summaryrefslogtreecommitdiffstats
path: root/llvm/unittests/Analysis
Commit message (Collapse)AuthorAgeFilesLines
* Add a C++ unittest to test the fix for PR30213.Wei Mi2016-09-151-0/+65
| | | | | | | | | The test exercises the branch in scev expansion when the value in ValueOffsetPair is a ptr and the offset is not divisible by the elem type size of value. Differential Revision: https://reviews.llvm.org/D24088 llvm-svn: 281575
* [PM] Revert r280447: Add a unittest for invalidating module analyses with an ↵Chandler Carruth2016-09-041-96/+0
| | | | | | | | | | | | | | | | | | | SCC pass. This was mistakenly committed. The world isn't ready for this test, the test code has horrible debugging code in it that should never have landed in tree, it currently passes because of bugs elsewhere, and it needs to be rewritten to not be susceptible to passing for the wrong reasons. I'll re-land this in a better form when the prerequisite patches land. So sorry that I got this mixed into a series of commits that *were* ready to land. I shouldn't have. =[ What's worse is that it stuck around for so long and I discovered it while fixing the underlying bug that caused it to pass. llvm-svn: 280620
* [PM] Try to fix an MSVC2013 failure due to finding a templateChandler Carruth2016-09-021-0/+14
| | | | | | | | | constructor when trying to do copy construction by adding an explicit move constructor. Will watch the bots to discover if this is sufficient. llvm-svn: 280479
* [PM] Add a unittest for invalidating module analyses with an SCC pass.Chandler Carruth2016-09-021-0/+96
| | | | | | | | | | | | This wasn't really well explicitly tested with a nice unittest before. It seems good to have reasonably broken out unittests for this kind of functionality as I'm workin go other invalidation features to make sure none of the existing ones regress. This still has too much duplicated code, I plan to factor that out in a subsequent commit to use common helpers for repeated parts of this. llvm-svn: 280447
* [PM] (NFC) Split the IR parsing into a fixture so that I can split outChandler Carruth2016-09-021-33/+42
| | | | | | more testing into other test routines while using the same core module. llvm-svn: 280446
* [PM] (NFC) Refactor the CGSCC pass manager tests to use lambda-basedChandler Carruth2016-09-021-79/+43
| | | | | | | | | | | | | passes. This simplifies the test some and makes it more focused and clear what is being tested. It will also make it much easier to extend with further testing of different pass behaviors. I've also replaced a pointless module pass with running the requires pass directly as that is all that it was really doing. llvm-svn: 280444
* [PM] Introduce basic update capabilities to the new PM's CGSCC passChandler Carruth2016-08-241-5/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | manager, including both plumbing and logic to handle function pass updates. There are three fundamentally tied changes here: 1) Plumbing *some* mechanism for updating the CGSCC pass manager as the CG changes while passes are running. 2) Changing the CGSCC pass manager infrastructure to have support for the underlying graph to mutate mid-pass run. 3) Actually updating the CG after function passes run. I can separate them if necessary, but I think its really useful to have them together as the needs of #3 drove #2, and that in turn drove #1. The plumbing technique is to extend the "run" method signature with extra arguments. We provide the call graph that intrinsically is available as it is the basis of the pass manager's IR units, and an output parameter that records the results of updating the call graph during an SCC passes's run. Note that "...UpdateResult" isn't a *great* name here... suggestions very welcome. I tried a pretty frustrating number of different data structures and such for the innards of the update result. Every other one failed for one reason or another. Sometimes I just couldn't keep the layers of complexity right in my head. The thing that really worked was to just directly provide access to the underlying structures used to walk the call graph so that their updates could be informed by the *particular* nature of the change to the graph. The technique for how to make the pass management infrastructure cope with mutating graphs was also something that took a really, really large number of iterations to get to a place where I was happy. Here are some of the considerations that drove the design: - We operate at three levels within the infrastructure: RefSCC, SCC, and Node. In each case, we are working bottom up and so we want to continue to iterate on the "lowest" node as the graph changes. Look at how we iterate over nodes in an SCC running function passes as those function passes mutate the CG. We continue to iterate on the "lowest" SCC, which is the one that continues to contain the function just processed. - The call graph structure re-uses SCCs (and RefSCCs) during mutation events for the *highest* entry in the resulting new subgraph, not the lowest. This means that it is necessary to continually update the current SCC or RefSCC as it shifts. This is really surprising and subtle, and took a long time for me to work out. I actually tried changing the call graph to provide the opposite behavior, and it breaks *EVERYTHING*. The graph update algorithms are really deeply tied to this particualr pattern. - When SCCs or RefSCCs are split apart and refined and we continually re-pin our processing to the bottom one in the subgraph, we need to enqueue the newly formed SCCs and RefSCCs for subsequent processing. Queuing them presents a few challenges: 1) SCCs and RefSCCs use wildly different iteration strategies at a high level. We end up needing to converge them on worklist approaches that can be extended in order to be able to handle the mutations. 