summaryrefslogtreecommitdiffstats
path: root/llvm/unittests/IR/PassManagerTest.cpp
Commit message (Collapse)AuthorAgeFilesLines
* Update the file headers across all of the LLVM projects in the monorepoChandler Carruth2019-01-191-4/+3
| | | | | | | | | | | | | | | | | to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
* [New PM] Introducing PassInstrumentation frameworkFedor Sergeev2018-09-201-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pass Execution Instrumentation interface enables customizable instrumentation of pass execution, as per "RFC: Pass Execution Instrumentation interface" posted 06/07/2018 on llvm-dev@ The intent is to provide a common machinery to implement all the pass-execution-debugging features like print-before/after, opt-bisect, time-passes etc. Here we get a basic implementation consisting of: * PassInstrumentationCallbacks class that handles registration of callbacks and access to them. * PassInstrumentation class that handles instrumentation-point interfaces that call into PassInstrumentationCallbacks. * Callbacks accept StringRef which is just a name of the Pass right now. There were some ideas to pass an opaque wrapper for the pointer to pass instance, however it appears that pointer does not actually identify the instance (adaptors and managers might have the same address with the pass they govern). Hence it was decided to go simple for now and then later decide on what the proper mental model of identifying a "pass in a phase of pipeline" is. * Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies on different IRUnits (e.g. Analyses). * PassInstrumentationAnalysis analysis is explicitly requested from PassManager through usual AnalysisManager::getResult. All pass managers were updated to run that to get PassInstrumentation object for instrumentation calls. * Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra args out of a generic PassManager's extra args. This is the only way I was able to explicitly run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or RepeatedPass::run. TODO: Upon lengthy discussions we agreed to accept this as an initial implementation and then get rid of getAnalysisResult by improving RepeatedPass implementation. * PassBuilder takes PassInstrumentationCallbacks object to pass it further into PassInstrumentationAnalysis. Callbacks registration should be performed directly through PassInstrumentationCallbacks. * new-pm tests updated to account for PassInstrumentationAnalysis being run * Added PassInstrumentation tests to PassBuilderCallbacks unit tests. Other unit tests updated with registration of the now-required PassInstrumentationAnalysis. Made getName helper to return std::string (instead of StringRef initially) to fix asan builtbot failures on CGSCC tests. Reviewers: chandlerc, philip.pfaffe Differential Revision: https://reviews.llvm.org/D47858 llvm-svn: 342664
* Temporarily Revert "[New PM] Introducing PassInstrumentation framework"Eric Christopher2018-09-201-9/+0
| | | | | | | | as it was causing failures in the asan buildbot. This reverts commit r342597. llvm-svn: 342616
* [New PM] Introducing PassInstrumentation frameworkFedor Sergeev2018-09-191-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pass Execution Instrumentation interface enables customizable instrumentation of pass execution, as per "RFC: Pass Execution Instrumentation interface" posted 06/07/2018 on llvm-dev@ The intent is to provide a common machinery to implement all the pass-execution-debugging features like print-before/after, opt-bisect, time-passes etc. Here we get a basic implementation consisting of: * PassInstrumentationCallbacks class that handles registration of callbacks and access to them. * PassInstrumentation class that handles instrumentation-point interfaces that call into PassInstrumentationCallbacks. * Callbacks accept StringRef which is just a name of the Pass right now. There were some ideas to pass an opaque wrapper for the pointer to pass instance, however it appears that pointer does not actually identify the instance (adaptors and managers might have the same address with the pass they govern). Hence it was decided to go simple for now and then later decide on what the proper mental model of identifying a "pass in a phase of pipeline" is. * Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies on different IRUnits (e.g. Analyses). * PassInstrumentationAnalysis analysis is explicitly requested from PassManager through usual AnalysisManager::getResult. All pass managers were updated to run that to get PassInstrumentation object for instrumentation calls. * Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra args out of a generic PassManager's extra args. This is the only way I was able to explicitly run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or RepeatedPass::run. TODO: Upon lengthy discussions we agreed to accept this as an initial implementation and then get rid of getAnalysisResult by improving RepeatedPass implementation. * PassBuilder takes PassInstrumentationCallbacks object to pass it further into PassInstrumentationAnalysis. Callbacks registration should be performed directly through PassInstrumentationCallbacks. * new-pm tests updated to account for PassInstrumentationAnalysis being run * Added PassInstrumentation tests to PassBuilderCallbacks unit tests. Other unit tests updated with registration of the now-required PassInstrumentationAnalysis. Reviewers: chandlerc, philip.pfaffe Differential Revision: https://reviews.llvm.org/D47858 llvm-svn: 342597
* Revert rL342544: [New PM] Introducing PassInstrumentation frameworkFedor Sergeev2018-09-191-9/+0
| | | | | | A bunch of bots fail to compile unittests. Reverting. llvm-svn: 342552
