| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
| |
Extend fix for PR26037 to identify DISubprogram reached from a
DIImportedEntity via a DILexicalBlock.
llvm-svn: 258722
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Example:
while (buf !=end ) {
S += buf[0];
S += buf[1];
buf +=2;
};
Differential Revision: http://reviews.llvm.org/D13151
llvm-svn: 258709
|
| |
|
|
| |
llvm-svn: 258708
|
| |
|
|
|
|
|
|
|
|
|
| |
We were hitting an assertion because we were computing smaller type sizes for
instructions that cannot be demoted. The fix first determines the instructions
that will be demoted, and then applies the smaller type size to only those
instructions.
This should fix PR26239.
llvm-svn: 258705
|
| |
|
|
| |
llvm-svn: 258703
|
| |
|
|
| |
llvm-svn: 258700
|
| |
|
|
|
|
|
| |
Instructions can be DCE'd after the RegStackify pass. If the instruction which
would be the pop for what would be a push is removed, don't use a push.
llvm-svn: 258694
|
| |
|
|
| |
llvm-svn: 258693
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
When generating calls to memcpy, memmove, and memset, use void* as the return
type rather than void, to match the standard signatures for these functions.
This has no practical effect for most targets, since the return values of
these calls aren't being used anyway, and most calling conventions tolerate
this kind of mismatch. However, this change will help support future
optimizations to utilize the return value to avoid holding the argument
value live across a call.
llvm-svn: 258691
|
| |
|
|
|
|
|
|
|
|
| |
The computation of ICmp demanded bits is independent of the individual operand being evaluated. We simply return a mask consisting of the minimum leading zeroes of both operands.
We were incorrectly passing "I" to ComputeKnownBits - this should be "UserI->getOperand(0)". In cases where we were evaluating the 1th operand, we were taking the minimum leading zeroes of it and itself.
This should fix PR26266.
llvm-svn: 258690
|
| |
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D16520
llvm-svn: 258688
|
| |
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D16519
llvm-svn: 258686
|
| |
|
|
|
|
|
|
| |
This patch was originally committed as r257885, but was reverted due to windows
failures. The cause of these failures has been fixed under r258677, hence
re-committing the original patch.
llvm-svn: 258683
|
| |
|
|
|
|
|
|
| |
This patch was originally committed as r257884, but was reverted due to windows
failures. The cause of these failures has been fixed under r258677, hence
re-committing the original patch.
llvm-svn: 258682
|
| |
|
|
|
|
|
|
| |
This patch was originally committed as r257883, but was reverted due to windows
failures. The cause of these failures has been fixed under r258677, hence
re-committing the original patch.
llvm-svn: 258681
|
| |
|
|
|
|
|
|
|
|
|
| |
52bit integer
VPMADD52LUQ - Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit Products to Qword Accumulators
VPMADD52HUQ - Packed Multiply of Unsigned 52-bit Unsigned Integers and Add High 52-bit Products to 64-bit Accumulators
Differential Revision: http://reviews.llvm.org/D16407
llvm-svn: 258680
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was originally committed as r255762, but reverted as it broke windows
bots. Re-commitiing the exact same patch, as the underlying cause was fixed by
r258677.
ARMv8.2-A adds 16-bit floating point versions of all existing VFP
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
The assembly for these instructions uses S registers (AArch32 does not
have H registers), but the instructions have ".f16" type specifiers
rather than ".f32" or ".f64". The top 16 bits of each source register
are ignored, and the top 16 bits of the destination register are set to
zero.
These instructions are mostly the same as the 32- and 64-bit versions,
but they use coprocessor 9 rather than 10 and 11.
Two new instructions, VMOVX and VINS, have been added to allow packing
and extracting two 16-bit floats stored in the top and bottom halves of
an S register.
New fixup kinds have been added for the PC-relative load and store
instructions, but no ELF relocations have been added as they have a
range of 512 bytes.
Differential Revision: http://reviews.llvm.org/D15038
llvm-svn: 258678
|
| |
|
|
|
|
|
|
| |
Use AVX1 FP instructions (vmaskmovps/pd) in place of the AVX2 int instructions (vpmaskmovd/q).
Differential Revision: http://reviews.llvm.org/D16528
llvm-svn: 258675
|
| |
|
|
|
|
|
|
|
|
|
| |
X86AsmParser.cpp is missing full comparison predicate names for CMPPD and CMPPS Instructions.
X86AsmParser.cpp defines only the short names of the Comparison predicate that you can find in the following pdf:
https://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf
Page 5-61 table 5-3
Differential Revision: http://reviews.llvm.org/D16518
llvm-svn: 258671
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Changes in X86.td:
I set features of Intel processors in incremental form: IVB = SNB + X HSW = IVB + X ..
