| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
| |
This reverts commit 4185460f758b98ea5b898c04c179704756ca8f53.
llvm-svn: 372686
|
|
|
|
|
|
| |
Fixup after fbd13570b0d
llvm-svn: 372682
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
https://reviews.llvm.org/D66773
The OpTypes::OperandType was creating an enum for all records that
inherit from Operand, but in reality there are operands for instructions
that inherit from other types too. In particular, RegisterOperand and
RegisterClass. This commit adds those types to the list of operand types
that are tracked by the OperandType enum.
Patch by: nlguillemot
llvm-svn: 372641
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
matches other MCK__<THING>_* usage better.
Summary: No functional change. This fixes a magic constant in MCK__*_... macros only.
Reviewers: ostannard
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67840
llvm-svn: 372599
|
|
|
|
| |
llvm-svn: 372597
|
|
|
|
| |
llvm-svn: 372581
|
|
|
|
|
|
| |
This reverts commit rL372554.
llvm-svn: 372580
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The tool reports verbose output for the DWARF debug location coverage.
The llvm-locstats for each variable or formal parameter DIE computes what
percentage from the code section bytes, where it is in scope, it has
location description. The line 0 shows the number (and the percentage) of
DIEs with no location information, but the line 100 shows the number (and
the percentage) of DIEs where there is location information in all code
section bytes (where the variable or parameter is in the scope). The line
50..59 shows the number (and the percentage) of DIEs where the location
information is in between 50 and 59 percentage of its scope covered.
Differential Revision: https://reviews.llvm.org/D66526
llvm-svn: 372554
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ConvertToTarget opcodes from the X86 isel table.
We're now using a lot more TargetConstant nodes in SelectionDAG.
But we were still telling isel to convert some of them
to TargetConstants even though they already are. This is because
isel emits a conversion anytime the output pattern has a an 'imm'.
I guess for patterns in instructions we take the 'timm' from the
'set' pattern, but for Pat patterns with explcicit output we
previously had to say 'imm' since 'timm' wasn't allowed in outputs.
llvm-svn: 372525
|
|
|
|
| |
llvm-svn: 372515
|
|
|
|
|
|
| |
No behavior change.
llvm-svn: 372512
|
|
|
|
| |
llvm-svn: 372506
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D67872
llvm-svn: 372505
|
|
|
|
| |
llvm-svn: 372446
|
|
|
|
| |
llvm-svn: 372397
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Subdivide4)
Summary:
Both match the type of another intrinsic parameter of a vector type, but where each element is subdivided to form a vector with more elements of a smaller type.
Subdivide2Argument allows intrinsics such as the following to be defined:
- declare <vscale x 4 x i32> @llvm.something.nxv4i32(<vscale x 8 x i16>)
Subdivide4Argument allows intrinsics such as:
- declare <vscale x 4 x i32> @llvm.something.nxv4i32(<vscale x 16 x i8>)
Tests are included in follow up patches which add intrinsics using these types.
Reviewers: sdesmalen, SjoerdMeijer, greened, rovka
Reviewed By: sdesmalen
Subscribers: rovka, tschuett, jdoerfert, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67549
llvm-svn: 372380
|
|
|
|
| |
llvm-svn: 372344
|
|
|
|
|
|
|
|
|
| |
This reverts r372314, reapplying r372285 and the commits which depend
on it (r372286-r372293, and r372296-r372297)
This was missing one switch to getTargetConstant in an untested case.
llvm-svn: 372338
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Much like ValueTypeByHwMode/RegInfoByHwMode, this patch allows targets
to modify an instruction's encoding based on HwMode. When the
EncodingInfos field is non-empty the Inst and Size fields of the Instruction
are ignored and taken from EncodingInfos instead.
As part of this promote getHwMode() from TargetSubtargetInfo to MCSubtargetInfo.
This is NFC for all existing targets - new code is generated only if targets
use EncodingByHwMode.
llvm-svn: 372320
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This broke the Chromium build, causing it to fail with e.g.
fatal error: error in backend: Cannot select: t362: v4i32 = X86ISD::VSHLI t392, Constant:i8<15>
See llvm-commits thread of r372285 for details.
This also reverts r372286, r372287, r372288, r372289, r372290, r372291,
r372292, r372293, r372296, and r372297, which seemed to depend on the
main commit.
> Encode them directly as an imm argument to G_INTRINSIC*.
>
> Since now intrinsics can now define what parameters are required to be
> immediates, avoid using registers for them. Intrinsics could
> potentially want a constant that isn't a legal register type. Also,
> since G_CONSTANT is subject to CSE and legalization, transforms could
> potentially obscure the value (and create extra work for the
> selector). The register bank of a G_CONSTANT is also meaningful, so
> this could throw off future folding and legalization logic for AMDGPU.
>
> This will be much more convenient to work with than needing to call
> getConstantVRegVal and checking if it may have failed for every
> constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
> immarg operands, many of which need inspection during lowering. Having
> to find the value in a register is going to add a lot of boilerplate
> and waste compile time.