* [New PM] Introducing PassInstrumentation frameworkFedor Sergeev2018-09-191-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: Pass Execution Instrumentation interface enables customizable instrumentation of pass execution, as per "RFC: Pass Execution Instrumentation interface" posted 06/07/2018 on llvm-dev@ The intent is to provide a common machinery to implement all the pass-execution-debugging features like print-before/after, opt-bisect, time-passes etc. Here we get a basic implementation consisting of: * PassInstrumentationCallbacks class that handles registration of callbacks and access to them. * PassInstrumentation class that handles instrumentation-point interfaces that call into PassInstrumentationCallbacks. * Callbacks accept StringRef which is just a name of the Pass right now. There were some ideas to pass an opaque wrapper for the pointer to pass instance, however it appears that pointer does not actually identify the instance (adaptors and managers might have the same address with the pass they govern). Hence it was decided to go simple for now and then later decide on what the proper mental model of identifying a "pass in a phase of pipeline" is. * Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies on different IRUnits (e.g. Analyses). * PassInstrumentationAnalysis analysis is explicitly requested from PassManager through usual AnalysisManager::getResult. All pass managers were updated to run that to get PassInstrumentation object for instrumentation calls. * Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra args out of a generic PassManager's extra args. This is the only way I was able to explicitly run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or RepeatedPass::run. TODO: Upon lengthy discussions we agreed to accept this as an initial implementation and then get rid of getAnalysisResult by improving RepeatedPass implementation. * PassBuilder takes PassInstrumentationCallbacks object to pass it further into PassInstrumentationAnalysis. Callbacks registration should be performed directly through PassInstrumentationCallbacks. * new-pm tests updated to account for PassInstrumentationAnalysis being run * Added PassInstrumentation tests to PassBuilderCallbacks unit tests. Other unit tests updated with registration of the now-required PassInstrumentationAnalysis. Reviewers: chandlerc, philip.pfaffe Differential Revision: https://reviews.llvm.org/D47858 llvm-svn: 342544
* Remove \brief commands from doxygen comments.Adrian Prantl2018-05-011-1/+1
| | | | | | | | | | | | | | | | We've been running doxygen with the autobrief option for a couple of years now. This makes the \brief markers into our comments redundant. Since they are a visual distraction and we don't want to encourage more \brief markers in new code either, this patch removes them all. Patch produced by for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done Differential Revision: https://reviews.llvm.org/D46290 llvm-svn: 331272
* [PM] Teach PreservedAnalyses to have an `allInSet` static factoryChandler Carruth2017-07-091-0/+7
| | | | | | | function template to simplify building a quick object with a set marked as preserved. llvm-svn: 307493
* Re-sort #include lines for unittests. This uses a slightly modifiedChandler Carruth2017-06-061-1/+1
| | | | | | | | | | | | | | | clang-format (https://reviews.llvm.org/D33932) to keep primary headers at the top and handle new utility headers like 'gmock' consistently with other utility headers. No other change was made. I did no manual edits, all of this is clang-format. This should allow other changes to have more clear and focused diffs, and is especially motivated by moving some headers into more focused libraries. llvm-svn: 304786
* [PM] Introduce the facilities for registering cross-IR-unit dependenciesChandler Carruth2016-12-271-43/+327
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | that require deferred invalidation. This handles the other real-world invalidation scenario that we have cases of: a function analysis which caches references to a module analysis. We currently do this in the AA aggregation layer and might well do this in other places as well. Since this is relative rare, the technique is somewhat more cumbersome. Analyses need to register themselves when accessing the outer analysis manager's proxy. This proxy is already necessarily present to allow access to the outer IR unit's analyses. By registering here we can track and trigger invalidation when that outer analysis goes away. To make this work we need to enhance the PreservedAnalyses infrastructure to support a (slightly) more explicit model for "sets" of analyses, and allow abandoning a single specific analyses even when a set covering that analysis is preserved. That allows us to describe the scenario of preserving all Function analyses *except* for the one where deferred invalidation has triggered. We also need to teach the invalidator API to support direct ID calls instead of always going through a template to dispatch so that we can just record the ID mapping. I've introduced testing of all of this both for simple module<->function cases as well as for more complex cases involving a CGSCC layer. Much like the previous patch I've not tried to fully update the loop pass management layer because that layer is due to be heavily reworked to use similar techniques to the CGSCC to handle updates. As that happens, we'll have a better testing basis for adding support like this. Many thanks to both Justin and Sean for the extensive reviews on this to help bring the API design and documentation into a better state. Differential Revision: https://reviews.llvm.org/D27198 llvm-svn: 290594
