| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
| |
...and when you try to store negative values in it.
llvm-svn: 261259
|
| |
|
|
|
|
|
|
|
| |
Add support for trimming a single kind of character from a StringRef.
This makes the common case of trimming null bytes much neater. It's also
probably a bit speedier too, since it avoids creating a std::bitset in
find_{first,last}_not_of.
llvm-svn: 260925
|
| |
|
|
|
|
|
|
| |
As support expands to more runtimes, we'll need to
distinguish between more than just HSA and unknown.
This also lets us stop using unknown everywhere.
llvm-svn: 260790
|
| |
|
|
| |
llvm-svn: 260714
|
| |
|
|
|
|
| |
on MSVC.
llvm-svn: 260663
|
| |
|
|
| |
llvm-svn: 260655
|
| |
|
|
|
|
| |
class that makes it convenient to work with enumerators representing bit options.
llvm-svn: 260652
|
| |
|
|
|
|
| |
Also actually test the default CPU from those triples.
llvm-svn: 260621
|
| |
|
|
|
|
|
|
|
|
| |
Add triple for the Lanai backend.
General Lanai backend discussion on llvm-dev thread "[RFC] Lanai backend".
Differential Revision: http://reviews.llvm.org/D17003
llvm-svn: 260545
|
| |
|
|
| |
llvm-svn: 259152
|
| |
|
|
| |
llvm-svn: 259151
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
argument.
Summary:
The problem here is that an enum class can not be implicitly converted to an
integer. That assumption snuck back into PointerIntPair. This commit fixes the
issue and more importantly adds some unittests to make sure that we do not break
this again.
rdar://23594806
Reviewers: gribozavr
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16131
llvm-svn: 257574
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
type.
This makes it easy and safe to use a set of flags as one elmenet of
a tagged union with pointers. There is quite a bit of code that has
historically done this by casting arbitrary integers to "pointers" and
assuming that this was safe and reliable. It is neither, and has started
to rear its head by triggering safety asserts in various abstractions
like PointerLikeTypeTraits when the integers chosen are invariably poor
choices for *some* platform and *some* situation. Not to mention the
(hopefully unlikely) prospect of one of these integers actually getting
allocated!
With this, it will be straightforward to build type safe abstractions
like this without being error prone. The abstraction itself is also
remarkably simple thanks to the implicit conversion.
This use case and pattern was also independently created by the folks
working on Swift, and they're going to incrementally add any missing
functionality they find.
Differential Revision: http://reviews.llvm.org/D15844
llvm-svn: 257284
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a much more general and powerful form of PointerUnion. It
provides a reasonably complete sum type (from type theory) for
pointer-like types. It has several significant advantages over the
existing PointerUnion infrastructure:
1) It allows more than two pointer types to participate without awkward
nesting structures.
2) It directly exposes the tag so that it is convenient to write
switches over the possible members.
3) It can re-use the same type for multiple tag values, something that
has been worked around by either abusing PointerIntPair or defining
nonce types and doing unsafe pointer casting.
4) It supports customization of the PointerLikeTypeTraits used for
specific member types. This means it could (in theory) be used even
with types that are over-aligned on allocation to expose larger
numbers of bits to the tag.
All in all, I think it is at least complimentary to the existing
infrastructure, and a strict improvement for some use cases.
Differential Revision: http://reviews.llvm.org/D15843
llvm-svn: 257282
|
| |
|
|
|
|
|
|
|
| |
We didn't actually statically check this, and so it worked 25% of the
time for me. =/ Really sorry it took so long to fix, I shouldn't leave
the commit log editor window open without saving and landing the commit.
=[
llvm-svn: 256528
|
| |
|
|
|
|
|
| |
Instead, actually produce a nonce type in the test and use that. This
makes the test, IMO, both simpler and more clear.
llvm-svn: 256518
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This follows D14577 to treat ARMv6-J as an alias for ARMv6,
instead of an architecture in its own right.