2) The order of the enqueuing need to remain bottom-up post-order so that we don't get surprising order of visitation for things like the inliner. 3) We need the worklists to have set semantics so we don't duplicate things endlessly. We don't need a *persistent* set though because we always keep processing the bottom node!!!! This is super, super surprising to me and took a long time to convince myself this is correct, but I'm pretty sure it is... Once we sink down to the bottom node, we can't re-split out the same node in any way, and the postorder of the current queue is fixed and unchanging. 4) We need to make sure that the "current" SCC or RefSCC actually gets enqueued here such that we re-visit it because we continue processing a *new*, *bottom* SCC/RefSCC. - We also need the ability to *skip* SCCs and RefSCCs that get merged into a larger component. We even need the ability to skip *nodes* from an SCC that are no longer part of that SCC. This led to the design you see in the patch which uses SetVector-based worklists. The RefSCC worklist is always empty until an update occurs and is just used to handle those RefSCCs created by updates as the others don't even exist yet and are formed on-demand during the bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and we push new SCCs onto it and blacklist existing SCCs on it to get the desired processing. We then *directly* update these when updating the call graph as I was never able to find a satisfactory abstraction around the update strategy. Finally, we need to compute the updates for function passes. This is mostly used as an initial customer of all the update mechanisms to drive their design to at least cover some real set of use cases. There are a bunch of interesting things that came out of doing this: - It is really nice to do this a function at a time because that function is likely hot in the cache. This means we want even the function pass adaptor to support online updates to the call graph! - To update the call graph after arbitrary function pass mutations is quite hard. We have to build a fairly comprehensive set of data structures and then process them. Fortunately, some of this code is related to the code for building the cal graph in the first place. Unfortunately, very little of it makes any sense to share because the nature of what we're doing is so very different. I've factored out the one part that made sense at least. - We need to transfer these updates into the various structures for the CGSCC pass manager. Once those were more sanely worked out, this became relatively easier. But some of those needs necessitated changes to the LazyCallGraph interface to make it significantly easier to extract the changed SCCs from an update operation. - We also need to update the CGSCC analysis manager as the shape of the graph changes. When an SCC is merged away we need to clear analyses associated with it from the analysis manager which we didn't have support for in the analysis manager infrsatructure. New SCCs are easy! But then we have the case that the original SCC has its shape changed but remains in the call graph. There we need to *invalidate* the analyses associated with it. - We also need to invalidate analyses after we *finish* processing an SCC. But the analyses we need to invalidate here are *only those for the newly updated SCC*!!! Because we only continue processing the bottom SCC, if we split SCCs apart the original one gets invalidated once when its shape changes and is not processed farther so its analyses will be correct. It is the bottom SCC which continues being processed and needs to have the "normal" invalidation done based on the preserved analyses set. All of this is mostly background and context for the changes here. Many thanks to all the reviewers who helped here. Especially Sanjoy who caught several interesting bugs in the graph algorithms, David, Sean, and others who all helped with feedback. Differential Revision: http://reviews.llvm.org/D21464 llvm-svn: 279618
* [GraphTraits] Replace all NodeType usage with NodeRefTim Shen2016-08-221-9/+9
| | | | | | | | This should finish the GraphTraits migration. Differential Revision: http://reviews.llvm.org/D23730 llvm-svn: 279475
* [GraphTraits] Make nodes_iterator dereference to NodeType*/NodeRefTim Shen2016-08-191-3/+3
| | | | | | | | | Currently nodes_iterator may dereference to a NodeType* or a NodeType&. Make them all dereference to NodeType*, which is NodeRef later. Differential Revision: https://reviews.llvm.org/D23704 Differential Revision: https://reviews.llvm.org/D23705 llvm-svn: 279326
* Consistently use LoopAnalysisManagerSean Silva2016-08-091-3/+3