* [PM] Support invalidation of inner analysis managers from a pass over the ↵Chandler Carruth2016-12-101-25/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | outer IR unit. Summary: This never really got implemented, and was very hard to test before a lot of the refactoring changes to make things more robust. But now we can test it thoroughly and cleanly, especially at the CGSCC level. The core idea is that when an inner analysis manager proxy receives the invalidation event for the outer IR unit, it needs to walk the inner IR units and propagate it to the inner analysis manager for each of those units. For example, each function in the SCC needs to get an invalidation event when the SCC gets one. The function / module interaction is somewhat boring here. This really becomes interesting in the face of analysis-backed IR units. This patch effectively handles all of the CGSCC layer's needs -- both invalidating SCC analysis and invalidating function analysis when an SCC gets invalidated. However, this second aspect doesn't really handle the LoopAnalysisManager well at this point. That one will need some change of design in order to fully integrate, because unlike the call graph, the entire function behind a LoopAnalysis's results can vanish out from under us, and we won't even have a cached API to access. I'd like to try to separate solving the loop problems into a subsequent patch though in order to keep this more focused so I've adapted them to the API and updated the tests that immediately fail, but I've not added the level of testing and validation at that layer that I have at the CGSCC layer. An important aspect of this change is that the proxy for the FunctionAnalysisManager at the SCC pass layer doesn't work like the other proxies for an inner IR unit as it doesn't directly manage the FunctionAnalysisManager and invalidation or clearing of it. This would create an ever worsening problem of dual ownership of this responsibility, split between the module-level FAM proxy and this SCC-level FAM proxy. Instead, this patch changes the SCC-level FAM proxy to work in terms of the module-level proxy and defer to it to handle much of the updates. It only does SCC-specific invalidation. This will become more important in subsequent patches that support more complex invalidaiton scenarios. Reviewers: jlebar Subscribers: mehdi_amini, mcrosier, mzolotukhin, llvm-commits Differential Revision: https://reviews.llvm.org/D27197 llvm-svn: 289317
* [PM] Extend the explicit 'invalidate' method API on analysis results toChandler Carruth2016-11-281-0/+103
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | accept an Invalidator that allows them to invalidate themselves if their dependencies are in turn invalidated. Rather than recording the dependency graph ahead of time when analysis get results from other analyses, this simply lets each result trigger the immediate invalidation of any analyses they actually depend on. They do this in a way that has three nice properties: 1) They don't have to handle transitive dependencies because the infrastructure will recurse for them. 2) The invalidate methods are still called only once. We just dynamically discover the necessary topological ordering, everything is memoized nicely. 3) The infrastructure still provides a default implementation and can access it so that only analyses which have dependencies need to do anything custom. To make this work at all, the invalidation logic also has to defer the deletion of the result objects themselves so that they can remain alive until we have collected the complete set of results to invalidate. A unittest is added here that has exactly the dependency pattern we are concerned with. It hit the use-after-free described by Sean in much detail in the long thread about analysis invalidation before this change, and even in an intermediate form of this change where we failed to defer the deletion of the result objects. There is an important problem with doing dependency invalidation that *isn't* solved here: we don't *enforce* that results correctly invalidate all the analyses whose results they depend on. I actually looked at what it would take to do that, and it isn't as hard as I had thought but the complexity it introduces seems very likely to outweigh the benefit. The technique would be to provide a base class for an analysis result that would be populated with other results, and automatically provide the invalidate method which immediately does the correct thing. This approach has some nice pros IMO: - Handles the case we care about and nothing else: only *results* that depend on other analyses trigger extra invalidation. - Localized to the result rather than centralized in the analysis manager. - Ties the storage of the reference to another result to the triggering of the invalidation of that analysis. - Still supports extending invalidation in customized ways. But the down sides here are: - Very heavy-weight meta-programming is needed to provide this base class. - Requires a pretty awful API for accessing the dependencies. Ultimately, I fear it will not pull its weight. But we can re-evaluate this at any point if we start discovering consistent problems where the invalidation and dependencies get out of sync. It will fit as a clean layer on top of the facilities in this patch that we can add if and when we need it. Note that I'm not really thrilled with the names for these APIs... The name "Invalidator" seems ok but not great. The method name "invalidate" also. In review some improvements were suggested, but they really need *other* uses of these terms to be updated as well so I'm going to do that in a follow-up commit. I'm working on the actual fixes to various analyses that need to use these, but I want to try to get tests for each of them so we don't regress. And those changes are seperable and obvious so once this goes in I should be able to roll them out throughout LLVM. Many thanks to Sean, Justin, and others for help reviewing here. Differential Revision: https://reviews.llvm.org/D23738 llvm-svn: 288077
