.LogicalNot(spv.INotEqual(...)) -> spv.IEqual(...)
* spv.LogicalNot(spv.LogicalEqual(...)) -> spv.LogicalNotEqual(...)
* spv.LogicalNot(spv.LogicalNotEqual(...)) -> spv.LogicalEqual(...)
Also moved the test for spv.IMul to arithemtic tests.
Closes tensorflow/mlir#256
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/256 from denis0x0D:sandbox/canon_logical_not 76ab5787b2c777f948c8978db061d99e76453d44
PiperOrigin-RevId: 282012356
|
|
|
|
|
|
|
|
|
|
| |
Depending on which of the offsets, sizes, or strides are constant, the
subview op can be canonicalized in different ways. Add such
canonicalizations, which generalize the existing approach of
canonicalizing subview op only if all of offsets, sizes and shapes are
constants.
PiperOrigin-RevId: 282010703
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
multi-result operations.
This changes changes the OpDefinitionsGen to automatically add the OpAsmOpInterface for operations with multiple result groups using the provided ODS names. We currently just limit the generation to multi-result ops as most single result operations don't have an interesting name(result/output/etc.). An example is shown below:
// The following operation:
def MyOp : ... {
let results = (outs AnyType:$first, Variadic<AnyType>:$middle, AnyType);
}
// May now be printed as:
%first, %middle:2, %0 = "my.op" ...
PiperOrigin-RevId: 281834156
|
|
|
|
|
|
| |
Swap dimensions in all-reduce-op test.
PiperOrigin-RevId: 281791744
|
|
|
|
|
|
| |
This will make it easier to scale out test patterns and build specific passes that do not interfere with independent testing.
PiperOrigin-RevId: 281736335
|
|
|
|
|
|
|
|
|
|
|
| |
Due to legacy reasons, a newline character followed by two spaces was always
inserted before the attributes of the function Op in pretty form. This breaks
formatting when functions are nested in some other operations. Don't print the
newline and just put the attributes on the same line, which is also more
consistent with module Op. Line breaking aware of indentation can be introduced
separately into the parser if deemed useful.
PiperOrigin-RevId: 281721793
|