| | | | | | | | | | | | | | | | | One exception here is LoopInfo which must forward-declare it (because the typedef is in LoopPassManager.h which depends on LoopInfo). Also, some includes for LoopPassManager.h were needed since that file provides the typedef. Besides a general consistently benefit, the extra layer of indirection allows the mechanical part of https://reviews.llvm.org/D23256 that requires touching every transformation and analysis to be factored out cleanly. Thanks to David for the suggestion. llvm-svn: 278079
* Consistently use FunctionAnalysisManagerSean Silva2016-08-091-1/+1
| | | | | | | | | | | Besides a general consistently benefit, the extra layer of indirection allows the mechanical part of https://reviews.llvm.org/D23256 that requires touching every transformation and analysis to be factored out cleanly. Thanks to David for the suggestion. llvm-svn: 278077
* [PM] Sink the module parsing from the fixture to the test as subsequentChandler Carruth2016-06-281-43/+38
| | | | | | | | | tests will want different IR. Wanted this when writing tests for the proposed CG update stuff, and this is an easily separable piece. llvm-svn: 273973
* [PM] Run clang-format over various parts of the new pass manager codeChandler Carruth2016-06-171-3/+2
| | | | | | | prior to some very substantial patches to isolate any formatting-only changes. llvm-svn: 272991
* [PM] Remove support for omitting the AnalysisManager argument to newChandler Carruth2016-06-171-1/+1
| | | | | | | | | | | | | | | | | | | | pass manager passes' `run` methods. This removes a bunch of SFINAE goop from the pass manager and just requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead argument. This is a small price to pay for the simplicity of the system as a whole, despite the noise that changing it causes at this stage. This will also helpfull allow us to make the signature of the run methods much more flexible for different kinds af passes to support things like intelligently updating the pass's progression over IR units. While this touches many, many, files, the changes are really boring. Mostly made with the help of my trusty perl one liners. Thanks to Sean and Hal for bouncing ideas for this with me in IRC. llvm-svn: 272978
* Revert r272891 "[JumpThreading] Prevent dangling pointer problems in ↵Igor Laevsky2016-06-161-7/+0
| | | | | | | | BranchProbabilityInfo" It was causing failures in Profile-i386 and Profile-x86_64 tests. llvm-svn: 272912
* [JumpThreading] Prevent dangling pointer problems in BranchProbabilityInfoIgor Laevsky2016-06-161-0/+7
| | | | | | | | | We should update results of the BranchProbabilityInfo after removing block in JumpThreading. Otherwise we will get dangling pointer inside BranchProbabilityInfo cache. Differential Revision: http://reviews.llvm.org/D20957 llvm-svn: 272891
* Revert "Revert "[Unroll] Implement a conservative and monotonically ↵Michael Zolotukhin2016-05-131-3/+7
| | | | | | | | | | increasing cost tracking system during the full unroll heuristic analysis that avoids counting any instruction cost until that instruction becomes "live" through a side-effect or use outside the..."" This reverts commit r269395. Try to reapply with a fix from chapuni. llvm-svn: 269486
* Revert "[Unroll] Implement a conservative and monotonically increasing cost ↵Michael Zolotukhin2016-05-131-7/+3
| | | | | | | | | | | tracking system during the full unroll heuristic analysis that avoids counting any instruction cost until that instruction becomes "live" through a side-effect or use outside the..." This reverts commit r269388. It caused some bots to fail, I'm reverting it until I investigate the issue. llvm-svn: 269395
* [Unroll] Implement a conservative and monotonically increasing cost tracking ↵Michael Zolotukhin2016-05-131-3/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | system during the full unroll heuristic analysis that avoids counting any instruction cost until that instruction becomes "live" through a side-effect or use outside the... Summary: ...loop after the last iteration. This is really hard to do correctly. The core problem is that we need to model liveness through the induction PHIs from iteration to iteration in order to get the correct results, and we need to correctly de-duplicate the common subgraphs of instructions feeding some subset of the induction PHIs. All of this can be driven either from a side effect at some iteration or from the loop values used after the loop finishes. This patch implements this by storing the forward-propagating analysis of each instruction in a cache to recall whether it was free and whether it has become live and thus counted toward the total unroll cost. Then, at each sink for a value in the loop, we recursively walk back through every value that feeds the sink, including looping back through the iterations as needed, until we have marked the entire input graph as live. Because we cache this, we never visit instructions more than twice -- once when we analyze them and put them into the cache, and once when we count their cost towards the unrolled loop. Also, because the cache is only two bits and because we are dealing with relatively small iteration counts, we can store all of this very densely in memory to avoid this from becoming an excessively slow analysis. The code here is still pretty gross. I would appreciate suggestions about better ways to factor or split this up, I've stared too long at the algorithmic side to really have a good sense of what the design should probably look at. Also, it might seem like we should do all of this bottom-up, but I