* [PM] Change the static object whose address is used to uniquely identifyChandler Carruth2016-11-231-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | analyses to have a common type which is enforced rather than using a char object and a `void *` type when used as an identifier. This has a number of advantages. First, it at least helps some of the confusion raised in Justin Lebar's code review of why `void *` was being used everywhere by having a stronger type that connects to documentation about this. However, perhaps more importantly, it addresses a serious issue where the alignment of these pointer-like identifiers was unknown. This made it hard to use them in pointer-like data structures. We were already dodging this in dangerous ways to create the "all analyses" entry. In a subsequent patch I attempted to use these with TinyPtrVector and things fell apart in a very bad way. And it isn't just a compile time or type system issue. Worse than that, the actual alignment of these pointer-like opaque identifiers wasn't guaranteed to be a useful alignment as they were just characters. This change introduces a type to use as the "key" object whose address forms the opaque identifier. This both forces the objects to have proper alignment, and provides type checking that we get it right everywhere. It also makes the types somewhat less mysterious than `void *`. We could go one step further and introduce a truly opaque pointer-like type to return from the `ID()` static function rather than returning `AnalysisKey *`, but that didn't seem to be a clear win so this is just the initial change to get to a reliably typed and aligned object serving is a key for all the analyses. Thanks to Richard Smith and Justin Lebar for helping pick plausible names and avoid making this refactoring many times. =] And thanks to Sean for the super fast review! While here, I've tried to move away from the "PassID" nomenclature entirely as it wasn't really helping and is overloaded with old pass manager constructs. Now we have IDs for analyses, and key objects whose address can be used as IDs. Where possible and clear I've shortened this to just "ID". In a few places I kept "AnalysisID" to make it clear what was being identified. Differential Revision: https://reviews.llvm.org/D27031 llvm-svn: 287783
* [PM] Re-instate r279227 and r279228 with a fix to the way the templatingChandler Carruth2016-08-191-0/+57
| | | | | | | | | | | was done to hopefully appease MSVC. As an upside, this also implements the suggestion Sanjoy made in code review, so two for one! =] I'll be watching the bots to see if there are still issues. llvm-svn: 279295
* [PM] Revert r279227 and r279228 until I can find someone to help meChandler Carruth2016-08-191-57/+0
| | | | | | | | solve completely opaque MSVC build errors. It complains about lots of stuff with this change without givin nearly enough information to even try to fix. llvm-svn: 279231
* [PM] Fix a compile error with GCC. NFC.Chandler Carruth2016-08-191-2/+2
| | | | llvm-svn: 279228
* [PM] Make the the new pass manager support fully generic extra argumentsChandler Carruth2016-08-191-0/+57
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | to run methods, both for transform passes and analysis passes. This also allows the analysis manager to use a different set of extra arguments from the pass manager where useful. Consider passes over analysis produced units of IR like SCCs of the call graph or loops. Passes of this nature will often want to refer to the analysis result that was used to compute their IR units (the call graph or LoopInfo). And for transformations, they may want to communicate special update information to the outer pass manager. With this change, it becomes possible to have a run method for a loop pass that looks more like: PreservedAnalyses run(Loop &L, AnalysisManager<Loop, LoopInfo> &AM, LoopInfo &LI, LoopUpdateRecord &UR); And to query the analysis manager like: AM.getResult<MyLoopAnalysis>(L, LI); This makes accessing the known-available analyses convenient and clear, and it makes passing customized data structures around easy. My initial use case is going to be in updating the pass manager layers when the analysis units of IR change. But there are more use cases here such as having a layer that lets inner passes signal whether certain additional passes should be run because of particular simplifications made. Two desires for this have come up in the past: triggering additional optimization after successfully unrolling loops, and triggering additional inlining after collapsing indirect calls to direct calls. Despite adding this layer of generic extensibility, the *only* change to existing, simple usage are for places where we forward declare the AnalysisManager template. We really shouldn't be doing this because of the fragility exposed here, but currently it makes coping with the legacy PM code easier. Differential Revision: http://reviews.llvm.org/D21462 llvm-svn: 279227
* [PM] Run clang-format over various parts of the new pass manager codeChandler Carruth2016-06-171-2/+2
| | | | | | | prior to some very substantial patches to isolate any formatting-only changes. llvm-svn: 272991
* [PM] Remove support for omitting the AnalysisManager argument to newChandler Carruth2016-06-171-3/+5
| | | | | | | | | | | | | | | | | | | | pass manager passes' `run` methods. This removes a bunch of SFINAE goop from the pass manager and just requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead argument. This is a small price to pay for the simplicity of the system as a whole, despite the noise that changing it causes at this stage. This will also helpfull allow us to make the signature of the run methods much more flexible for different kinds af passes to support things like intelligently updating the pass's progression over IR units. While this touches many, many, files, the changes are really boring. Mostly made with the help of my trusty perl one liners. Thanks to Sean and Hal for bouncing ideas for this with me in IRC. llvm-svn: 272978
