| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This one is enabled only under -ffast-math (due to rounding/overflows)
but allows us to emit shorter code.
Before (on FreeBSD x86-64):
4007f0: 50 push %rax
4007f1: f2 0f 11 0c 24 movsd %xmm1,(%rsp)
4007f6: e8 75 fd ff ff callq 400570 <exp2@plt>
4007fb: f2 0f 10 0c 24 movsd (%rsp),%xmm1
400800: 58 pop %rax
400801: e9 7a fd ff ff jmpq 400580 <pow@plt>
400806: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
40080d: 00 00 00
After:
4007b0: f2 0f 59 c1 mulsd %xmm1,%xmm0
4007b4: e9 87 fd ff ff jmpq 400540 <exp2@plt>
4007b9: 0f 1f 80 00 00 00 00 nopl 0x0(%rax)
Differential Revision: http://reviews.llvm.org/D14045
llvm-svn: 251976
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D14258
llvm-svn: 251957
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
a PHI to a SCEVConstant
Summary:
Since now Scalar Evolution can create non-add rec expressions for PHI
nodes, it can also create SCEVConstant expressions. This will confuse
replaceCongruentPHIs, which previously relied on the fact that SCEV
could not produce constants in this case.
We will now replace the node with a constant in these cases - or avoid
processing the Phi in case of a type mismatch.
Reviewers: sanjoy
Subscribers: llvm-commits, majnemer
Differential Revision: http://reviews.llvm.org/D14230
llvm-svn: 251938
|
|
|
|
|
|
|
|
|
|
|
|
| |
Skipping 'bitcast' in this case allows to vectorize load:
%arrayidx = getelementptr inbounds double*, double** %in, i64 %indvars.iv
%tmp53 = bitcast double** %arrayidx to i64*
%tmp54 = load i64, i64* %tmp53, align 8
Differential Revision http://reviews.llvm.org/D14112
llvm-svn: 251907
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
from loop preheader"
Commit 251839 triggers miscompiles on some bots:
http://lab.llvm.org:8011/builders/perf-x86_64-penryn-O3-polly-fast/builds/13723
(The commit is listed in 13722, but due to an existing failure introduced in
13721 and reverted in 13723 the failure is only visible in 13723)
To verify r251839 is indeed the only change that triggered the buildbot failures
and to ensure the buildbots remain green while investigating I temporarily
revert this commit. At the current state it is unclear if this commit introduced
some miscompile or if it only exposed code to Polly that is subsequently
miscompiled by Polly.
llvm-svn: 251901
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(2nd try)
This is a redo of r251849 except the tests have been split into arch-specific folders
to hopefully make the bots happy.
This is a follow-up from the discussion in D12965. The block-at-a-time limitation of
SelectionDAG also came up in D13297.
Without the InstCombine change from D12965, I don't expect this patch to make any
difference in the real world because InstCombine does not shrink cases like this in
visitSwitchInst(). But we need to have this CGP safety harness in place before
proceeding with any shrinkage in D12965, so we won't generate extra extends for compares.
I've opted for IR regression tests in the patch because that seems like a clearer way to
test the transform, but PowerPC CodeGen for an i16 widening test is shown below. x86
will need more work to solve: https://llvm.org/bugs/show_bug.cgi?id=22473
Before:
BB#0:
mr 4, 3
extsh. 3, 4
ble 0, .LBB0_5
BB#1:
cmpwi 3, 99
bgt 0, .LBB0_9
BB#2:
rlwinm 4, 4, 0, 16, 31 <--- 32-bit mask/extend
li 3, 0
cmplwi 4, 1
beqlr 0
BB#3:
cmplwi 4, 10
bne 0, .LBB0_12
BB#4:
li 3, 1
blr
.LBB0_5:
rlwinm 3, 4, 0, 16, 31 <--- 32-bit mask/extend
cmplwi 3, 65436
beq 0, .LBB0_13
BB#6:
cmplwi 3, 65526
beq 0, .LBB0_15
BB#7:
cmplwi 3, 65535
bne 0, .LBB0_12
BB#8:
li 3, 4
blr
.LBB0_9:
rlwinm 3, 4, 0, 16, 31 <--- 32-bit mask/extend
cmplwi 3, 100
beq 0, .LBB0_14
...
