| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
LLVM's targets need to know if stack pointer adjustments occur after the
prologue. This is needed to correctly determine if the red-zone is
appropriate to use or if a frame pointer is required.
Normally, LLVM can figure this out very precisely by reasoning about the
contents of the MachineFunction. There is an interesting corner case:
inline assembly.
The vast majority of inline assembly which will perform a push or pop is
done so to pair up with pushf or popf as appropriate. Unfortunately,
this inline assembly doesn't mark the stack pointer as clobbered
because, well, it isn't. The stack pointer is decremented and then
immediately incremented. Because of this, LLVM was changed in r256456
to conservatively assume that inline assembly contain a sequence of
stack operations. This is unfortunate because the vast majority of
inline assembly will not end up manipulating the stack pointer in any
way at all.
Instead, let's provide a more principled solution: an intrinsic.
FWIW, other compilers (MSVC and GCC among them) also provide this
functionality as an intrinsic.
llvm-svn: 256685
|
|
|
|
| |
llvm-svn: 256682
|
|
|
|
| |
llvm-svn: 256679
|
|
|
|
| |
llvm-svn: 256678
|
|
|
|
| |
llvm-svn: 256677
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D15770
llvm-svn: 256673
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Not folding these cases tends to avoid partial register updates:
sqrtss (%eax), %xmm0
Has a partial update of %xmm0, while
movss (%eax), %xmm0
sqrtss %xmm0, %xmm0
Has a clobber of the high lanes immediately before the partial update,
avoiding a potential stall.
Given this, we only want to fold when optimizing for size.
This is consistent with the patterns we already have for some of
the fp/int converts, and in X86InstrInfo::foldMemoryOperandImpl()
Differential Revision: http://reviews.llvm.org/D15741
llvm-svn: 256671
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D15808
llvm-svn: 256670
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
shift right (PR25900)
This is a fix for:
https://llvm.org/bugs/show_bug.cgi?id=25900
If we think that an arithmetic right shift of a power of two is always a power of two,
an sdiv gets wrongly converted to udiv.
Differential Revision: http://reviews.llvm.org/D15827
llvm-svn: 256655
|
|
|
|
|
|
|
|
|
|
|
|
| |
The code that was meant to adjust the duplication cost based on the
terminator opcode was not being executed in cases where the initial
threshold was hit inside the loop.
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D15536
llvm-svn: 256568
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D15751
llvm-svn: 256558
|
|
|
|
|
|
|
| |
That commit added a new pass, and this test is sensitive to what the
first pass after verify is called.
llvm-svn: 256532
|
|
|
|
| |
llvm-svn: 256527
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
* avoid generating POP {LR} in Thumb1 epilogues
* combine MOV LR, Rx + BX LR -> BX Rx in a peephole optimization pass
* combine POP {LR} + B + BX LR -> POP {PC} on v5T+
Test cases by Ana Pazos
Differential Revision: http://reviews.llvm.org/D15707
llvm-svn: 256523
|
|
|
|
|
|
|
|
|
|
|
| |
(PR24475)
This is a follow-on to:
http://reviews.llvm.org/rL255700
http://reviews.llvm.org/rL256454
http://reviews.llvm.org/rL256510
llvm-svn: 256522
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously, only the outer (last) bitcast was rematerialized, resulting in a
use of the unrelocated inner (first) bitcast after the statepoint. See the
test case for an example.
Reviewers: igor-laevsky, reames
Subscribers: reames, alex, llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D15789
llvm-svn: 256520
|
|
|
|
|
|
|
|
|
| |
The cost is calculated for all X86 targets. When gather/scatter instruction
is not supported we calculate the cost of scalar sequence.
Differential revision: http://reviews.llvm.org/D15677
llvm-svn: 256519
|
|
|
|
|
|
|
|
| |
This is a follow-on to:
http://reviews.llvm.org/rL255700
http://reviews.llvm.org/rL256454
llvm-svn: 256510
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The check lines were added with:
http://reviews.llvm.org/rL256458
http://reviews.llvm.org/rL256460
but on a darwin target, the output looks like:
## InlineAsm Start
rorq %rdi
## InlineAsm End
## InlineAsm Start
rorq %rsi
## InlineAsm End
leaq (%rsi,%rdi), %rax
retq
llvm-svn: 256507
|
|
|
|
| |
llvm-svn: 256505
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for the MCU psABI in a way different from r251223 and r251224,
basically reverting most of these two patches. The problem with the approach
taken in r251223/4 is that it only handled libcalls that originated from the backend.
However, the mid-end also inserts quite a few libcalls and assumes these use the
platform's default calling convention.
The previous patch tried to insert inregs when necessary both in the FE and,
somewhat hackily, in the CG. Instead, we now define a new default calling convention
for the MCU, which doesn't use inreg marking at all, similarly to what x86-64 does.
Differential Revision: http://reviews.llvm.org/D15054
llvm-svn: 256494
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
lower broadcast<type>x<vector> to shuffles.
there are two cases:
1.src is 128 bits and dest is 512 bits: in this case we will lower it to shuffle with imm = 0.