I added Skylake client processor and defined it's features
FeatureADX was missing on KNL
Added some new features to appropriate processors SMAP, IFMA, PREFETCHWT1, VMFUNC and others
Differential Revision: http://reviews.llvm.org/D16357
llvm-svn: 258659
|
| |
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D16137
llvm-svn: 258657
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A cleanup can have paths which unwind or end up in unreachable.
If there is an unreachable path *and* a path which unwinds to caller,
we would mistakenly inject an unwind path to a catchswitch on the
unreachable path. This results in a verifier assertion firing because
the cleanup unwinds to two different places: to the caller and to the
catchswitch.
This occured because we used getCleanupRetUnwindDest to determine if the
cleanuppad had no cleanuprets.
This is incorrect, getCleanupRetUnwindDest returns null for cleanuprets
which unwind to caller.
llvm-svn: 258651
|
| |
|
|
|
|
| |
BUILD_VECTOR and UNDEF folding.
llvm-svn: 258646
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously, we would just output "foo = bar" in the assembly, and then
ptxas would choke. Now we die before emitting any invalid code.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, jhen, tra
Differential Revision: http://reviews.llvm.org/D16490
llvm-svn: 258638
|
| |
|
|
|
|
|
|
| |
For the moment, this file takes way too long to run (see inline comments), but
that should be a temporary problem. The fact that the compile time is so slow
for a target that doesn't support maskmov may be a bug worth investigating too.
llvm-svn: 258629
|
| |
|
|
|
|
| |
If the INSERTPS zeroes out all the referenced elements from either of the 2 input vectors (and the input is not already UNDEF), then set that input to UNDEF to reduce dependencies.
llvm-svn: 258622
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now LIR can turn following codes into memset:
typedef struct foo {
int a;
int b;
} foo_t;
void bar(foo_t *f, unsigned n) {
for (unsigned i = 0; i < n; ++i) {
f[i].a = 0;
f[i].b = 0;
}
}
void test(foo_t *f, unsigned n) {
for (unsigned i = 0; i < n; i += 2) {
f[i] = 0;
f[i+1] = 0;
}
}
llvm-svn: 258620
|
| |
|
|
|
|
| |
LLVM's BasicBlock has a single terminator, it is not valid to have two.
llvm-svn: 258616
|
| |
|
|
| |
llvm-svn: 258615
|
| |
|
|
| |
llvm-svn: 258614
|
| |
|
|
|
|
| |
This will make future test updates easier
llvm-svn: 258613
|
| |
|
|
|
|
| |
Replace tests with lrp with basic IR expansion
llvm-svn: 258612
|
| |
|
|
|
|
|
|
|
| |
Instead of RAUW with undef, replace the first non-token instruction with
unreachable.
This fixes PR26263.
llvm-svn: 258611
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Some of the conditions necessary to produce ccmp sequences were only
checked in recursive calls to emitConjunctionDisjunctionTree() after
some of the earlier expressions were already built. Move all checks over
to isConjunctionDisjunctionTree() so they are all checked before we
start emitting instructions.
Also rename some variable to better reflect their usage.
llvm-svn: 258605
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Cleanups in C++ are a little weird. They are only guaranteed to be
reliably executed if, and only if, there is a viable catch handler which
can handle the exception.
This means that reachability of a cleanup is lexically determined by it
being nested with a try-block which unwinds to a catch. It is *cannot*
be reasoned about by examining the control flow edges leaving a cleanup.
Usually this is not a problem. It becomes a problem when there are *no*
edges out of a cleanup because we believed that code post-dominated by
the cleanup is dead. In LLVM's case, this code is what informs the
personality routine about the presence of a suitable catch handler.
However, the lack of edges to that catch handler makes the handler
become unreachable which causes us to remove it. By removing the
handler, the cleanup becomes unreachable.
Instead, inject a catch-all handler with every cleanup that has no
unwind edges. This will allow us to properly unwind the stack.
This fixes PR25997.
llvm-svn: 258580
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
in MachOObjectFile::getSymbolByIndex() when a Mach-O file has
a symbol table load command but the number of symbols are zero.
The code in MachOObjectFile::symbol_begin_impl() should not be
assuming there is a symbol at index 0, in cases there is no symbol
table load command or the count of symbol is zero. So I also fixed
that. And needed to fix MachOObjectFile::symbol_end_impl() to
also do the same thing for no symbol table or one with zero entries.
The code in MachOObjectFile::getSymbolByIndex() should trigger
the report_fatal_error() for programmatic errors for any index when
there is no symbol table load command and not return the end iterator.
So also fixed that. Note there is no test case as this is a programmatic
error.
The test case using the file macho-invalid-bad-symbol-index has
a symbol table load command with its number of symbols (nsyms)
is zero. Which was incorrectly testing the bad triggering of the
report_fatal_error() in in MachOObjectFile::getSymbolByIndex().