* Remove every uses of getGlobalContext() in LLVM (but the C API)Mehdi Amini2016-04-141-15/+15
| | | | | | | | | | | At the same time, fixes InstructionsTest::CastInst unittest: yes you can leave the IR in an invalid state and exit when you don't destroy the context (like the global one), no longer now. This is the first part of http://reviews.llvm.org/D19094 From: Mehdi Amini <mehdi.amini@apple.com> llvm-svn: 266379
* [PM] Make the AnalysisManager parameter to run methods a reference.Chandler Carruth2016-03-111-9/+9
| | | | | | | | | | | | This was originally a pointer to support pass managers which didn't use AnalysisManagers. However, that doesn't realistically come up much and the complexity of supporting it doesn't really make sense. In fact, *many* parts of the pass manager were just assuming the pointer was never null already. This at least makes it much more explicit and clear. llvm-svn: 263219
* [PM] Rename the CRTP mixin base classes for the new pass manager toChandler Carruth2016-03-111-9/+11
| | | | | | | | | | | | | | | | | | | | clarify their purpose. Firstly, call them "...Mixin" types so it is clear that there is no type hierarchy being formed here. Secondly, use the term 'Info' to clarify that they aren't adding any interesting *semantics* to the passes or analyses, just exposing APIs used by the management layer to get information about the pass or analysis. Thanks to Manuel for helping pin down the naming confusion here and come up with effective names to address it. In case you already have some out-of-tree stuff, the following should be roughly what you want to update: perl -pi -e 's/\b(Pass|Analysis)Base\b/\1InfoMixin/g' llvm-svn: 263217
* [PM] Implement the final conclusion as to how the analysis IDs shouldChandler Carruth2016-03-111-0/+10
| | | | | | | | | | | | | | | | | | | | work in the face of the limitations of DLLs and templated static variables. This requires passes that use the AnalysisBase mixin provide a static variable themselves. So as to keep their APIs clean, I've made these private and befriended the CRTP base class (which is the common practice). I've added documentation to AnalysisBase for why this is necessary and at what point we can go back to the much simpler system. This is clearly a better pattern than the extern template as it caught *numerous* places where the template magic hadn't been applied and things were "just working" but would eventually have broken mysteriously. llvm-svn: 263216
* [PM] Introduce CRTP mixin base classes to help define passes andChandler Carruth2016-02-261-36/+7
| | | | | | | | | | | | | | | | | analyses in the new pass manager. These just handle really basic stuff: turning a type name into a string statically that is nice to print in logs, and getting a static unique ID for each analysis. Sadly, the format of passes in anonymous namespaces makes using their names in tests really annoying so I've customized the names of the no-op passes to keep tests sane to read. This is the first of a few simplifying refactorings for the new pass manager that should reduce boilerplate and confusion. llvm-svn: 262004
* [PM/AA] Teach the new pass manager to use pass-by-lambda for registeringChandler Carruth2016-02-181-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | analysis passes, support pre-registering analyses, and use that to implement parsing and pre-registering a custom alias analysis pipeline. With this its possible to configure the particular alias analysis pipeline used by the AAManager from the commandline of opt. I've updated the test to show this effectively in use to build a pipeline including basic-aa as part of it. My big question for reviewers are around the APIs that are used to expose this functionality. Are folks happy with pass-by-lambda to do pass registration? Are folks happy with pre-registering analyses as a way to inject customized instances of an analysis while still using the registry for the general case? Other thoughts of course welcome. The next round of patches will be to add the rest of the alias analyses into the new pass manager and wire them up here so that they can be used from opt. This will require extending the (somewhate limited) functionality of AAManager w.r.t. module passes. Differential Revision: http://reviews.llvm.org/D17259 llvm-svn: 261197
* [PM] Add names and debug logging for analysis passes to the new passChandler Carruth2015-01-051-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | manager. This starts to allow us to test analyses more easily, but it's really only the beginning. Some of the code here is still untestable without manual changes to create analysis passes, but I wanted to factor it into a small of chunks as possible. Next up in order to be able to test things are, in no particular order: - No-op analyses passes so we don't have to use real ones to exercise the pass maneger itself. - Automatic way of generating dummy passes that require an analysis be run, including a variant that calls a 'print' method on a pass to make it even easier to print out the results of an analysis. - Dummy passes that invalidate all analyses for their IR unit so we can test invalidation and re-runs. - Automatic way to print each analysis pass as it is re-run. - Automatic but optional verification of analysis passes everywhere possible. I'm not claiming I'll get to all of these immediately, but that's what is in the pipeline at some stage. I'm fleshing out exactly what I need and what to prioritize by working on converting analyses and then trying to test the conversion. =] llvm-svn: 225162
* [PM] Switch the new pass manager to use a reference-based API for IRChandler Carruth2015-01-051-15/+15