think that is a red herring. Specifically, the simplification power is *much* greater working top-down. We can forward propagate very effectively, even across strange and interesting recurrances around the backedge. Because we use data to propagate, this doesn't cause a state space explosion. Doing this level of constant folding, etc, would be very expensive to do bottom-up because it wouldn't be until the last moment that you could collapse everything. The current solution is essentially a top-down simplification with a bottom-up cost accounting which seems to get the best of both worlds. It makes the simplification incremental and powerful while leaving everything dead until we *know* it is needed. Finally, a core property of this approach is its *monotonicity*. At all times, the current UnrolledCost is a conservatively low estimate. This ensures that we will never early-exit from the analysis due to exceeding a threshold when if we had continued, the cost would have gone back below the threshold. These kinds of bugs can cause incredibly hard to track down random changes to behavior. We could use a techinque similar (but much simpler) within the inliner as well to avoid considering speculated code in the inline cost. Reviewers: chandlerc Subscribers: sanjoy, mzolotukhin, llvm-commits Differential Revision: http://reviews.llvm.org/D11758 llvm-svn: 269388
* PM: Check that loop passes preserve a basic set of analysesJustin Bogner2016-05-031-1/+1
| | | | | | | | | | | A loop pass that didn't preserve this entire set of passes wouldn't play well with other loop passes, since these are generally a basic requirement to do any interesting transformations to a loop. Adds a helper to get the set of analyses a loop pass should preserve, and checks that any loop pass we run satisfies the requirement. llvm-svn: 268444
* [NFC] Header cleanupMehdi Amini2016-04-181-2/+1
| | | | | | | | | | | | | | Removed some unused headers, replaced some headers with forward class declarations. Found using simple scripts like this one: clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap' Patch by Eugene Kosov <claprix@yandex.ru> Differential Revision: http://reviews.llvm.org/D19219 From: Mehdi Amini <mehdi.amini@apple.com> llvm-svn: 266595
* Remove every uses of getGlobalContext() in LLVM (but the C API)Mehdi Amini2016-04-149-317/+332
| | | | | | | | | | | At the same time, fixes InstructionsTest::CastInst unittest: yes you can leave the IR in an invalid state and exit when you don't destroy the context (like the global one), no longer now. This is the first part of http://reviews.llvm.org/D19094 From: Mehdi Amini <mehdi.amini@apple.com> llvm-svn: 266379
* NFC: make AtomicOrdering an enum classJF Bastien2016-04-061-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: In the context of http://wg21.link/lwg2445 C++ uses the concept of 'stronger' ordering but doesn't define it properly. This should be fixed in C++17 barring a small question that's still open. The code currently plays fast and loose with the AtomicOrdering enum. Using an enum class is one step towards tightening things. I later also want to tighten related enums, such as clang's AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI' enum). This change touches a few lines of code which can be improved later, I'd like to keep it as NFC for now as it's already quite complex. I have related changes for clang. As a follow-up I'll add: bool operator<(AtomicOrdering, AtomicOrdering) = delete; bool operator>(AtomicOrdering, AtomicOrdering) = delete; bool operator<=(AtomicOrdering, AtomicOrdering) = delete; bool operator>=(AtomicOrdering, AtomicOrdering) = delete; This is separate so that clang and LLVM changes don't need to be in sync. Reviewers: jyknight, reames Subscribers: jyknight, llvm-commits Differential Revision: http://reviews.llvm.org/D18775 llvm-svn: 265602
* Add getBlockProfileCount method to BlockFrequencyInfoEaswaran Raman2016-03-232-0/+87
| | | | | | Differential Revision: http://reviews.llvm.org/D18233 llvm-svn: 264179
* [LoopUnroll] Convert some existing tests to unit-tests.Michael Zolotukhin2016-03-121-4/+144
| | | | | | | | | | | | Summary: As we now have unit-tests for UnrollAnalyzer, we can convert some existing tests to this format. It should make the tests more robust. Reviewers: chandlerc, sanjoy Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D17904 llvm-svn: 263318
* [PM] Make the AnalysisManager parameter to run methods a reference.Chandler Carruth2016-03-112-19/+18
| | | | | | | | | | | | This was originally a pointer to support pass managers which didn't use AnalysisManagers. However, that doesn't realistically come up much and the complexity of supporting it doesn't really make sense. In fact, *many* parts of the pass manager were just assuming the pointer was never null already. This at least makes it much more explicit and clear. llvm-svn: 263219