The functional change is that the default CPU when targeting ARMv6-J
changes from arm1136j-s to arm1136jf-s, which is currently used as
the default CPU for ARMv6; both are, in fact, ARMv6-J CPUs.
The J-bit (Jazelle support) is irrelevant to LLVM, and it doesn't
affect code generation, attributes, optimizations, or anything else,
apart from selecting the default CPU.
Reviewers: rengolin, logan, compnerd
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14755
llvm-svn: 253675
|
| |
|
|
|
|
|
|
| |
Useful utility function; this wasn't too hard to do before, but also wasn't
obviously discoverable. Make it explicit. Reviewed offline by Michael
Gottesman.
llvm-svn: 253254
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
* ARMv6KZ is the "canonical" name, given in the ARMARM
* ARMv6Z is an "official abbreviation" for it, mentioned in the ARMARM
* ARMv6ZK is a popular misspelling, which we should support as an alias.
The patch corrects the handling of the names.
Functional changes:
* ARMv6Z no longer treated as an architecture in its own right
* ARMv6ZK renamed to ARMv6KZ, accepting ARMv6ZK as an alias
* arm1176jz-s and arm1176jzf-s recognized as ARMv6ZK, instead of ARMv6K
* default ARMv6K CPU changed to arm1176j-s
Reviewers: rengolin, logan, compnerd
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14568
llvm-svn: 253206
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Re-implement `ilist_node::getNextNode()` and `getPrevNode()` without
relying on the sentinel having a "next" pointer. Instead, get access to
the owning list and compare against the `begin()` and `end()` iterators.
This only works when the node *can* get access to the owning list. The
new support is in `ilist_node_with_parent<>`, and any class `Ty`
inheriting from `ilist_node<NodeTy>` that wants `getNextNode()` and/or
`getPrevNode()` should inherit from
`ilist_node_with_parent<NodeTy, ParentTy>` instead. The requirements:
- `NodeTy` must have a `getParent()` function that returns the parent.
- `ParentTy` must have a `getSublistAccess()` static that, given a(n
ignored) `NodeTy*` (to determine which list), returns a member field
pointer to the appropriate `ilist<>`.
This isn't the cleanest way to get access to the owning list, but it
leverages the API already used in the IR hierarchy (see, e.g.,
`Instruction::getSublistAccess()`).
If anyone feels like ripping out the calls to `getNextNode()` and
`getPrevNode()` and replacing with direct iterator logic, they can also
remove the access function, etc., but as an incremental step, I'm
maintaining the API where it's currently used in tree.
If these requirements are *not* met, call sites with access to the ilist
can call `iplist<NodeTy>::getNextNode(NodeTy*)` directly, as in
ilistTest.cpp.
Why rewrite this?
The old code was broken, calling `getNext()` on a sentinel that possibly
didn't have a "next" pointer at all! The new code avoids that
particular flavour of UB (see the commit message for r252538 for more
details about the "lucky" memory layout that made this function so
interesting).
There's still some UB here: the end iterator gets downcast to `NodeTy*`,
even when it's a sentinel (which is typically
`ilist_half_node<NodeTy*>`). I'll tackle that in follow-up commits.
See this llvm-dev thread for more details:
http://lists.llvm.org/pipermail/llvm-dev/2015-October/091115.html
What's the danger?
There might be some code that relies on `getNextNode()` or
`getPrevNode()` *never* returning `nullptr` -- i.e., that relies on them
being broken when the sentinel is an `ilist_half_node<NodeTy>`. I tried
to root out those cases with the audits I did leading up to r252380, but
it's possible I missed one or two. I hope not.
(If (1) you have out-of-tree code, (2) you've reverted r252380
temporarily, and (3) you get some weird crashes with this commit, then I
recommend un-reverting r252380 and auditing the compile errors looking
for "strange" implicit conversions.)
llvm-svn: 252694
|
| |
|
|
|
|
|
|
|
|
| |
it is not small.