After:
BB#0:
rlwinm 4, 3, 0, 16, 31 <--- mask/extend to 32-bit and then use that for comparisons
cmpwi 4, 999
ble 0, .LBB0_5
BB#1:
lis 3, 0
ori 3, 3, 65525
cmpw 4, 3
bgt 0, .LBB0_9
BB#2:
cmplwi 4, 1000
beq 0, .LBB0_14
BB#3:
cmplwi 4, 65436
bne 0, .LBB0_13
BB#4:
li 3, 6
blr
.LBB0_5:
li 3, 0
cmplwi 4, 1
beqlr 0
BB#6:
cmplwi 4, 10
beq 0, .LBB0_12
BB#7:
cmplwi 4, 100
bne 0, .LBB0_13
BB#8:
li 3, 2
blr
.LBB0_9:
cmplwi 4, 65526
beq 0, .LBB0_15
BB#10:
cmplwi 4, 65535
bne 0, .LBB0_13
...
Differential Revision: http://reviews.llvm.org/D13532
llvm-svn: 251857
|
|
|
|
| |
llvm-svn: 251851
|
|
|
|
|
|
|
|
|
|
|
|
| |
larger vectorization factor.
To be able to maximize the bandwidth during vectorization, this patch provides a new flag vectorizer-maximize-bandwidth. When it is turned on, the vectorizer will determine the vectorization factor (VF) using the smallest instead of widest type in the loop. To avoid increasing register pressure too much, estimates of the register usage for different VFs are calculated so that we only choose a VF when its register usage doesn't exceed the number of available registers.
This is the second attempt to submit this patch. The first attempt got a test failure on ARM. This patch is updated to try to fix the failure (more specifically, by handling the case when VF=1).
Differential revision: http://reviews.llvm.org/D8943
llvm-svn: 251850
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a follow-up from the discussion in D12965. The block-at-a-time limitation of
SelectionDAG also came up in D13297.
Without the InstCombine change from D12965, I don't expect this patch to make any
difference in the real world because InstCombine does not shrink cases like this in
visitSwitchInst(). But we need to have this CGP safety harness in place before
proceeding with any shrinkage in D12965, so we won't generate extra extends for compares.
I've opted for IR regression tests in the patch because that seems like a clearer way to
test the transform, but PowerPC CodeGen for an i16 widening test is shown below. x86
will need more work to solve: https://llvm.org/bugs/show_bug.cgi?id=22473
Before:
BB#0:
mr 4, 3
extsh. 3, 4
ble 0, .LBB0_5
BB#1:
cmpwi 3, 99
bgt 0, .LBB0_9
BB#2:
rlwinm 4, 4, 0, 16, 31 <--- 32-bit mask/extend
li 3, 0
cmplwi 4, 1
beqlr 0
BB#3:
cmplwi 4, 10
bne 0, .LBB0_12
BB#4:
li 3, 1
blr
.LBB0_5:
rlwinm 3, 4, 0, 16, 31 <--- 32-bit mask/extend
cmplwi 3, 65436
beq 0, .LBB0_13
BB#6:
cmplwi 3, 65526
beq 0, .LBB0_15
BB#7:
cmplwi 3, 65535
bne 0, .LBB0_12
BB#8:
li 3, 4
blr
.LBB0_9:
rlwinm 3, 4, 0, 16, 31 <--- 32-bit mask/extend
cmplwi 3, 100
beq 0, .LBB0_14
...
After:
BB#0:
rlwinm 4, 3, 0, 16, 31 <--- mask/extend to 32-bit and then use that for comparisons
cmpwi 4, 999
ble 0, .LBB0_5
BB#1:
lis 3, 0
ori 3, 3, 65525
cmpw 4, 3
bgt 0, .LBB0_9
BB#2:
cmplwi 4, 1000
beq 0, .LBB0_14
BB#3:
cmplwi 4, 65436
bne 0, .LBB0_13
BB#4:
li 3, 6
blr
.LBB0_5:
li 3, 0
cmplwi 4, 1
beqlr 0
BB#6:
cmplwi 4, 10
beq 0, .LBB0_12
BB#7:
cmplwi 4, 100
bne 0, .LBB0_13
BB#8:
li 3, 2
blr
.LBB0_9:
cmplwi 4, 65526
beq 0, .LBB0_15
BB#10:
cmplwi 4, 65535
bne 0, .LBB0_13
...
Differential Revision: http://reviews.llvm.org/D13532
llvm-svn: 251849
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
loop preheader
Summary:
This patch adds support to check if a loop has loop invariant conditions which lead to loop exits. If so, we know that if the exit path is taken, it is at the first loop iteration. If there is an induction variable used in that exit path whose value has not been updated, it will keep its initial value passing from loop preheader. We can therefore rewrite the exit value with
its initial value. This will help remove phis created by LCSSA and enable other optimizations like loop unswitch.