2.src is 256 bit and dest is 512 bits: in this case we will lower it to shuffle with imm = 01000100b (0x44) that way we will broadcast the 256bit source: ymm[0,1,2,3] => zmm[0,1,2,3,0,1,2,3] then it will mask it with the passthru value (in case it's mask op).
Differential Revision: http://reviews.llvm.org/D15790
llvm-svn: 256490
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D15790
llvm-svn: 256489
|
|
|
|
|
|
|
|
| |
names. Add a missing encoding to disassembler and assembler.
I believe this also fixes a case where a 64-bit memory form that is documented as being unsupported in 32-bit mode was able to be selected there.
llvm-svn: 256483
|
|
|
|
|
|
|
|
|
| |
Fix TRUNCATE lowering vector to vector i1, use LSB and not MSB.
Implement VPMOVB/W/D/Q2M intrinsic.
Differential Revision: http://reviews.llvm.org/D15675
llvm-svn: 256470
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
a standalone pass.
There is no call graph or even interesting analysis for this part of
function attributes -- it is literally inferring attributes based on the
target library identification. As such, we can do it using a much
simpler module pass that just walks the declarations. This can also
happen much earlier in the pass pipeline which has benefits for any
number of other passes.
In the process, I've cleaned up one particular aspect of the logic which
was necessary in order to separate the two passes cleanly. It now counts
inferred attributes independently rather than just counting all the
inferred attributes as one, and the counts are more clearly explained.
The two test cases we had for this code path are both ... woefully
inadequate and copies of each other. I've kept the superset test and
updated it. We need more testing here, but I had to pick somewhere to
stop fixing everything broken I saw here.
Differential Revision: http://reviews.llvm.org/D15676
llvm-svn: 256466
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is (by default) run much earlier than FuncitonAttrs proper.
This allows forcing optnone or other widely impactful attributes. It is
also a bit simpler as the force attribute behavior needs no specific
iteration order.
I've added the pass into the default module pass pipeline and LTO pass
pipeline which mirrors where function attrs itself was being run.
Differential Revision: http://reviews.llvm.org/D15668
llvm-svn: 256465
|
|
|
|
| |
llvm-svn: 256460
|
|
|
|
| |
llvm-svn: 256458
|
|
|
|
| |
llvm-svn: 256457
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A frame pointer must be used if stack pointer is modified after the
prologue. LLVM will emit pushf/popf if we need to save/restore the
FLAGS register, requiring us to have a frame pointer for the function.
There is a small twist: this sequence might exist in user code via
inline-assembly. For now, conservatively assume that such functions
require a frame pointer. For real world justification, please see
clang's implementation of __readeflags.
This fixes PR25945.
llvm-svn: 256456
|
|
|
|
|
|
|
| |
This is aids in debugging WinEH, similar functionality is present for
DWARF EH.
llvm-svn: 256455
|
|
|
|
|
|
|
| |
This is a follow-on to:
http://reviews.llvm.org/rL255700
llvm-svn: 256454
|
|
|
|
|
|
| |
Should bring back the bots after r256443.
llvm-svn: 256450
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
instead of i32 type
Summary: This patch changes gc.statepoint intrinsic's return type to token type instead of i32 type. Using token types could prevent LLVM to merge different gc.statepoint nodes into PHI nodes and cause further problems with gc relocations. The patch also changes the way on how gc.relocate and gc.result look for their corresponding gc.statepoint on unwind path. The current implementation uses the selector value extracted from a { i8*, i32 } landingpad as a hook to find the gc.statepoint, while the patch directly uses a token type landingpad (http://reviews.llvm.org/D15405) to find the gc.statepoint.
Reviewers: sanjoy, JosephTremoulet, pgavlin, igor-laevsky, mjacob
Subscribers: reames, mjacob, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D15662
llvm-svn: 256443
|
|
|
|
|
|
| |
to be tolerant of the Constant type not matching due to folding in the constant pool and to get VPERMILPD correct."
llvm-svn: 256435
|
|
|
|
|
|
| |
This is the test case for r256433, but it got committed incorrectly in my local repo.
llvm-svn: 256434
|
|
|
|
| |
llvm-svn: 256432
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move RegStackify after coalescing and teach it to use LiveIntervals instead
of depending on SSA form. This avoids a problem where a register in a COPY
instruction is stackified and then subsequently coalesced with a register
that is not stackified.
This also puts it after the scheduler, which allows us to simplify the
EXPR_STACK constraint, as we no longer have instructions being reordered
after stackification and before coloring.
llvm-svn: 256402
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is an extension of the shuffle combining from r203229:
http://reviews.llvm.org/rL203229
The idea is to widen a short input vector with undef elements so the
existing shuffle transform for extract/insert can kick in.