This complements CopyConstructorNotSmallTest. If we are testing the copy
constructor in such a way, we should also probably test assignment in the same
way.
llvm-svn: 251736
|
| |
|
|
|
|
|
|
|
|
| |
GNU tools require elfiamcu to take up the entire OS field, so, e.g.
i?86-*-linux-elfiamcu is not considered a legal triple.
Make us compatible.
Differential Revision: http://reviews.llvm.org/D14081
llvm-svn: 251390
|
| |
|
|
|
|
|
|
| |
This adds support for the i?86-*-elfiamcu triple, which indicates the IAMCU psABI is used.
Differential Revision: http://reviews.llvm.org/D13977
llvm-svn: 251222
|
| |
|
|
| |
llvm-svn: 250843
|
| |
|
|
|
|
|
|
| |
This patch adds the underlying infrastructure for an AVR backend to be included into LLVM. It is the first of a series of patches aimed at moving the out-of-tree AVR backend into the tree.
It consists of adding a new`Triple` target 'avr'.
llvm-svn: 250492
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
64-bit builds
and assert when mask is too large to apply in the small case,
previously the extra words were silently ignored.
clang-format the entire function to match current code standards.
This is a rewrite of r247972 which was reverted in r247983 due to
warning and possible UB on 32-bits hosts.
llvm-svn: 247993
|
| |
|
|
|
|
| |
is undefined behavior on implementations where uinptr_t is 32-bits. One such platform is Windows, MSVC, x86.
llvm-svn: 247983
|
| |
|
|
|
|
|
| |
We can't apply two words of 32-bit mask in the small case
where the internal storage is just one 32-bit word.
llvm-svn: 247974
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
and 64-bit builds.
Extend mask value to 64 bits before taking its complement and assert when mask is
too large to apply in the small case (previously the extra words were silently ignored).
http://reviews.llvm.org/D11890
Patch by James Touton!
llvm-svn: 247972
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
with the StringRef::split method when used with a MaxSplit argument
other than '-1' (which nobody really does today, but which should
actually work).
The spec claimed both to split up to MaxSplit times, but also to append
<= MaxSplit strings to the vector. One of these doesn't make sense.
Given the name "MaxSplit", let's go with it being a max over how many
*splits* occur, which means the max on how many strings get appended is
MaxSplit+1. I'm not actually sure the implementation correctly provided
this logic either, as it used a really opaque loop structure.
The implementation was also playing weird games with nullptr in the data
field to try to rely on a totally opaque hidden property of the split
method that returns a pair. Nasty IMO.
Replace all of this with what is (IMO) simpler code that doesn't use the
pair returning split method, and instead just finds each separator and
appends directly. I think this is a lot easier to read, and it most
definitely matches the spec. Added some tests that exercise the corner
cases around StringRef() and StringRef("") that all now pass.
I'll start using this in code in the next commit.
llvm-svn: 247249
|
| |
|
|
|
|
|
|
|
|
|
| |
on StringRef. Finding and splitting on a single character is
substantially faster than doing it on even a single character StringRef
-- we immediately get to a *very* tuned memchr call this way.
Even nicer, we get to this even in a debug build, shaving 18% off the
runtime of TripleTest.Normalization, helping PR23676 some more.
llvm-svn: 247244
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The purpose is to allow templated wrapper to work with either
ArrayRef or any convertible operation:
template<typename Container>
void wrapper(const Container &Arr) {
impl(makeArrayRef(Arr));
}
with Container being a std::vector, a SmallVector, or an ArrayRef.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 247214
|
| |
|
|
|
|
| |
Also, test commit
llvm-svn: 246855
|
| |
|
|
|
|
|
| |
should, rather than giving a broken value that doesn't even zero/sign-extend
properly.
llvm-svn: 246836
|
| |
|
|
|
|
|
|
|
|
| |
of its strings when expanding the string literals from the macros, and
push all of the APIs to be StringRef instead of C-string APIs.