| | | | | | | | | | | | | | | | | | | | | units. This was debated back and forth a bunch, but using references is now clearly cleaner. Of all the code written using pointers thus far, in only one place did it really make more sense to have a pointer. In most cases, this just removes immediate dereferencing from the code. I think it is much better to get errors on null IR units earlier, potentially at compile time, than to delay it. Most notably, the legacy pass manager uses references for its routines and so as more and more code works with both, the use of pointers was likely to become really annoying. I noticed this when I ported the domtree analysis over and wrote the entire thing with references only to have it fail to compile. =/ It seemed better to switch now than to delay. We can, of course, revisit this is we learn that references are really problematic in the API. llvm-svn: 225145
* Modernize the .ll parsing interface.Rafael Espindola2014-08-191-1/+1
| | | | | | | | | | * Use StringRef instead of std::string& * Return a std::unique_ptr<Module> instead of taking an optional module to write to (was not really used). * Use current comment style. * Use current naming convention. llvm-svn: 215989
* [C++11] Use 'nullptr'.Craig Topper2014-06-081-1/+1
| | | | llvm-svn: 210442
* [PM] As was pointed out in review, I need to define a custom swap inChandler Carruth2014-03-131-3/+44
| | | | | | | | | | | | | order to use the single assignment. That's probably worth doing for a lot of these types anyways as they may have non-trivial moves and so getting copy elision in more places seems worthwhile. I've tried to add some tests that actually catch this mistake, and one of the types is now well tested but the others' tests still fail to catch this. I'll keep working on tests, but this gets the core pattern right. llvm-svn: 203780
* [PM] While I'm here, fix a few other clang-format issues. Pulls someChandler Carruth2014-03-101-4/+2
| | | | | | lines under 80-columns, etc. llvm-svn: 203434
* [PM] Switch new pass manager from polymorphic_ptr to unique_ptr now thatChandler Carruth2014-03-091-23/+33
| | | | | | | it is available. Also make the move semantics sufficiently correct to tolerate move-only passes, as the PassManagers *are* move-only passes. llvm-svn: 203391
* Replace OwningPtr<T> with std::unique_ptr<T>.Ahmed Charles2014-03-061-1/+1
| | | | | | | | | | This compiles with no changes to clang/lld/lldb with MSVC and includes overloads to various functions which are used by those projects and llvm which have OwningPtr's as parameters. This should allow out of tree projects some time to move. There are also no changes to libs/Target, which should help out of tree targets have time to move, if necessary. llvm-svn: 203083
* [PM] Don't require analysis results to be const in the new pass manager.Chandler Carruth2014-02-051-3/+3
| | | | | | | | | | I think this was just over-eagerness on my part. The analysis results need to often be non-const because they need to (in some cases at least) be updated by the transformation pass in order to remain correct. It also makes lazy analyses (a common case) needlessly annoying to write in order to make their entire state mutable. llvm-svn: 200881
* [PM] Add names to passes under the new pass manager, and a debug outputChandler Carruth2014-01-111-0/+10
| | | | | | | | | | mode that can be used to debug the execution of everything. No support for analyses here, that will come later. This already helps show parts of the opt commandline integration that isn't working. Tests of that will start using it as the bugs are fixed. llvm-svn: 199004
* Move the LLVM IR asm writer header files into the IR directory, as theyChandler Carruth2014-01-071-1/+1
| | | | | | | | | | | | | | | | | are part of the core IR library in order to support dumping and other basic functionality. Rename the 'Assembly' include directory to 'AsmParser' to match the library name and the only functionality left their -- printing has been in the core IR library for quite some time. Update all of the #includes to match. All of this started because I wanted to have the layering in good shape before I started adding support for printing LLVM IR using the new pass infrastructure, and commandline support for the new pass infrastructure. llvm-svn: 198688
* [PM] Complete the cross-layer interfaces with a Module-to-FunctionChandler Carruth2013-11-231-12/+65
| | | | | | | | | | | | | proxy. This lets a function pass query a module analysis manager. However, the interface is const to indicate that only cached results can be safely queried. With this, I think the new pass manager is largely functionally complete for modules and analyses. Still lots to test, and need to generalize to SCCs and Loops, and need to build an adaptor layer to support the use of existing Pass objects in the new managers. llvm-svn: 195538
* [PM] Rename TestAnalysisPass to TestFunctionAnalysis to clear the wayChandler Carruth2013-11-231-7/+7
| | | | | | for a TestModuleAnalysis. llvm-svn: 195537
* [PM] Add support to the analysis managers to query explicitly for cachedChandler Carruth2013-11-231-5/+34
| | | | | | | | | | | results. This is the last piece of infrastructure needed to effectively support querying *up* the analysis layers. The next step will be to introduce a proxy which provides access to those layers with appropriate use of const to direct queries to the safe interface. llvm-svn: 195525
