| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
DISubprogram"
This caused PR32977.
Original commit message:
> Make it illegal for two Functions to point to the same DISubprogram
>
> As recently discussed on llvm-dev [1], this patch makes it illegal for
> two Functions to point to the same DISubprogram and updates
> FunctionCloner to also clone the debug info of a function to conform
> to the new requirement. To simplify the implementation it also factors
> out the creation of inlineAt locations from the Inliner into a
> general-purpose utility in DILocation.
>
> [1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
> <rdar://problem/31926379>
>
> Differential Revision: https://reviews.llvm.org/D32975
llvm-svn: 302533
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As recently discussed on llvm-dev [1], this patch makes it illegal for
two Functions to point to the same DISubprogram and updates
FunctionCloner to also clone the debug info of a function to conform
to the new requirement. To simplify the implementation it also factors
out the creation of inlineAt locations from the Inliner into a
general-purpose utility in DILocation.
[1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
<rdar://problem/31926379>
Differential Revision: https://reviews.llvm.org/D32975
llvm-svn: 302469
|
|
|
|
|
|
|
|
| |
This should simplify the call sites, which typically want to tweak one
attribute at a time. It should also avoid creating ephemeral
AttributeLists that live forever.
llvm-svn: 300718
|
|
|
|
|
|
|
|
| |
Analysis, it has Analysis passes, and once NewGVN is made an Analysis,
this removes the cross dependency from Analysis to Transform/Utils.
NFC.
llvm-svn: 299980
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Users often call getArgumentList().size(), which is a linear way to get
the number of function arguments. arg_size(), on the other hand, is
constant time.
In general, the fact that arguments are stored in an iplist is an
implementation detail, so I've removed it from the Function interface
and moved all other users to the argument container APIs (arg_begin(),
arg_end(), args(), arg_size()).
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D31052
llvm-svn: 298010
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add updater to passes that now need it.
Move around code in MemorySSA to expose needed functions.
Summary: Mostly cleanup
Reviewers: george.burgess.iv
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30221
llvm-svn: 295887
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This lets one add aliasing stores to the updater.
(i'm next going to move the creation/etc functions to the updater)
Reviewers: george.burgess.iv
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30154
llvm-svn: 295677
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
JumpThreading for guards feature has been reverted at https://reviews.llvm.org/rL295200
due to the following problem: the feature used the following algorithm for detection of
diamond patters:
1. Find a block with 2 predecessors;
2. Check that these blocks have a common single parent;
3. Check that the parent's terminator is a branch instruction.
The problem is that these checks are insufficient. They may pass for a non-diamond
construction in case if those two predecessors are actually the same block. This may
happen if parent's terminator is a br (either conditional or unconditional) to a block
that ends with "switch" instruction with exactly two branches going to one block.
This patch re-enables the JumpThreading for guards and fixes this issue by adding the
check that those found predecessors are actually different blocks. This guarantees that
parent's terminator is a conditional branch with exactly 2 different successors, which
is now ensured by assertions. It also adds two more tests for this situation (with parent's
terminator being a conditional and an unconditional branch).
Patch by Max Kazantsev!
Reviewers: anna, sanjoy, reames
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30036
llvm-svn: 295410
|
|
|
|
|
|
|
|
|
| |
This reverts commit r294617.
We fail on an assert while trying to get a condition from an
unconditional branch.
llvm-svn: 295200
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch allows JumpThreading also thread through guards.
Virtually, guard(cond) is equivalent to the following construction:
if (cond) { do something } else {deoptimize}
Yet it is not explicitly converted into IFs before lowering.
This patch enables early threading through guards in simple cases.
Currently it covers the following situation:
if (cond1) {
// code A
} else {
// code B
}
// code C
guard(cond2)
// code D
If there is implication cond1 => cond2 or !cond1 => cond2, we can transform
this construction into the following:
if (cond1) {
// code A
// code C
} else {
// code B
// code C
guard(cond2)
}
// code D
Thus, removing the guard from one of execution branches.
Patch by Max Kazantsev!
Reviewers: reames, apilipenko, igor-laevsky, anna, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29620
llvm-svn: 294617
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
into CRTP base classes.
This can sometimes happen and not cause an immediate failure when the
derived class is, itself, a template. You can end up essentially calling
methods on the wrong derived type but a type where many things will
appear to "work".
To fail fast and with a clear error message we can use a static_assert,
but we have to stash that static_assert inside a method body or nested
type that won't need to be completed while building the base class. I've
tried to pick a reasonably small number of places that seemed like they
would definitely get triggered on use.