>
> SelectionDAG has always provided TargetConstant for constants which
> should not be legalized or materialized in a register. The distinction
> between Constant and TargetConstant was somewhat fuzzy, and there was
> no automatic way to force usage of TargetConstant for certain
> intrinsic parameters. They were both ultimately ConstantSDNode, and it
> was inconsistently used. It was quite easy to mis-select an
> instruction requiring an immediate. For SelectionDAG, start emitting
> TargetConstant for these arguments, and using timm to match them.
>
> Most of the work here is to cleanup target handling of constants. Some
> targets process intrinsics through intermediate custom nodes, which
> need to preserve TargetConstant usage to match the intrinsic
> expectation. Pattern inputs now need to distinguish whether a constant
> is merely compatible with an operand or whether it is mandatory.
>
> The GlobalISelEmitter needs to treat timm as a special case of a leaf
> node, simlar to MachineBasicBlock operands. This should also enable
> handling of patterns for some G_* instructions with immediates, like
> G_FENCE or G_EXTRACT.
>
> This does include a workaround for a crash in GlobalISelEmitter when
> ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372314
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Encode them directly as an imm argument to G_INTRINSIC*.
Since now intrinsics can now define what parameters are required to be
immediates, avoid using registers for them. Intrinsics could
potentially want a constant that isn't a legal register type. Also,
since G_CONSTANT is subject to CSE and legalization, transforms could
potentially obscure the value (and create extra work for the
selector). The register bank of a G_CONSTANT is also meaningful, so
this could throw off future folding and legalization logic for AMDGPU.
This will be much more convenient to work with than needing to call
getConstantVRegVal and checking if it may have failed for every
constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
immarg operands, many of which need inspection during lowering. Having
to find the value in a register is going to add a lot of boilerplate
and waste compile time.
SelectionDAG has always provided TargetConstant for constants which
should not be legalized or materialized in a register. The distinction
between Constant and TargetConstant was somewhat fuzzy, and there was
no automatic way to force usage of TargetConstant for certain
intrinsic parameters. They were both ultimately ConstantSDNode, and it
was inconsistently used. It was quite easy to mis-select an
instruction requiring an immediate. For SelectionDAG, start emitting
TargetConstant for these arguments, and using timm to match them.
Most of the work here is to cleanup target handling of constants. Some
targets process intrinsics through intermediate custom nodes, which
need to preserve TargetConstant usage to match the intrinsic
expectation. Pattern inputs now need to distinguish whether a constant
is merely compatible with an operand or whether it is mandatory.
The GlobalISelEmitter needs to treat timm as a special case of a leaf
node, simlar to MachineBasicBlock operands. This should also enable
handling of patterns for some G_* instructions with immediates, like
G_FENCE or G_EXTRACT.
This does include a workaround for a crash in GlobalISelEmitter when
ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372285
|
|
|
|
| |
llvm-svn: 372283
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
update_{llc,mir}_test_checks.py applicability is determined by the
output (assembly or MIR), not the input, which makes
update_llc_test_checks.py the right tool to generate tests that start at
MIR and stop at the final assembly.
This commit adds the minimal support for this path. Main limitation that
remains:
- MIR has to have LLVM IR section, and the CHECK lines will be inserted
into the LLVM IR functions that correspond to the MIR functions.
Running
../utils/update_llc_test_checks.py --llc-binary ./bin/llc
on a slightly modified ../test/CodeGen/X86/bad-tls-fold.mir
produces the following diff:
+# NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
+# RUN: llc %s -o - | FileCheck %s
--- |
target triple = "x86_64-unknown-linux-gnu"
@@ -6,17 +7,31 @@
@i = external thread_local global i32
define i32 @or() {
+ ; CHECK-LABEL: or:
+ ; CHECK: # %bb.0: # %entry
+ ; CHECK-NEXT: movq {{.*}}(%rip), %rax
+ ; CHECK-NEXT: orq $7, %rax
+ ; CHECK-NEXT: movq i@{{.*}}(%rip), %rcx
+ ; CHECK-NEXT: orq %rax, %rcx
+ ; CHECK-NEXT: movl %fs:(%rcx), %eax
+ ; CHECK-NEXT: retq
entry:
ret i32 undef
}
-
define i32 @and() {
+ ; CHECK-LABEL: and:
+ ; CHECK: # %bb.0: # %entry
+ ; CHECK-NEXT: movq {{.*}}(%rip), %rax
+ ; CHECK-NEXT: orq $7, %rax
+ ; CHECK-NEXT: movq i@{{.*}}(%rip), %rcx
+ ; CHECK-NEXT: andq %rax, %rcx
+ ; CHECK-NEXT: movl %fs:(%rcx), %eax
+ ; CHECK-NEXT: retq
entry:
ret i32 undef
}
...
(not applied)
llvm-svn: 372277
|
|
|
|
|
|
|
|
| |
Very minor change aiming to make it easier to extend the script
downstream to support non-llc, but llc-like tools. The main objective is
to decrease the probability of merge conflicts.
llvm-svn: 372276
|
|
|
|
| |
llvm-svn: 372268
|
|
|
|
| |
llvm-svn: 372265
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Also fixup rL371928 for cases that occur on our out-of-tree backend
There were still quite a few intermediate APInts and this caused the
compile time of MCCodeEmitter for our target to jump from 16s up to
~5m40s. This patch, brings it back down to ~17s by eliminating pretty
much all of them using two new APInt functions (extractBitsAsZExtValue(),
insertBits() but with a uint64_t). The exact conditions for eliminating
them is that the field extracted/inserted must be <=64-bit which is
almost always true.