* [AA] Hoist the logic to reformulate various AA queries in terms of otherChandler Carruth2016-03-021-6/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | parts of the AA interface out of the base class of every single AA result object. Because this logic reformulates the query in terms of some other aspect of the API, it would easily cause O(n^2) query patterns in alias analysis. These could in turn be magnified further based on the number of call arguments, and then further based on the number of AA queries made for a particular call. This ended up causing problems for Rust that were actually noticable enough to get a bug (PR26564) and probably other places as well. When originally re-working the AA infrastructure, the desire was to regularize the pattern of refinement without losing any generality. While I think it was successful, that is clearly proving to be too costly. And the cost is needless: we gain no actual improvement for this generality of making a direct query to tbaa actually be able to re-use some other alias analysis's refinement logic for one of the other APIs, or some such. In short, this is entirely wasted work. To the extent possible, delegation to other API surfaces should be done at the aggregation layer so that we can avoid re-walking the aggregation. In fact, this significantly simplifies the logic as we no longer need to smuggle the aggregation layer into each alias analysis (or the TargetLibraryInfo into each alias analysis just so we can form argument memory locations!). However, we also have some delegation logic inside of BasicAA and some of it even makes sense. When the delegation logic is baking in specific knowledge of aliasing properties of the LLVM IR, as opposed to simply reformulating the query to utilize a different alias analysis interface entry point, it makes a lot of sense to restrict that logic to a different layer such as BasicAA. So one aspect of the delegation that was in every AA base class is that when we don't have operand bundles, we re-use function AA results as a fallback for callsite alias results. This relies on the IR properties of calls and functions w.r.t. aliasing, and so seems a better fit to BasicAA. I've lifted the logic up to that point where it seems to be a natural fit. This still does a bit of redundant work (we query function attributes twice, once via the callsite and once via the function AA query) but it is *exactly* twice here, no more. The end result is that all of the delegation logic is hoisted out of the base class and into either the aggregation layer when it is a pure retargeting to a different API surface, or into BasicAA when it relies on the IR's aliasing properties. This should fix the quadratic query pattern reported in PR26564, although I don't have a stand-alone test case to reproduce it. It also seems general goodness. Now the numerous AAs that don't need target library info don't carry it around and depend on it. I think I can even rip out the general access to the aggregation layer and only expose that in BasicAA as it is the only place where we re-query in that manner. However, this is a non-trivial change to the AA infrastructure so I want to get some additional eyes on this before it lands. Sadly, it can't wait long because we should really cherry pick this into 3.8 if we're going to go this route. Differential Revision: http://reviews.llvm.org/D17329 llvm-svn: 262490
* [LoopUnrollAnalyzer] Check that we're using SCEV for the same loop we're ↵Michael Zolotukhin2016-02-261-1/+48
| | | | | | | | | | | | | | simulating. Summary: Check that we're using SCEV for the same loop we're simulating. Otherwise, we might try to use the iteration number of the current loop in SCEV expressions for inner/outer loops IVs, which is clearly incorrect. Reviewers: chandlerc, hfinkel Subscribers: sanjoy, llvm-commits, mzolotukhin Differential Revision: http://reviews.llvm.org/D17632 llvm-svn: 261958
* [UnitTests] UnrollAnalyzer: make unit-test more general so that it can cover ↵Michael Zolotukhin2016-02-261-3/+5
| | | | | | more cases in future. llvm-svn: 261954
* PM: Implement a basic loop pass managerJustin Bogner2016-02-252-0/+206
| | | | | | | | | | | This creates the new-style LoopPassManager and wires it up with dummy and print passes. This version doesn't support modifying the loop nest at all. It will be far easier to discuss and evaluate the approaches to that with this in place so that the boilerplate is out of the way. llvm-svn: 261831
* [PM] Remove an overly aggressive assert now that I can actually test theChandler Carruth2016-02-231-0/+32
| | | | | | | | | | | | | | | | | pattern that triggers it. This essentially requires an immutable function analysis, as that will survive anything we do to invalidate it. When we have such patterns, the function analysis manager will not get cleared between runs of the proxy. If we actually need an assert about how things are queried, we can add more elaborate machinery for computing it, but so far I'm not aware of significant value provided. Thanks to Justin Lebar for noticing this when he made a (seemingly innocuous) change to FunctionAttrs that is enough to trigger it in one test there. Now it is covered by a direct test of the pass manager code. llvm-svn: 261627
* [PM] Add a unittest for the CGSCC pass manager in the new pass managerChandler Carruth2016-02-232-0/+288
| | | | | | | | | | | system. Previously, this was only being tested with larger integration tests. That makes it hard to isolated specific issues with it, and makes the APIs themselves less well tested. Add a unittest based around the same patterns used for testing the general pass manager. llvm-svn: 261624
* Use EXPECT_EQ in the unittests instead of plain assertTobias Grosser2016-02-221-2/+3
| | | | | | This addresses post-review comments from Duncan P. N. Exon Smith to r261485. llvm-svn: 261514