This is the last of the patch series defending against this that I have
planned, so far no bugs other than the original were found.
llvm-svn: 294275
|
|
|
|
|
|
|
| |
This reverts commit r293471, reapplying r293361 and r293363 with a fix
for an out-of-bounds read.
llvm-svn: 293474
|
|
|
|
| |
llvm-svn: 293471
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Extend the MemorySSAUpdater API to allow movement to arbitrary places
Reviewers: davide, george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29239
llvm-svn: 293363
|
|
|
|
| |
llvm-svn: 293357
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
insertUse, moveBefore and moveAfter operations.
Summary:
This creates a basic MemorySSA updater that handles arbitrary
insertion of uses and defs into MemorySSA, as well as arbitrary
movement around the CFG. It replaces the current splice API.
It can be made to handle arbitrary control flow changes.
Currently, it uses the same updater algorithm from D28934.
The main difference is because MemorySSA is single variable, we have
the complete def and use list, and don't need anyone to give it to us
as part of the API. We also have to rename stores below us in some
cases.
If we go that direction in that patch, i will merge all the updater
implementations (using an updater_traits or something to provide the
get* functions we use, called read*/write* in that patch).
Sadly, the current SSAUpdater algorithm is way too slow to use for
what we are doing here.
I have updated the tests we have to basically build memoryssa
incrementally using the updater api, and make sure it still comes out
the same.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29047
llvm-svn: 293356
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
updater easier
Summary:
This is the first in a series of patches to add a simple, generalized updater to MemorySSA.
For MemorySSA, every def is may-def, instead of the normal must-def.
(the best way to think of memoryssa is "everything is really one variable, with different versions of that variable at different points in the program).
This means when updating, we end up having to do a bunch of work to touch defs below and above us.
In order to support this quickly, i have ilist'd all the defs for each block. ilist supports tags, so this is quite easy. the only slightly messy part is that you can't have two iplists for the same type that differ only whether they have the ownership part enabled or not, because the traits are for the value type.
The verifiers have been updated to test that the def order is correct.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29046
llvm-svn: 293085
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds the last remaining core feature of the loop pass pipeline in
the new PM and removes the last of the really egregious hacks in the
LICM tests.
Sadly, this requires really substantial changes in the unittests in
order to provide and maintain simplified loops. This is particularly
hard because for example LoopSimplify will try to fold undef branches to
an ideal direction and simplify the loop accordingly.
Differential Revision: https://reviews.llvm.org/D28766
llvm-svn: 292709
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D28838
llvm-svn: 292430
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mark it as never invalidated in the new PM.
The old PM already required this to work, and after a discussion with
Hal this seems to really be the only sensible answer. The cache
gracefully degrades as the IR is mutated, and most things which do this
should already be incrementally updating the cache.
This gets rid of a bunch of logic preserving and testing the
invalidation of this analysis.
llvm-svn: 292039
|
|
|
|
| |
llvm-svn: 291666
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
the latter to the Transforms library.
While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.
Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.
We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.
This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.
I haven't split the unittest though because testing one component
without the other seems nearly intractable.
Differential Revision: https://reviews.llvm.org/D28452
llvm-svn: 291662
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D26661
llvm-svn: 290527
|
|
|
|
|
|
|
| |
This creates non-linear behavior in the inliner (see more details in
r289755's commit thread).
llvm-svn: 290086
|
|
|
|
|
|
|
|
|
| |
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
|
|
|
|
|
|
|
|
|
|
|
|
| |
FileName and Directory.
This way it will be easier to expand DIFile (e.g., to contain checksum) without the need to modify the createCompileUnit() API.
Reviewers: llvm-commits, rnk
Differential Revision: https://reviews.llvm.org/D27762
llvm-svn: 289702
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is pure refactoring. NFC.
This change moves the FunctionComparator (together with the GlobalNumberState
utility) in to a separate file so that it can be used by other passes.
For example, the SwiftMergeFunctions pass in the Swift compiler:
https://github.com/apple/swift/blob/master/lib/LLVMPasses/LLVMMergeFunctions.cpp
Details of the change:
*) The big part is just moving code out of MergeFunctions.cpp into FunctionComparator.h/cpp
*) Make FunctionComparator member functions protected (instead of private)
so that a derived comparator class can use them.
Following refactoring helps to share code between the base FunctionComparator
class and a derived class:
*) Add a beginCompare() function
*) Move some basic function property comparisons into a separate function compareSignature()
*) Do the GEP comparison inside cmpOperations() which now has a new
needToCmpOperands reference parameter
https://reviews.llvm.org/D25385
llvm-svn: 286632
|
|
|
|
|
|
|
|
| |
Patch by bryant.
Differential Revision: https://reviews.llvm.org/D26126
llvm-svn: 285750
|
|
|
|
| |
llvm-svn: 285161
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This allows us to mark when uses have been optimized.