Reviewers: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13974
llvm-svn: 251839
|
|
|
|
| |
llvm-svn: 251811
|
|
|
|
|
|
|
|
| |
Reviewed By: hfinkel
Differential Revision: http://reviews.llvm.org/D13953
llvm-svn: 251809
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Prevent `createNodeFromSelectLikePHI` from creating SCEV expressions
that break LCSSA.
A better fix for the same issue is to teach SCEVExpander to not break
LCSSA by inserting PHI nodes at appropriate places. That's planned for
the future.
Fixes PR25360.
llvm-svn: 251756
|
|
|
|
|
|
|
| |
The initial coverage checking code for sample records failed to count
records inside inlined profiles. This change fixes the oversight.
llvm-svn: 251752
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
attribute is not present.
During my refactor in r251595 I changed the behavior of optimizeSqrt(),
skipping the transformation if the function wasn't marked with unsafe-fp-math
attribute. This fixed a bug, as confirmed by Sanjay (before the optimization
was silently executed anyway), although it wasn't my primary aim.
This commit adds a test to ensure the code doesn't break again.
Reported by: Marcello Maggioni
Discussed with: Sanjay Patel
llvm-svn: 251747
|
|
|
|
|
|
|
| |
This is a really straightforward port. Also adds a test for the pass,
since it only seemed to be tested tangentially before.
llvm-svn: 251726
|
|
|
|
| |
llvm-svn: 251725
|
|
|
|
| |
llvm-svn: 251724
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Update the discriminator assignment algorithm
* If a scope has already been assigned a discriminator, do not reassign a nested discriminator for it.
* If the file and line both match, even if the column does not match, we should assign a new discriminator for the stmt.
original code:
; #1 int foo(int i) {
; #2 if (i == 3 || i == 5) return 100; else return 99;
; #3 }
; i == 3: discriminator 0
; i == 5: discriminator 2
; return 100: discriminator 1
; return 99: discriminator 3
llvm-svn: 251689
|
|
|
|
| |
llvm-svn: 251688
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Update the discriminator assignment algorithm
* If a scope has already been assigned a discriminator, do not reassign a nested discriminator for it.
* If the file and line both match, even if the column does not match, we should assign a new discriminator for the stmt.
original code:
; #1 int foo(int i) {
; #2 if (i == 3 || i == 5) return 100; else return 99;
; #3 }
; i == 3: discriminator 0
; i == 5: discriminator 2
; return 100: discriminator 1
; return 99: discriminator 3
llvm-svn: 251685
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* If a scope has already been assigned a discriminator, do not reassign a nested discriminator for it.
* If the file and line both match, even if the column does not match, we should assign a new discriminator for the stmt.
original code:
; #1 int foo(int i) {
; #2 if (i == 3 || i == 5) return 100; else return 99;
; #3 }
; i == 3: discriminator 0
; i == 5: discriminator 2
; return 100: discriminator 1
; return 99: discriminator 3
llvm-svn: 251680
|
|
|
|
|
|
|
| |
The patch in r251593 was only papering over the problem. The actual fix
was committed in r251623.
llvm-svn: 251635
|
|
|
|
| |
llvm-svn: 251617
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Somewhat shockingly for an analysis pass which is computing constant ranges, LVI did not understand the ranges provided by range metadata.
As part of this change, I included a change to CVP primarily because doing so made it much easier to write small self contained test cases. CVP was previously only handling the non-local operand case, but given that LVI can sometimes figure out information about instructions standalone, I don't see any reason to restrict this. There could possibly be a compile time impact from this, but I suspect it should be minimal. If anyone has an example which substaintially regresses, please let me know. I could restrict the block local handling to ICmps feeding Terminator instructions if needed.
Note that this patch continues a somewhat bad practice in LVI. In many cases, we know facts about values, and separate context sensitive facts about values. LVI makes no effort to distinguish and will frequently cache the same value fact repeatedly for different contexts. I would like to change this, but that's a large enough change that I want it to go in separately with clear documentation of what's changing. Other examples of this include the non-null handling, and arguments.
As a meta comment: the entire motivation of this change was being able to write smaller (aka reasonable sized) test cases for a future patch teaching LVI about select instructions.