This (remarkably) removes a very non-trivial number of strlen calls. It
even deletes code and complexity from one of the primary users -- Clang.
llvm-svn: 246374
|
| |
|
|
|
|
|
|
|
|
|
| |
This is something like nullopt in std::experimental::optional. Optional
could already be constructed from None, so this seems like an obvious
extension from there.
I have a use in a future patch for Clang, though it may not go that
way/end up used - so this seemed worth committing now regardless.
llvm-svn: 245518
|
| |
|
|
|
|
|
|
|
|
|
|
| |
any different than the defaults
This causes the other special members (like move and copy construction,
and move assignment) to come through for free. Some code in clang was
depending on the (deprecated, in the original code) copy ctor. Now that
there's no user-defined special members, they're all available without
any deprecation concerns.
llvm-svn: 244835
|
| |
|
|
|
|
| |
by allocating a small size (will go through malloc) and then large size.
llvm-svn: 244637
|
| |
|
|
| |
llvm-svn: 244023
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
unbreak bots.
For example of mingw-w64-g++-4.8.1,
llvm/unittests/ADT/ArrayRefTest.cpp: In member function 'virtual void {anonymous}::ArrayRefTest_AllocatorCopy_Test::TestBody()':
llvm/unittests/ADT/ArrayRefTest.cpp:56:40: internal compiler error: in count_type_elements, at expr.c:5523
} Array3Src[] = {{"hello"}, {"world"}};
^
Please submit a full bug report,
with preprocessed source if appropriate.
llvm-svn: 244017
|
| |
|
|
|
|
|
| |
std::copy does not work for non-trivially copyable classes when we're
copying into uninitialized memory.
llvm-svn: 243995
|
| |
|
|
|
|
|
| |
This is used by the AMD x86 OpenCL implementation
to change some ABI details on Windows and Linux.
llvm-svn: 243627
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit r243567, which ultimately reapplies r243563.
The fix here was to use std::enable_if for overload resolution. Thanks to David
Blaikie for lots of help on this, and for the extra tests!
Original commit message follows:
For cases where we needed a foreach loop in reverse over a container,
we had to do something like
for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
TypeInfos.rend())) {
This provides a convenience method which shortens this to
for (const GlobalValue *GV : reverse(TypeInfos)) {
There are 2 versions of this, with a preference to the rbegin() version.
The first uses rbegin() and rend() to construct an iterator_range.
The second constructs an iterator_range from the begin() and end() methods
wrapped in std::reverse_iterator's.
Reviewed by David Blaikie.
llvm-svn: 243581
|
| |
|
|
|
|
|
|
|
| |
This reverts commit r243563.
The GCC buildbots were extremely unhappy about this. Reverting while
we discuss a better way of doing overload resolution.
llvm-svn: 243567
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For cases where we needed a foreach loop in reverse over a container,
we had to do something like
for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
TypeInfos.rend())) {
This provides a convenience method which shortens this to
for (const GlobalValue *GV : reverse(TypeInfos)) {
There are 2 versions of this, with a preference to the rbegin() version.
The first uses rbegin() and rend() to construct an iterator_range.
The second constructs an iterator_range from the begin() and end() methods
wrapped in std::reverse_iterator's.
Reviewed by David Blaikie.
llvm-svn: 243563
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
1. Fix return value in `SparseBitVector::operator&=`.
2. Add checks if SBV is being assigned is invoking SBV.
Reviewers: dberlin
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11342
Committed on behalf of sl@
llvm-svn: 242693
|
| |
|
|
|
|
| |
This will be used from clang's driver.
llvm-svn: 241527
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch changes the way APInt is compared with a value of type uint64_t.
Before the uint64_t value was truncated to the size of APInt before comparison.
Now the comparison takes into account full 64-bit precision.
Test Plan: Unit tests added. No regressions. Self-hosted check-all done as well.
Reviewers: chandlerc, dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10655
llvm-svn: 241204
|
| |
|
|
|
|
|
| |
This unbreaks TripleTest.Normalization. We'll have to come up with a new
plan for the OS component of the target triple for WebAssembly.
llvm-svn: 241041
|