| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
| |
Only a few important KHR extensions are registered to the
SPIR-V dialect for now.
PiperOrigin-RevId: 264939428
|
|
|
|
|
|
|
| |
This CL pulls in capabilities defined in the spec and adds
support for (de)serialize capabilities of a spv.module.
PiperOrigin-RevId: 264877413
|
|
|
|
|
|
|
|
|
| |
Previously Module and Function are builtinn constructs in MLIR.
Due to the structural requirements we must wrap the SPIR-V
module inside a Function inside a Module. Now the requirement
is lifted and we can remove the wrapping function! :)
PiperOrigin-RevId: 264736051
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In SPIR-V binary format, constants are placed at the module level
and referenced by instructions inside functions using their result
<id>s. To model this natively (using SSA values for result <id>s),
it means we need to have implicit capturing functions. We will
lose the ability to have function passes if going down that path.
Instead, this CL changes to materialize constants at their use
sites in deserialization. It's cheap to copy constants in MLIR
given that attributes is uniqued to MLIRContext. By localizing
constants into functions, we can preserve isolated functions.
PiperOrigin-RevId: 264582532
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similar to global variables, specialization constants also live
in the module scope and can be referenced by instructions in
functions in native SPIR-V. A direct modelling would be to allow
functions in the SPIR-V dialect to implicit capture, but it means
we are losing the ability to write passes for Functions. While
in SPIR-V normally we want to process the module as a whole,
it's not common to see multiple functions get used so we'd like
to leave the door open for those cases. Therefore, similar to
global variables, we introduce spv.specConstant to model three
SPIR-V instructions: OpSpecConstantTrue, OpSpecConstantFalse,
and OpSpecConstant. They do not return SSA value results;
instead they have symbols and can only be referenced by the
symbols. To use it in a function, we need to have another op
spv._reference_of to turn the symbol into an SSA value. This
breaks the tie and makes functions still explicit capture.
Previously specialization constants were handled similarly as
normal constants. That is incorrect given that specialization
constant actually acts more like variable (without need to
load and store). E.g., they cannot be de-duplicated like normal
constants.
This CL also refines various documents and comments.
PiperOrigin-RevId: 264455172
|
|
|
|
|
|
|
|
| |
Support (de)serialization of spv.struct with offset decorations.
Closes tensorflow/mlir#94
PiperOrigin-RevId: 264421427
|
|
|
|
| |
PiperOrigin-RevId: 264193915
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
FuncOps in MLIR use explicit capture. So global variables defined in
module scope need to have a symbol name and this should be used to
refer to the variable within the function. This deviates from SPIR-V
spec, which assigns an SSA value to variables at all scopes that can
be used to refer to the variable, which requires SPIR-V functions to
allow implicit capture. To handle this add a new op,
spirv::GlobalVariableOp that can be used to define module scope
variables.
Since instructions need an SSA value, an new spirv::AddressOfOp is
added to convert a symbol reference to an SSA value for use with other
instructions.
This also means the spirv::EntryPointOp instruction needs to change to
allow initializers to be specified using symbol reference instead of
SSA value
The current spirv::VariableOp which returns an SSA value (as defined
by SPIR-V spec) can still be used to define function-scope variables.
PiperOrigin-RevId: 263951109
|
|
|
|
|
|
|
|
| |
Extend spv.array with Layoutinfo to support (de)serialization.
Closes tensorflow/mlir#80
PiperOrigin-RevId: 263795304
|
|
|
|
|
|
|
|
|
|
| |
Generate the EnumAttr to represent BuiltIns in SPIR-V dialect. The
builtIn can be specified as a StringAttr with value being the
name of the builtin. Extend Decoration (de)serialization to handle
BuiltIns.
Also fix an error in the SPIR-V dialect generator script.
PiperOrigin-RevId: 263596624
|
|
|
|
|
|
| |
All 'getValue' variants now require that the index is valid, queryable via 'isValidIndex'. 'getSplatValue' now requires that the attribute is a proper splat. This allows for querying these methods on DenseElementAttr with all possible value types; e.g. float, int, APInt, etc. This also allows for removing unnecessary conversions to Attribute that really want the underlying value.