* ScalarEvolution: Do not keep temporary PHI values in ValueExprMapTobias Grosser2016-02-211-0/+26
| | | | | | | | | | Before this patch simplified SCEV expressions for PHI nodes were only returned the very first time getSCEV() was called, but later calls to getSCEV always returned the non-simplified value, which had "temporarily" been stored in the ValueExprMap, but was never removed and consequently blocked the caching of the simplified PHI expression. llvm-svn: 261485
* [PM/AA] Port alias analysis evaluator to the new pass manager, and useChandler Carruth2016-02-201-0/+1
| | | | | | | | | | | | | | | | it to actually test the new pass manager AA wiring. This patch was extracted from the (somewhat too large) D12357 and rebosed on top of the slightly different design of the new pass manager AA wiring that I just landed. With this we can start testing the AA in a thorough way with the new pass manager. Some minor cleanups to the code in the pass was necessitated here, but otherwise it is a very minimal change. Differential Revision: http://reviews.llvm.org/D17372 llvm-svn: 261403
* [LCG] Construct an actual call graph with call-edge SCCs nested insideChandler Carruth2016-02-171-204/+781
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | reference-edge SCCs. This essentially builds a more normal call graph as a subgraph of the "reference graph" that was the old model. This allows both to exist and the different use cases to use the aspect which addresses their needs. Specifically, the pass manager and other *ordering* constrained logic can use the reference graph to achieve conservative order of visit, while analyses reasoning about attributes and other properties derived from reachability can reason about the direct call graph. Note that this isn't necessarily complete: it doesn't model edges to declarations or indirect calls. Those can be found by scanning the instructions of the function if desirable, and in fact every user currently does this in order to handle things like calls to instrinsics. If useful, we could consider caching this information in the call graph to save the instruction scans, but currently that doesn't seem to be important. An important realization for why the representation chosen here works is that the call graph is a formal subset of the reference graph and thus both can live within the same data structure. All SCCs of the call graph are necessarily contained within an SCC of the reference graph, etc. The design is to build 'RefSCC's to model SCCs of the reference graph, and then within them more literal SCCs for the call graph. The formation of actual call edge SCCs is not done lazily, unlike reference edge 'RefSCC's. Instead, once a reference SCC is formed, it directly builds the call SCCs within it and stores them in a post-order sequence. This is used to provide a consistent platform for mutation and update of the graph. The post-order also allows for very efficient updates in common cases by bounding the number of nodes (and thus edges) considered. There is considerable common code that I'm still looking for the best way to factor out between the various DFS implementations here. So far, my attempts have made the code harder to read and understand despite reducing the duplication, which seems a poor tradeoff. I've not given up on figuring out the right way to do this, but I wanted to wait until I at least had the system working and tested to continue attempting to factor it differently. This also requires introducing several new algorithms in order to handle all of the incremental update scenarios for the more complex structure involving two edge colorings. I've tried to comment the algorithms sufficiently to make it clear how this is expected to work, but they may still need more extensive documentation. I know that there are some changes which are not strictly necessarily coupled here. The process of developing this started out with a very focused set of changes for the new structure of the graph and algorithms, but subsequent changes to bring the APIs and code into consistent and understandable patterns also ended up touching on other aspects. There was no good way to separate these out without causing *massive* merge conflicts. Ultimately, to a large degree this is a rewrite of most of the core algorithms in the LCG class and so I don't think it really matters much. Many thanks to the careful review by Sanjoy Das! Differential Revision: http://reviews.llvm.org/D16802 llvm-svn: 261040
* Factor out UnrollAnalyzer to Analysis, and add unit tests for it.Michael Zolotukhin2016-02-082-0/+134
| | | | | | | | | | | | | | | | Summary: Unrolling Analyzer is already pretty complicated, and it becomes harder and harder to exercise it with usual IR tests, as with them we can only check the final decision: whether the loop is unrolled or not. This change factors this framework out from LoopUnrollPass to analyses, which allows to use unit tests. The change itself is supposed to be NFC, except adding a couple of tests. I plan to add more tests as I add new functionality and find/fix bugs. Reviewers: chandlerc, hfinkel, sanjoy Subscribers: zzheng, sanjoy, llvm-commits Differential Revision: http://reviews.llvm.org/D16623 llvm-svn: 260169
* [LCG] Build an edge abstraction for the LazyCallGraph and use it toChandler Carruth2016-02-021-31/+31