The motivation is to finally solve PR2109:
https://llvm.org/bugs/show_bug.cgi?id=2109
For that example, the IR becomes:
%1 = bitcast <2 x i32>* %P to <2 x float>*
%ld1 = load <2 x float>, <2 x float>* %1, align 8
%2 = shufflevector <2 x float> %ld1, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef>
%i2 = shufflevector <4 x float> %A, <4 x float> %2, <4 x i32> <i32 0, i32 1, i32 4, i32 5>
ret <4 x float> %i2
And x86 SSE output improves from:
movq (%rdi), %xmm1 ## xmm1 = mem[0],zero
movdqa %xmm1, %xmm2
shufps $229, %xmm2, %xmm2 ## xmm2 = xmm2[1,1,2,3]
shufps $48, %xmm0, %xmm1 ## xmm1 = xmm1[0,0],xmm0[3,0]
shufps $132, %xmm1, %xmm0 ## xmm0 = xmm0[0,1],xmm1[0,2]
shufps $32, %xmm0, %xmm2 ## xmm2 = xmm2[0,0],xmm0[2,0]
shufps $36, %xmm2, %xmm0 ## xmm0 = xmm0[0,1],xmm2[2,0]
retq
To the almost optimal:
movhpd (%rdi), %xmm0
Note: There's a tension in the existing transform related to generating
arbitrary shufflevector masks. We avoid that in other places in InstCombine
because we're scared that codegen can't handle strange masks, but it looks
like we're ok with producing those here. I purposely chose weird insert/extract
indexes for the regression tests to see the effect in these cases.
For PowerPC+Altivec, AArch64, and X86+SSE/AVX, I think the codegen is equal or
better for these examples.
Differential Revision: http://reviews.llvm.org/D15096
llvm-svn: 256394
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D15711
llvm-svn: 256366
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patterns that set a mask register to 0/1
KXOR %kn, %kn, %kn / KXNOR %kn, %kn, %kn
are replaced with
KXOR %k0, %k0, %kn / KXNOR %k0, %k0, %kn - AVX-512 targets optimization.
KNL does not recognize dependency-breaking idioms for mask registers,
so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
Using %k0 as the undef input register is a performance heuristic based
on the assumption that %k0 is used less frequently than the other mask
registers, since it is not usable as a write mask.
Differential Revision: http://reviews.llvm.org/D15739
llvm-svn: 256365
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org//D15747
llvm-svn: 256364
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15735
llvm-svn: 256360
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Linker testing was sad at seeing an unresolved external symbol. For now don't do that: it's valid but we're not playing with multi-file linking yet, and the LLVM tests are used as hacky sanity tests for single-file linking (the GCC torture tests are much better for this purpose). Another solution would be to use '.extern' to make the intent explicit (don't simple-file link this, there's an unresolved symbol), some assemblers use '.extern' while others ignore it, so we wouldn't really be inventing anything new.
Reviewers: sunfish, kripken
Subscribers: jfb, llvm-commits, dschuff
Differential Revision: http://reviews.llvm.org/D15753
llvm-svn: 256353
|
|
|
|
|
|
|
|
|
|
| |
Teach the statepoint lowering code to emit Indirect stackmap entries for spill inserted by StatepointLowering (i.e. SelectionDAG), but Direct stackmap entries for in-IR allocas which represent manual stack slots. This is what the docs call for (http://llvm.org/docs/StackMaps.html#stack-map-format), but we've been emitting both as Direct. This was pointed out recently on the mailing list as a bug. It also blocks http://reviews.llvm.org/D15632 which extends the lowering to handle vector-of-pointers since only Indirect references can encode a variable sized slot.
To implement this, I introduced a new flag on the StackObject class used to maintian information about stack slots. I original considered (and prototyped in http://reviews.llvm.org/D15632), the idea of using the existing isSpillSlot flag, but end up deciding that was a bit too risky and that the cost of adding a new flag was low. Having the new flag will also allow us - in the future - to emit better comments in verbose assembly which indicate where a particular stack spill around a call comes from. (deopt, gc, regalloc).
Differential Revision: http://reviews.llvm.org/D15759
llvm-svn: 256352
|
|
|
|
|
|
|
|
| |
This replicates the logic of Darwin dwarfdump for manually opening up
.dSYM bundles without introducing any new dependencies.
<rdar://problem/20491670>
llvm-svn: 256350
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
First step towards making better use of AVX's implicit zeroing of the upper half of a 256-bit vector by instructions that only act on the lower 128-bit vector - discussed on D14151.
As well as the fact that 128-bit shuffle instructions are generally more capable, this can be performant for older CPUs with 128-bit ALUs (e.g. Jaguar, Sandy Bridge) that must treat 256-bit vectors as multiple micro-ops.
Moved the similar subvector extraction shuffle combines from PerformShuffleCombine256 to lowerVectorShuffle as well.
Note: I've avoided combining shuffles that reference elements from the upper halves of the input vectors - this may be reviewed in future work as well (AVX1 would probably always gain, but AVX2 does have some cross-lane shuffle instructions).
Differential Revision: http://reviews.llvm.org/D15477
llvm-svn: 256332
|
|
|
|
|
|
|
| |
A call site's use of a Value might not correspond to an argument
operand but to a bundle operand.
llvm-svn: 256329
|
|
|
|
|
|
|
|
|
| |
A call site's use of a Value might not correspond to an argument
operand but to a bundle operand.
This fixes PR25928.
llvm-svn: 256328
|