Differential Revision: http://reviews.llvm.org/D13543
llvm-svn: 251606
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Follow on to http://reviews.llvm.org/D13074, implementing something pointed out by Sanjoy. His truth table from his comment on that bug summarizes things well:
LHS | RHS | LHS >=s RHS | LHS implies RHS
0 | 0 | 1 (0 >= 0) | 1
0 | 1 | 1 (0 >= -1) | 1
1 | 0 | 0 (-1 >= 0) | 0
1 | 1 | 1 (-1 >= -1) | 1
The key point is that an "i1 1" is the value "-1", not "1".
Differential Revision: http://reviews.llvm.org/D13756
llvm-svn: 251597
|
|
|
|
|
|
|
|
|
|
|
| |
The most common use case is when eliminating redundant range checks in an example like the following:
c = a[i+1] + a[i];
Note that all the smarts of the transform (the implication engine) is already in ValueTracking and is tested directly through InstructionSimplify.
Differential Revision: http://reviews.llvm.org/D13040
llvm-svn: 251596
|
|
|
|
| |
llvm-svn: 251593
|
|
|
|
|
|
|
|
| |
larger vectorization factor.
To be able to maximize the bandwidth during vectorization, this patch provides a new flag vectorizer-maximize-bandwidth. When it is turned on, the vectorizer will determine the vectorization factor (VF) using the smallest instead of widest type in the loop. To avoid increasing register pressure too much, estimates of the register usage for different VFs are calculated so that we only choose a VF when its register usage doesn't exceed the number of available registers.
llvm-svn: 251592
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds the flag -mllvm -sample-profile-check-coverage=N to the
SampleProfile pass. N is the percent of input sample records that the
user expects to apply. If the pass does not use N% (or more) of the
sample records in the input, it emits a warning.
This is useful to detect some forms of stale profiles. If the code has
drifted enough from the original profile, there will be records that do
not match the IR anymore.
This will not detect cases where a sample profile record for line L is
referring to some other instructions that also used to be at line L.
llvm-svn: 251568
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It looks like this broke the stage 2 builder:
http://lab.llvm.org:8080/green/job/clang-stage2-configure-Rlto/6989/
Original commit message:
AliasSetTracker does not need to convert the access mode to ModRefAccess if the
new visited UnknownInst has only 'REF' modrefinfo to existing pointers in the
sets.
Patch by Andrew Zhogin!
llvm-svn: 251562
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If P branches to Q conditional on C and Q branches to R conditional on
C' and C => C' then the branch conditional on C' can be folded to an
unconditional branch.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13972
llvm-svn: 251557
|
|
|
|
|
|
|
|
| |
stride.
The simple fix is to prevent forming memcpy from loops with a negative stride.
llvm-svn: 251518
|
|
|
|
|
|
|
|
| |
stride."
This reverts commit r251512. This is causing LNT/chomp to fail.
llvm-svn: 251513
|
|
|
|
|
|
| |
http://reviews.llvm.org/D14125
llvm-svn: 251512
|
|
|
|
|
|
| |
initial values from loop preheader", because it broke some bots.
llvm-svn: 251498
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
loop preheader
Summary:
This patch adds support to check if a loop has loop invariant conditions which lead to loop exits. If so, we know that if the exit path is taken, it is at the first loop iteration. If there is an induction variable used in that exit path whose value has not been updated, it will keep its initial value passing from loop preheader. We can therefore rewrite the exit value with
its initial value. This will help remove phis created by LCSSA and enable other optimizations like loop unswitch.
Reviewers: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13974
llvm-svn: 251492
|
|
|
|
|
|
|
|
|
|
| |
The singleton !range metadata gets simplified more aggressively after a
later change, so change the !range metadata to contain more than one
element.
While at it, turn some `; CHECK` s to `; CHECK-LABEL:` s.
llvm-svn: 251485
|
|
|
|
|
|
|
| |
CatchReturnInst has side-effects: it runs a destructor. This destructor
could conceivably run forever/call exit/etc. and should not be removed.
llvm-svn: 251461
|
|
|
|
|
|
|
|
|
|
| |
AliasSetTracker does not need to convert the access mode to ModRefAccess if the
new visited UnknownInst has only 'REF' modrefinfo to existing pointers in the
sets.
Patch by Andrew Zhogin!
llvm-svn: 251451
|
|
|
|
|
|
|
|
| |
A PHI on a catchpad might be used by both edges out of the catchpad,
feeding back into a loop. In this case, just use the insertion point.