Note: The two new APInt API's assume that APInt::WordSize is at least
64-bit because that means they touch at most 2 APInt words. They
statically assert that's true. It seems very unlikely that someone
is patching it to be smaller so this should be fine.
Reviewers: jmolloy
Reviewed By: jmolloy
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67686
llvm-svn: 372243
|
|
|
|
| |
llvm-svn: 372239
|
|
|
|
| |
llvm-svn: 372173
|
|
|
|
| |
llvm-svn: 372163
|
|
|
|
| |
llvm-svn: 372150
|
|
|
|
|
|
| |
The static analyzer is warning about potential null dereferences of dyn_cast<> results - in these cases we can safely use cast<> directly as we know that these cases should all be the correct type, which is why its working atm and anyway cast<> will assert if they aren't.
llvm-svn: 372146
|
|
|
|
| |
llvm-svn: 372123
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Reordered MVT simple types to group scalable vector types
together.
* New range functions in MachineValueType.h to only iterate over
the fixed-length int/fp vector types.
* Stopped backends which don't support scalable vector types from
iterating over scalable types.
Reviewers: sdesmalen, greened
Reviewed By: greened
Differential Revision: https://reviews.llvm.org/D66339
llvm-svn: 372099
|
|
|
|
|
|
|
|
|
|
|
|
| |
This makes git-llvm more of a thin wrapper around git while temporarily
maintaining backwards compatibility with past git-llvm behavior.
Using @{upstream} makes git-llvm more robust when used with a nontrivial
local repository.
https://reviews.llvm.org/D67389
llvm-svn: 372070
|
|
|
|
|
|
| |
This breaks a Windows bot.
llvm-svn: 372051
|
|
|
|
| |
llvm-svn: 372048
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When using lit's internal shell, RUN lines like the following
accidentally execute an external `diff` instead of lit's internal
`diff`:
```
# RUN: program | diff file -
# RUN: not diff file1 file2 | FileCheck %s
```
Such cases exist now, in `clang/test/Analysis` for example. We are
preparing patches to ensure lit's internal `diff` is called in such
cases, which will then fail because lit's internal `diff` cannot
currently be used in pipelines and doesn't recognize `-` as a
command-line option.
To enable pipelines, this patch moves lit's `diff` implementation into
an out-of-process script, similar to lit's `cat` implementation. A
follow-up patch will implement `-` to mean stdin.
Reviewed By: probinson, stella.stamenova
Differential Revision: https://reviews.llvm.org/D66574
llvm-svn: 372035
|
|
|
|
| |
llvm-svn: 371977
|
|
|
|
| |
llvm-svn: 371966
|
|
|
|
| |
llvm-svn: 371961
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some VLIW instruction sets are Very Long Indeed. Using uint64_t constricts the Inst encoding to 64 bits (naturally).
This change switches CodeEmitter to a mode that uses APInts when Inst's bitwidth is > 64 bits (NFC for existing targets).
When Inst.BitWidth > 64 the prototype changes to:
void TargetMCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,
SmallVectorImpl<MCFixup> &Fixups,
APInt &Inst,
APInt &Scratch,
const MCSubtargetInfo &STI);
The Inst parameter returns the encoded instruction, the Scratch parameter is used internally for manipulating operands and is exposed so that the underlying storage can be reused between calls to getBinaryCodeForInstr. The goal is to elide any APInt constructions that we can.
Similarly the operand encoding prototype changes to:
getMachineOpValue(const MCInst &MI, const MCOperand &MO, APInt &op, SmallVectorImpl<MCFixup> &Fixups, const MCSubtargetInfo &STI);
That is, the operand is passed by reference as APInt rather than returned as uint64_t.
To reiterate, this APInt mode is enabled only when Inst.BitWidth > 64, so this change is NFC for existing targets.
llvm-svn: 371928
|
|
|
|
| |
llvm-svn: 371858
|
|
|
|
| |
llvm-svn: 371851
|
|
|
|
|
|
|
|
| |
This reverts commit abc7e2b6004cd693cf3b6dedbc7908e099c7ac6a.
The commit was incomplete. I'll revert and reland the full commit,
so that the correct change is a single commit.
llvm-svn: 371850
|
|
|
|
| |
llvm-svn: 371849
|
|
|
|
| |
llvm-svn: 371848
|
|
|
|
| |
llvm-svn: 371847
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 371834
|
|
|
|
|
|
|
|
|
|
|
|
| |
When trying to run test-release.sh on Solaris 11.4 for 9.0.0 rc4, I failed initially
because Solaris lacks chrpath. This patch accounts for that and allowed the run to
continue.
Tested on amd64-pc-solaris2.11 and sparcv9-sun-solaris2.11.
Differential Revision: https://reviews.llvm.org/D67484
llvm-svn: 371741
|