| | | | | | | | | | | | | | | | | | | | | differentiate between indirect references to functions an direct calls. This doesn't do a whole lot yet other than change the print out produced by the analysis, but it lays the groundwork for a very major change I'm working on next: teaching the call graph to actually be a call graph, modeling *both* the indirect reference graph and the call graph simultaneously. More details on that in the next patch though. The rest of this is essentially a bunch of over-engineering that won't be interesting until the next patch. But this also isolates essentially all of the churn necessary to introduce the edge abstraction from the very important behavior change necessary in order to separately model the two graphs. So it should make review of the subsequent patch a bit easier at the cost of making this patch seem poorly motivated. ;] Differential Revision: http://reviews.llvm.org/D16038 llvm-svn: 259463
* Remove autoconf supportChris Bieneman2016-01-261-15/+0
| | | | | | | | | | | | | | | | Summary: This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html "I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened." - Obi Wan Kenobi Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits Differential Revision: http://reviews.llvm.org/D16471 llvm-svn: 258861
* [AA] Enhance the new AliasAnalysis infrastructure with an optionalChandler Carruth2015-10-211-1/+166
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | "external" AA wrapper pass. This is a generic hook that can be used to thread custom code into the primary AAResultsWrapperPass for the legacy pass manager in order to allow it to merge external AA results into the AA results it is building. It does this by threading in a raw callback and so it is *very* powerful and should serve almost any use case I have come up with for extending the set of alias analyses used. The only thing not well supported here is using a *different order* of alias analyses. That form of extension *is* supportable with the new pass manager, and I can make the callback structure here more elaborate to support it in the legacy pass manager if this is a critical use case that people are already depending on, but the only use cases I have heard of thus far should be reasonably satisfied by this simpler extension mechanism. It is hard to test this using normal facilities (the built-in AAs don't use this for obvious reasons) so I've written a fairly extensive set of custom passes in the alias analysis unit test that should be an excellent test case because it models the out-of-tree users: it adds a totally custom AA to the system. This should also serve as a reasonably good example and guide for out-of-tree users to follow in order to rig up their existing alias analyses. No support in opt for commandline control is provided here however. I'm really unhappy with the kind of contortions that would be required to support that. It would fully re-introduce the analysis group self-recursion kind of patterns. =/ I've heard from out-of-tree users that this will unblock their use cases with extending AAs on top of the new infrastructure and let us retain the new analysis-group-free-world. Differential Revision: http://reviews.llvm.org/D13418 llvm-svn: 250894
* unittests: Remove implicit ilist iterator conversions, NFCDuncan P. N. Exon Smith2015-10-201-1/+1
| | | | llvm-svn: 250843
* [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatibleChandler Carruth2015-09-092-50/+36
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
* [ValueTracking] Minor comment change in testJames Molloy2015-09-021-2/+1
| | | | | | This test was updated in r246678 - fix a copypasta in a comment noticed post-commit. llvm-svn: 246679
* [ValueTracking] Look through casts when both operands are casts.James Molloy2015-09-021-0/+42
| | | | | | | | | | | We only looked through casts when one operand was a constant. We can also look through casts when both operands are non-constant, but both are in fact the same cast type. For example: %1 = icmp ult i8 %a, %b %2 = zext i8 %a to i32 %3 = zext i8 %b to i32 %4 = select i1 %1, i32 %2, i32 %3 llvm-svn: 246678
* [PM/AA] Remove the last relics of the separate IPA library from LLVM,Chandler Carruth2015-08-182-2/+1
| | | | | | | | | | | | | | | | | | | | | folding the code into the main Analysis library. There already wasn't much of a distinction between Analysis and IPA. A number of the passes in Analysis are actually IPA passes, and there doesn't seem to be any advantage to separating them. Moreover, it makes it hard to have interactions between analyses that are both local and interprocedural. In trying to make the Alias Analysis infrastructure work with the new pass manager, it becomes particularly awkward to navigate this split. I've tried to find all the places where we referenced this, but I may have missed some. I have also adjusted the C API to continue to be equivalently functional after this change. Differential Revision: http://reviews.llvm.org/D12075 llvm-svn: 245318