PiperOrigin-RevId: 263437337
|
|
|
|
|
|
| |
The entry block is often used recently after insertion. This removes the need to perform an additional lookup in such cases.
PiperOrigin-RevId: 262265671
|
|
|
|
| |
PiperOrigin-RevId: 262225919
|
|
|
|
|
|
|
|
| |
This CL extends the existing spv.constant op to also support
specialization constant by adding an extra unit attribute
on it.
PiperOrigin-RevId: 261194869
|
|
|
|
|
|
|
|
|
|
|
|
| |
All non-argument attributes specified for an operation are treated as
decorations on the result value and (de)serialized using OpDecorate
instruction. An error is generated if an attribute is not an argument,
and the name doesn't correspond to a Decoration enum. Name of the
attributes that represent decoerations are to be the snake-case-ified
version of the Decoration name.
Add utility methods to convert to snake-case and camel-case.
PiperOrigin-RevId: 260792638
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We are relying on serializer to construct positive cases to drive
the test for deserializer. This leaves negative cases untested.
This CL adds a basic test fixture for covering the negative
corner cases to enforce a more robust deserializer.
Refactored common SPIR-V building methods out of serializer to
share it with the deserialization test.
PiperOrigin-RevId: 260742733
|
|
|
|
|
|
|
| |
This CL covers the case of composite spv.constant. We encode/decode
them into/from OpConstantComposite/OpConstantNull.
PiperOrigin-RevId: 259394700
|
|
|
|
|
|
| |
This CL adds support for float scalar spv.constant in (de)serialization.
PiperOrigin-RevId: 259311776
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SPIR-V has multiple constant instructions covering different
constant types:
* `OpConstantTrue` and `OpConstantFalse` for boolean constants
* `OpConstant` for scalar constants
* `OpConstantComposite` for composite constants
* `OpConstantNull` for null constants
* ...
We model them all with a single spv.constant op for uniformity
and friendliness to transformations. This does mean that when
doing (de)serialization, we need to poke spv.constant's type
to determine which SPIR-V binary instruction to use.
This CL only covers the case of bool and integer spv.constant.
The rest will follow.
PiperOrigin-RevId: 259311698
|
|
|
|
|
|
|
|
|
| |
* Let them return `LogicalResult` so we can chain them together
with other functions returning `LogicalResult`.
* Added "Into" as the suffix to the function name and made the
`binary` as the first parameter so that it reads more naturally.
PiperOrigin-RevId: 259311636
|
|
|
|
|
|
|
|
|
|
|
| |
We already have two levels of controls in SPIRVBase.td: hasOpcode and
autogenSerialization. The former controls whether to add an entry to
the dispatch table, while the latter controls whether to autogenerate
the op's (de)serialization method specialization. This is enough for
our cases. Remove the indirection from processOp to processOpImpl
to simplify the picture.
PiperOrigin-RevId: 259308711
|
|
|
|
|
|
|
|
|
| |
Since the serialization of EntryPointOp contains the name of the
function as well, the function serialization emits the function name
using OpName instruction, which is used during deserialization to get
the correct function name.
PiperOrigin-RevId: 259158784
|
|
|
|
| |
PiperOrigin-RevId: 258986485
|
|
|
|
|
|
|
|
|
|
|
|
| |
It's a known bug that older GCC is not happy with method specialization in
the enclosing (global) namespace:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56480
This CL wraps the generated specialization methods in the anonymous namespace
to make sure the specialization is in the same namespace as the class.
PiperOrigin-RevId: 258983181
|
|
|
|
|
|
|
|
| |
This CL groups (de)serialization methods logically and improves comments
at various places. It also sorted method implementations to follow the
order of their declarations. There is NFC.
PiperOrigin-RevId: 258843490
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For ops in SPIR-V dialect that are a direct mirror of SPIR-V
operations, the serialization/deserialization methods can be
automatically generated from the Op specification. To enable this an
'autogenSerialization' field is added to SPV_Ops. When set to
non-zero, this will enable the automatic (de)serialization function
generation
Also adding tests that verify the spv.Load, spv.Store and spv.Variable
ops are serialized and deserialized correctly. To fully support these
tests also add serialization and deserialization of float types and
spv.ptr types
PiperOrigin-RevId: 258684764
|
|
PiperOrigin-RevId: 258345603
|