* [PM] Switch the downward invalidation to be incremental where only theChandler Carruth2013-11-221-4/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | one function's analyses are invalidated at a time. Also switch the preservation of the proxy to *fully* preserve the lower (function) analyses. Combined, this gets both upward and downward analysis invalidation to a point I'm happy with: - A function pass invalidates its function analyses, and its parent's module analyses. - A module pass invalidates all of its functions' analyses including the set of which functions are in the module. - A function pass can preserve a module analysis pass. - If all function passes preserve a module analysis pass, that preservation persists. If any doesn't the module analysis is invalidated. - A module pass can opt into managing *all* function analysis invalidation itself or *none*. - The conservative default is none, and the proxy takes the maximally conservative approach that works even if the set of functions has changed. - If a module pass opts into managing function analysis invalidation it has to propagate the invalidation itself, the proxy just does nothing. The only thing really missing is a way to query for a cached analysis or nothing at all. With this, function passes can more safely request a cached module analysis pass without fear of it accidentally running part way through. llvm-svn: 195519
* [PM] Teach the analysis managers to pass themselves as arguments to theChandler Carruth2013-11-221-1/+1
| | | | | | | | | | | | | | run methods of the analysis passes. Also generalizes and re-uses the SFINAE for transformation passes so that users can write an analysis pass and only accept an analysis manager if that is useful to their pass. This completes the plumbing to make an analysis manager available through every pass's run method if desired so that passes no longer need to be constructed around them. llvm-svn: 195451
* [PM] Remove the IRUnitT typedef requirement for analysis passes.Chandler Carruth2013-11-221-2/+0
| | | | | | | | | | | | Since the analysis managers were split into explicit function and module analysis managers, it is now completely trivial to specify this when building up the concept and model types explicitly, and it is impossible to end up with a type error at run time. We instantiate a template when registering a pass that will enforce the requirement at a type-system level, and we produce a dynamic error on all the other query paths to the analysis manager if the pass in question isn't registered. llvm-svn: 195447
* [PM] Fix the analysis templates' usage of IRUnitT.Chandler Carruth2013-11-221-1/+1
| | | | | | | | | | | This is supposed to be the whole type of the IR unit, and so we shouldn't pass a pointer to it but rather the value itself. In turn, we need to provide a 'Module *' as that type argument (for example). This will become more relevant with SCCs or other units which may not be passed as a pointer type, but also brings consistency with the transformation pass templates. llvm-svn: 195445
* [PM] Switch analysis managers to be threaded through the run methodsChandler Carruth2013-11-221-22/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | rather than the constructors of passes. This simplifies the APIs of passes significantly and removes an error prone pattern where the *same* manager had to be given to every different layer. With the new API the analysis managers themselves will have to be cross connected with proxy analyses that allow a pass at one layer to query for the analysis manager of another layer. The proxy will both expose a handle to the other layer's manager and it will provide the invalidation hooks to ensure things remain consistent across layers. Finally, the outer-most analysis manager has to be passed to the run method of the outer-most pass manager. The rest of the propagation is automatic. I've used SFINAE again to allow passes to completely disregard the analysis manager if they don't need or want to care. This helps keep simple things simple for users of the new pass manager. Also, the system specifically supports passing a null pointer into the outer-most run method if your pass pipeline neither needs nor wants to deal with analyses. I find this of dubious utility as while some *passes* don't care about analysis, I'm not sure there are any real-world users of the pass manager itself that need to avoid even creating an analysis manager. But it is easy to support, so there we go. Finally I renamed the module proxy for the function analysis manager to the more verbose but less confusing name of FunctionAnalysisManagerModuleProxy. I hate this name, but I have no idea what else to name these things. I'm expecting in the fullness of time to potentially have the complete cross product of types at the proxy layer: {Module,SCC,Function,Loop,Region}AnalysisManager{Module,SCC,Function,Loop,Region}Proxy (except for XAnalysisManagerXProxy which doesn't make any sense) This should make it somewhat easier to do the next phases which is to build the upward proxy and get its invalidation correct, as well as to make the invalidation within the Module -> Function mapping pass be more fine grained so as to invalidate fewer fuction analyses. After all of the proxy analyses are done and the invalidation working, I'll finally be able to start working on the next two fun fronts: how to adapt an existing pass to work in both the legacy pass world and the new one, and building the SCC, Loop, and Region counterparts. Fun times! llvm-svn: 195400
* [PM] Widen the interface for invalidate on an analysis result now thatChandler Carruth2013-11-211-1/+35
| | | | | | | | | | | | | | | | | | | it is completely optional, and sink the logic for handling the preserved analysis set into it. This allows us to implement the delegation logic desired in the proxy module analysis for the function analysis manager where if the proxy itself is preserved we assume the set of functions hasn't changed and we do a fine grained invalidation by walking the functions in the module and running the invalidate for them all at the manager level and letting it try to invalidate any passes. This in turn makes it blindingly obvious why we should hoist the invalidate trait and have two collections of results. That allows handling invalidation for almost all analyses without indirect calls and it allows short circuiting when the preserved set is all. llvm-svn: 195338