This test case is an invalid Mach-O file but not for that reason.
It appears this Mach-O file use to have an nsyms value of 11,
and what makes this Mach-O file invalid is the counts and
indexes into the symbol table of the dynamic load command
are now invalid because the number of symbol table entries
(nsyms) is now zero. Which can be seen with the existing
llvm-obdump:
% llvm-objdump -private-headers macho-invalid-bad-symbol-index
…
Load command 4
cmd LC_SYMTAB
cmdsize 24
symoff 4216
nsyms 0
stroff 4392
strsize 144
Load command 5
cmd LC_DYSYMTAB
cmdsize 80
ilocalsym 0
nlocalsym 8 (past the end of the symbol table)
iextdefsym 8 (greater than the number of symbols)
nextdefsym 2 (past the end of the symbol table)
iundefsym 10 (greater than the number of symbols)
nundefsym 1 (past the end of the symbol table)
...
And the native darwin tools generates an error for this file:
% nm macho-invalid-bad-symbol-index
nm: object: macho-invalid-bad-symbol-index truncated or malformed object (ilocalsym plus nlocalsym in LC_DYSYMTAB load command extends past the end of the symbol table)
I added new checks for the indexes and sizes for these in the
constructor of MachOObjectFile. And added comments for what
would be a proper diagnostic messages.
And changed the test case using macho-invalid-bad-symbol-index
to test for the new error now produced.
Also added a test with a valid Mach-O file with a symbol table
load command where the number of symbols is zero that shows
the report_fatal_error() is not called.
llvm-svn: 258576
|
| |
|
|
| |
llvm-svn: 258568
|
| |
|
|
| |
llvm-svn: 258558
|
| |
|
|
|
|
|
|
|
|
|
| |
The intrinsic target prefix should match the target name
as it appears in the triple.
This is not yet complete, but gets most of the important ones.
llvm.AMDGPU.* intrinsics used by mesa and libclc are still handled
for compatability for now.
llvm-svn: 258557
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
all the attributes from the base object.
Summary:
Make sure that any new and optimized objects created during GlobalOPT copy all the attributes from the base object.
A good example of improper behavior in the current implementation is section information associated with the GlobalObject. If a section was set for it, and GlobalOpt is creating/modifying a new object based on this one (often copying the original name), without this change new object will be placed in a default section, resulting in inappropriate properties of the new variable.
The argument here is that if customer specified a section for a variable, any changes to it that compiler does should not cause it to change that section allocation.
Moreover, any other properties worth representation in copyAttributesFrom() should also be propagated.
Reviewers: jmolloy, joker-eph, joker.eph
Subscribers: slarin, joker.eph, rafael, tobiasvk, llvm-commits
Differential Revision: http://reviews.llvm.org/D16074
llvm-svn: 258556
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change adds a `-spp-no-statepoints` flag to PlaceSafepoints that
bypasses the code that wraps newly introduced polls and existing calls
in gc.statepoint. With `-spp-no-statepoints` enabled, PlaceSafepoints
effectively becomes a safpeoint **poll** insertion pass.
The eventual goal is to "constant fold" this option, along with
`-rs4gc-use-deopt-bundles` to `true`, once clients using gc.statepoint
are okay doing so.
Reviewers: pgavlin, reames, JosephTremoulet
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16439
llvm-svn: 258551
|
| |
|
|
| |
llvm-svn: 258541
|
| |
|
|
|
|
|
|
| |
The promote alloca pass didn't handle these intrinsics and crashed.
These intrinsics should accept any address space, but for now just
erase them to avoid breaking.
llvm-svn: 258537
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: Fixes PR26186.
Reviewers: grosser, jholewinski
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D16479
llvm-svn: 258536
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
|
| |
|
|
|
|
| |
Patch by Tobias Edler Von Koch.
llvm-svn: 258527
|
| |
|
|
|
|
| |
These ones aren't directly emitted by mesa and inserted by a pass.
llvm-svn: 258523
|
| |
|
|
|
|
|
|
|
|
|
| |
but to return object_error::parse_failed. Then made the code in llvm-nm
do for Mach-O files what is done in the darwin native tools which is to
print "bad string index" for bad string indexes. Updated the error message
in the llvm-objdump test, and added tests to show llvm-nm prints
"bad string index" and a test to print the actual bad string index value
which in this case is 0xfe000002 when printing the fields as raw hex.
llvm-svn: 258520
|
| |
|
|
|
|
|
| |
Mesa doesn't use this, and this is pattern matched already
from fsub x, (ffloor x)
llvm-svn: 258513
|
| |
|
|
|
|
|
|
| |
This reapplies r258296 and r258366, and also fixes an existing bug in
SelectionDAG.cpp's isMemSrcFromString, neglecting to account for the
offset in a GlobalAddressSDNode, which is uncovered by those patches.
llvm-svn: 258482
|