* [PM] Port ScalarEvolution to the new pass manager.Chandler Carruth2015-08-171-14/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This change makes ScalarEvolution a stand-alone object and just produces one from a pass as needed. Making this work well requires making the object movable, using references instead of overwritten pointers in a number of places, and other refactorings. I've also wired it up to the new pass manager and added a RUN line to a test to exercise it under the new pass manager. This includes basic printing support much like with other analyses. But there is a big and somewhat scary change here. Prior to this patch ScalarEvolution was never *actually* invalidated!!! Re-running the pass just re-wired up the various other analyses and didn't remove any of the existing entries in the SCEV caches or clear out anything at all. This might seem OK as everything in SCEV that can uses ValueHandles to track updates to the values that serve as SCEV keys. However, this still means that as we ran SCEV over each function in the module, we kept accumulating more and more SCEVs into the cache. At the end, we would have a SCEV cache with every value that we ever needed a SCEV for in the entire module!!! Yowzers. The releaseMemory routine would dump all of this, but that isn't realy called during normal runs of the pipeline as far as I can see. To make matters worse, there *is* actually a key that we don't update with value handles -- there is a map keyed off of Loop*s. Because LoopInfo *does* release its memory from run to run, it is entirely possible to run SCEV over one function, then over another function, and then lookup a Loop* from the second function but find an entry inserted for the first function! Ouch. To make matters still worse, there are plenty of updates that *don't* trip a value handle. It seems incredibly unlikely that today GVN or another pass that invalidates SCEV can update values in *just* such a way that a subsequent run of SCEV will incorrectly find lookups in a cache, but it is theoretically possible and would be a nightmare to debug. With this refactoring, I've fixed all this by actually destroying and recreating the ScalarEvolution object from run to run. Technically, this could increase the amount of malloc traffic we see, but then again it is also technically correct. ;] I don't actually think we're suffering from tons of malloc traffic from SCEV because if we were, the fact that we never clear the memory would seem more likely to have come up as an actual problem before now. So, I've made the simple fix here. If in fact there are serious issues with too much allocation and deallocation, I can work on a clever fix that preserves the allocations (while clearing the data) between each run, but I'd prefer to do that kind of optimization with a test case / benchmark that shows why we need such cleverness (and that can test that we actually make it faster). It's possible that this will make some things faster by making the SCEV caches have higher locality (due to being significantly smaller) so until there is a clear benchmark, I think the simple change is best. Differential Revision: http://reviews.llvm.org/D12063 llvm-svn: 245193
* [PM/AA] Hoist the interface to TBAA into a dedicated header along withChandler Carruth2015-08-141-0/+1
| | | | | | its creation function. Update the relevant includes accordingly. llvm-svn: 245019
* Add support for floating-point minnum and maxnumJames Molloy2015-08-112-0/+149
| | | | | | | | | | | | | | | | | The select pattern recognition in ValueTracking (as used by InstCombine and SelectionDAGBuilder) only knew about integer patterns. This teaches it about minimum and maximum operations. matchSelectPattern() has been extended to return a struct containing the existing Flavor and a new enum defining the pattern's behavior when given one NaN operand. C minnum() is defined to return the non-NaN operand in this case, but the idiomatic C "a < b ? a : b" would return the NaN operand. ARM and AArch64 at least have different instructions for these different cases. llvm-svn: 244580
* [PM/AA] Hoist the interface for BasicAA into a header file.Chandler Carruth2015-08-061-0/+1
| | | | | | | | | | | | | This is the first mechanical step in preparation for making this and all the other alias analysis passes available to the new pass manager. I'm factoring out all the totally boring changes I can so I'm moving code around here with no other changes. I've even minimized the formatting churn. I'll reformat and freshen comments on the interface now that its located in the right place so that the substantive changes don't triger this. llvm-svn: 244197
* [PM/AA] Extract the ModRef enums from the AliasAnalysis class inChandler Carruth2015-07-221-9/+9
| | | | | | | | | | | | | | | | | | | | | | | preparation for de-coupling the AA implementations. In order to do this, they had to become fake-scoped using the traditional LLVM pattern of a leading initialism. These can't be actual scoped enumerations because they're bitfields and thus inherently we use them as integers. I've also renamed the behavior enums that are specific to reasoning about the mod/ref behavior of functions when called. This makes it more clear that they have a very narrow domain of applicability. I think there is a significantly cleaner API for all of this, but I don't want to try to do really substantive changes for now, I just want to refactor the things away from analysis groups so I'm preserving the exact original design and just cleaning up the names, style, and lifting out of the class. Differential Revision: http://reviews.llvm.org/D10564 llvm-svn: 242963
OpenPOWER on IntegriCloud