Anything more clever would require new basic blocks or PHI placement.
llvm-svn: 251442
|
|
|
|
|
|
|
| |
It causes miscompilation of llvm/lib/ExecutionEngine/Interpreter/Execution.cpp.
See also PR25324.
llvm-svn: 251436
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change could be way off-piste, I'm looking for any feedback on whether it's an acceptable approach.
It never seems to be a problem to gobble up as many reduction values as can be found, and then to attempt to reduce the resulting tree. Some of the workloads I'm looking at have been aggressively unrolled by hand, and by selecting reduction widths that are not constrained by a vector register size, it becomes possible to profitably vectorize. My test case shows such an unrolling which SLP was not vectorizing (on neither ARM nor X86) before this patch, but with it does vectorize.
I measure no significant compile time impact of this change when combined with D13949 and D14063. There are also no significant performance regressions on ARM/AArch64 in SPEC or LNT.
The more principled approach I thought of was to generate several candidate tree's and use the cost model to pick the cheapest one. That seemed like quite a big design change (the algorithms seem very much one-shot), and would likely be a costly thing for compile time. This seemed to do the job at very little cost, but I'm worried I've misunderstood something!
Reviewers: nadav, jmolloy
Subscribers: mssimpso, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D14116
llvm-svn: 251428
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Currently, when the SLP vectorizer considers whether a phi is part of a reduction, it dismisses phi's whose incoming blocks are not the same as the block containing the phi. For the patterns I'm looking at, extending this rule to allow phis whose incoming block is a containing loop latch allows me to vectorize certain workloads.
There is no significant compile-time impact, and combined with D13949, no performance improvement measured in ARM/AArch64 in any of SPEC2000, SPEC2006 or LNT.
Reviewers: jmolloy, mcrosier, nadav
Subscribers: mssimpso, nadav, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D14063
llvm-svn: 251425
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Certain workloads, in particular sum-of-absdiff loops, can be vectorized using SLP if it can treat select instructions as reduction values.
The test case is a bit awkward. The AArch64 cost model needs some tuning to not be so pessimistic about selects. I've had to tweak the SLP threshold here.
Reviewers: jmolloy, mzolotukhin, spatel, nadav
Subscribers: nadav, mssimpso, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D13949
llvm-svn: 251424
|
|
|
|
|
|
|
|
|
|
| |
When emitting a remark for a conditional branch annotation, the remark
uses the line location information of the conditional branch in the
message. In some cases, that information is unavailable and the
optimization would segfaul. I'm still not sure whether this is a bug or
WAI, but the optimizer should not die because of this.
llvm-svn: 251420
|
|
|
|
|
|
|
|
|
|
|
| |
We want to insert no-op casts as close as possible to the def. This is
tricky when the cast is of a PHI node and the BasicBlocks between the
def and the use cannot hold any instructions. Iteratively walk EH pads
until we hit a non-EH pad.
This fixes PR25326.
llvm-svn: 251393
|
|
|
|
|
|
|
|
|
| |
We should remove noalias along with dereference and dereference_or_null attributes
because statepoint could potentially touch the entire heap including noalias objects.
Differential Revision: http://reviews.llvm.org/D14032
llvm-svn: 251333
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a couple of optimization remarks to the SamplePGO
transformation. When it decides to inline a hot function (to mimic the
inline stack and repeat useful inline decisions in the original build).
It will also report branch destinations. For instance, given the code
fragment:
6 if (i < 1000)
7 sum -= i;
8 else
9 sum += -i * rand();
If the 'else' branch is taken most of the time, building this code with
-Rpass=sample-profile will produce:
a.cc:9:14: remark: most popular destination for conditional branches at small.cc:6:9 [-Rpass=sample-profile]
sum += -i * rand();
^
llvm-svn: 251330
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Android libc provides a fixed TLS slot for the unsafe stack pointer,
and this change implements direct access to that slot on AArch64 via
__builtin_thread_pointer() + offset.
This change also moves more code into TargetLowering and its
target-specific subclasses to get rid of target-specific codegen
in SafeStackPass.
This change does not touch the ARM backend because ARM lowers
builting_thread_pointer as aeabi_read_tp, which is not available
on Android.
The previous iteration of this change was reverted in r250461. This
version leaves the generic, compiler-rt based implementation in
SafeStack.cpp instead of moving it to TargetLoweringBase in order to
allow testing without a TargetMachine.
llvm-svn: 251324
|