This lets us avoid rewalking (IE when people call getClobberingAccess on everything), and also
enables us to later relax the requirement of use optimization during updates with less cost.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25172
llvm-svn: 284771
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Add alignment attribute to DIVariable family
- Modify bitcode format to match new DIVariable representation
- Update tests to match these changes (also add bitcode upgrade test)
- Expect that frontend passes non-zero align value only when it is not default
(was forcibly aligned by alignas()/_Alignas()/__atribute__(aligned())
Differential Revision: https://reviews.llvm.org/D25073
llvm-svn: 284678
|
|
|
|
|
|
|
|
|
|
|
|
| |
stack description into separate function.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25754
llvm-svn: 284547
|
|
|
|
|
|
|
|
|
|
|
|
| |
same file as the function.
PR30498
Reviewers: eugenis
Differential Revision: https://reviews.llvm.org/D25715
llvm-svn: 284546
|
|
|
|
|
|
|
|
|
|
|
|
| |
We now build MemorySSA in its ctor, instead of waiting until the user
calls MemorySSA::getWalker. This silently changed our unittests, since
we add BasicAA to AAResults *after* constructing MemorySSA (...but
before calling MemorySSA::getWalker).
None of them broke because we do most of our "did this get optimized
correctly?" tests in .ll files.
llvm-svn: 283158
|
|
|
|
| |
llvm-svn: 282421
|
|
|
|
| |
llvm-svn: 280716
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use ADT/BitmaskEnum for DINode::DIFlags for the following purposes:
Get rid of unsigned int for flags to avoid problems on platforms with sizeof(int) < 4
Flags are now strongly typed
Patch by: Victor Leschuk <vleschuk@gmail.com>
Differential Revision: https://reviews.llvm.org/D23766
llvm-svn: 280700
|
|
|
|
|
|
| |
This reverts commit r280686, bots are broken.
llvm-svn: 280688
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use ADT/BitmaskEnum for DINode::DIFlags for the following purposes:
* Get rid of unsigned int for flags to avoid problems on platforms with sizeof(int) < 4
* Flags are now strongly typed
Patch by: Victor Leschuk <vleschuk@gmail.com>
Differential Revision: https://reviews.llvm.org/D23766
llvm-svn: 280686
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: No functional changes, just refactoring to make D23947 simpler.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23954
llvm-svn: 279982
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We are going to combine poisoning of red zones and scope poisoning.
PR27453
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23623
llvm-svn: 279373
|
|
|
|
|
|
|
|
|
|
| |
ComputeASanStackFrameLayout"
This reverts commit r279020.
Speculative revert in hope to fix asan test on arm.
llvm-svn: 279332
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We are going to combine poisoning of red zones and scope poisoning.
PR27453
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23623
llvm-svn: 279020
|
|
|
|
|
|
|
| |
Didn't want to fold this in with r277640, since it touches bits that
aren't entirely related to r277640.
llvm-svn: 277641
|
|
|
|
|
|
|
| |
This is a follow-up to r277637. It teaches MemorySSA that invariant
loads (and loads of provably constant memory) are always liveOnEntry.
llvm-svn: 277640
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes a bug where we'd sometimes cache overly-conservative results
with our walker. This bug was made more obvious by r277480, which makes
our cache far more spotty than it was. Test case is llvm-unit, because
we're likely going to use CachingWalker only for def optimization in the
future.
The bug stems from that there was a place where the walker assumed that
`DefNode.Last` was a valid target to cache to when failing to optimize
phis. This is sometimes incorrect if we have a cache hit. The fix is to
use the thing we *can* assume is a valid target to cache to. :)
llvm-svn: 277559
|
|
|
|
|
|
| |
before removing old ones
llvm-svn: 277309
|
|
|
|
| |
llvm-svn: 277308
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The bitset metadata currently used in LLVM has a few problems:
1. It has the wrong name. The name "bitset" refers to an implementation
detail of one use of the metadata (i.e. its original use case, CFI).
This makes it harder to understand, as the name makes no sense in the
context of virtual call optimization.
2. It is represented using a global named metadata node, rather than
being directly associated with a global. This makes it harder to
manipulate the metadata when rebuilding global variables, summarise it
as part of ThinLTO and drop unused metadata when associated globals are
dropped. For this reason, CFI does not currently work correctly when
both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
globals, and fails to associate metadata with the rebuilt globals. As I
understand it, the same problem could also affect ASan, which rebuilds
globals with a red zone.
This patch solves both of those problems in the following way:
1. Rename the metadata to "type metadata". This new name reflects how
the metadata is currently being used (i.e. to represent type information
for CFI and vtable opt). The new name is reflected in the name for the
associated intrinsic (llvm.type.test) and pass (LowerTypeTests).
2. Attach metadata directly to the globals that it pertains to, rather
than using the "llvm.bitsets" global metadata node as we are doing now.
This is done using the newly introduced capability to attach
metadata to global variables (r271348 and r271358).
See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21053
llvm-svn: 273729
|