* [PM] Add support for using SFINAE to reflect on an analysis's resultChandler Carruth2013-11-211-1/+0
| | | | | | | | | | | | | | | | | | type and detect whether or not it provides an 'invalidate' member the analysis manager should use. This lets the overwhelming common case of *not* caring about custom behavior when an analysis is invalidated be the the obvious default behavior with no code written by the author of an analysis. Only when they write code specifically to handle invalidation does it get used. Both cases are actually covered by tests here. The test analysis uses the default behavior, and the proxy module analysis actually has custom behavior on invalidation that is firing correctly. (In fact, this is the analysis which was the primary motivation for having custom invalidation behavior in the first place.) llvm-svn: 195332
* [PM] Add a module analysis pass proxy for the function analysis manager.Chandler Carruth2013-11-211-12/+37
| | | | | | | | | | | | | | | | This proxy will fill the role of proxying invalidation events down IR unit layers so that when a module changes we correctly invalidate function analyses. Currently this is a very coarse solution -- any change blows away the entire thing -- but the next step is to make invalidation handling more nuanced so that we can propagate specific amounts of invalidation from one layer to the next. The test is extended to place a module pass between two function pass managers each of which have preserved function analyses which get correctly invalidated by the module pass that might have changed what functions are even in the module. llvm-svn: 195304
* [PM] Add the preservation system to the new pass manager.Chandler Carruth2013-11-201-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds a new set-like type which represents a set of preserved analysis passes. The set is managed via the opaque PassT::ID() void*s. The expected convenience templates for interacting with specific passes are provided. It also supports a symbolic "all" state which is represented by an invalid pointer in the set. This state is nicely saturating as it comes up often. Finally, it supports intersection which is used when finding the set of preserved passes after N different transforms. The pass API is then changed to return the preserved set rather than a bool. This is much more self-documenting than the previous system. Returning "none" is a conservatively correct solution just like returning "true" from todays passes and not marking any passes as preserved. Passes can also be dynamically preserved or not throughout the run of the pass, and whatever gets returned is the binding state. Finally, preserving "all" the passes is allowed for no-op transforms that simply can't harm such things. Finally, the analysis managers are changed to instead of blindly invalidating all of the analyses, invalidate those which were not preserved. This should rig up all of the basic preservation functionality. This also correctly combines the preservation moving up from one IR-layer to the another and the preservation aggregation across N pass runs. Still to go is incrementally correct invalidation and preservation across IR layers incrementally during N pass runs. That will wait until we have a device for even exposing analyses across IR layers. While the core of this change is obvious, I'm not happy with the current testing, so will improve it to cover at least some of the invalidation that I can test easily in a subsequent commit. llvm-svn: 195241
* [PM] Make the function pass manager more regular.Chandler Carruth2013-11-201-1/+1
| | | | | | | | | | | | | | | | The FunctionPassManager is now itself a function pass. When run over a function, it runs all N of its passes over that function. This is the 1:N mapping in the pass dimension only. This allows it to be used in either a ModulePassManager or potentially some other manager that works on IR units which are supersets of Functions. This commit also adds the obvious adaptor to map from a module pass to a function pass, running the function pass across every function in the module. The test has been updated to use this new pattern. llvm-svn: 195192
* [PM] Split the analysis manager into a function-specific interface andChandler Carruth2013-11-201-9/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | a module-specific interface. This is the first of many steps necessary to generalize the infrastructure such that we can support both a Module-to-Function and Module-to-SCC-to-Function pass manager nestings. After a *lot* of attempts that never worked and didn't even make it to a committable state, it became clear that I had gotten the layering design of analyses flat out wrong. Four days later, I think I have most of the plan for how to correct this, and I'm starting to reshape the code into it. This is just a baby step I'm afraid, but starts separating the fundamentally distinct concepts of function analysis passes and module analysis passes so that in subsequent steps we can effectively layer them, and have a consistent design for the eventual SCC layer. As part of this, I've started some interface changes to make passes more regular. The module pass accepts the module in the run method, and some of the constructor parameters are gone. I'm still working out exactly where constructor parameters vs. method parameters will be used, so I expect this to fluctuate a bit. This actually makes the invalidation less "correct" at this phase, because now function passes don't invalidate module analysis passes, but that was actually somewhat of a misfeature. It will return in a better factored form which can scale to other units of IR. The documentation has gotten less verbose and helpful. llvm-svn: 195189
OpenPOWER on IntegriCloud