summaryrefslogtreecommitdiffstats
path: root/llvm/test/Transforms/LoopVectorize/intrinsic.ll
Commit message (Collapse)AuthorAgeFilesLines
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-61/+61
| | | | | | | | | | | | | | | | | | | | | | | | load instruction Essentially the same as the GEP change in r230786. A similar migration script can be used to update test cases, though a few more test case improvements/changes were required this time around: (r229269-r229278) import fileinput import sys import re pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)") for line in sys.stdin: sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line)) Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7649 llvm-svn: 230794
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-105/+105
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
* Add minnum / maxnum intrinsicsMatt Arsenault2014-10-211-0/+56
| | | | | | | | | | | | These are named following the IEEE-754 names for these functions, rather than the libm fmin / fmax to avoid possible ambiguities. Some languages may implement something resembling fmin / fmax which return NaN if either operand is to propagate errors. These implement the IEEE-754 semantics of returning the other operand if either is a NaN representing missing data. llvm-svn: 220341
* Rename getMaximumUnrollFactor -> getMaxInterleaveFactor; also rename option ↵Sanjay Patel2014-09-101-1/+1
| | | | | | | | | | | names controlling this variable. "Unroll" is not the appropriate name for this variable. Clang already uses the term "interleave" in pragmas and metadata for this. Differential Revision: http://reviews.llvm.org/D5066 llvm-svn: 217528
* Allow vectorization of intrinsics such as powi,cttz and ctlz in Loop and SLP ↵Karthik Bhat2014-05-301-0/+102
| | | | | | | | | | Vectorizer. This patch adds support to vectorize intrinsics such as powi, cttz and ctlz in Vectorizer. These intrinsics are different from other intrinsics as second argument to these function must be same in order to vectorize them and it should be represented as a scalar. Review: http://reviews.llvm.org/D3851#inline-32769 and http://reviews.llvm.org/D3937#inline-32857 llvm-svn: 209873
* Revert "LoopVectorizer: Only allow vectorization of intrinsics."Arnold Schwaighofer2013-09-231-20/+53
| | | | | | | | | | | | | | Revert 191122 - with extra checks we are allowed to vectorize math library function calls. Standard library indentifiers are reserved names so functions with external linkage must not overrided them. However, functions with internal linkage can. Therefore, we can vectorize calls to math library functions with a check for external linkage and matching signature. This matches what we do during SelectionDAG building. llvm-svn: 191206
* LoopVectorizer: Only allow vectorization of intrinsics. We can't know for ↵Nadav Rotem2013-09-211-3/+28
| | | | | | | | sure that the functions 'abs' or 'round' are the functions from libm. rdar://15012650 llvm-svn: 191122
* Add a llvm.copysign intrinsicHal Finkel2013-08-191-0/+53
| | | | | | | | | | | | | | | | | | | | | This adds a llvm.copysign intrinsic; We already have Libfunc recognition for copysign (which is turned into the FCOPYSIGN SDAG node). In order to autovectorize calls to copysign in the loop vectorizer, we need a corresponding intrinsic as well. In addition to the expected changes to the language reference, the loop vectorizer, BasicTTI, and the SDAG builder (the intrinsic is transformed into an FCOPYSIGN node, just like the function call), this also adds FCOPYSIGN to a few lists in LegalizeVector{Ops,Types} so that vector copysigns can be expanded. In TargetLoweringBase::initActions, I've made the default action for FCOPYSIGN be Expand for vector types. This seems correct for all in-tree targets, and I think is the right thing to do because, previously, there was no way to generate vector-values FCOPYSIGN nodes (and most targets don't specify an action for vector-typed FCOPYSIGN). llvm-svn: 188728
* Add ISD::FROUND for libm round()Hal Finkel2013-08-071-0/+52
| | | | | | | | | | | | | | | All libm floating-point rounding functions, except for round(), had their own ISD nodes. Recent PowerPC cores have an instruction for round(), and so here I'm adding ISD::FROUND so that round() can be custom lowered as well. For the most part, this is straightforward. I've added an intrinsic and a matching ISD node just like those for nearbyint() and friends. The SelectionDAG pattern I've named frnd (because ISD::FP_ROUND has already claimed fround). This will be used by the PowerPC backend in a follow-up commit. llvm-svn: 187926
* Update Transforms tests to use CHECK-LABEL for easier debugging. No ↵Stephen Lin2013-07-141-33/+33
| | | | | | | | | | | | | | | | | | | | | | functionality change. This update was done with the following bash script: find test/Transforms -name "*.ll" | \ while read NAME; do echo "$NAME" if ! grep -q "^; *RUN: *llc" $NAME; then TEMP=`mktemp -t temp` cp $NAME $TEMP sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \ while read FUNC; do sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP done mv $TEMP $NAME fi done llvm-svn: 186268
* TBAA: remove !tbaa from testing cases if not used.Manman Ren2013-05-021-84/+78
| | | | | | | This will make it easier to turn on struct-path aware TBAA since the metadata format will change. llvm-svn: 180935
* LoopVectorize: Vectorize math builtin calls.Benjamin Kramer2013-02-271-0/+24
| | | | | | | | | | | This properly asks TargetLibraryInfo if a call is available and if it is, it can be translated into the corresponding LLVM builtin. We don't vectorize sqrt() yet because I'm not sure about the semantics for negative numbers. The other intrinsic should be exact equivalents to the libm functions. Differential Revision: http://llvm-reviews.chandlerc.com/D465 llvm-svn: 176188
* Remove the -licm pass from the loop vectorizer test because the loop ↵Nadav Rotem2013-01-091-1/+1
| | | | | | vectorizer does it now. llvm-svn: 171930
* Force a fixed unroll count on the target independent tests.Nadav Rotem2013-01-051-1/+1
| | | | | | This should fix clang-native-arm-cortex-a9. Thanks Renato. llvm-svn: 171582
* LoopVectorize: Enable vectorization of the fmuladd intrinsicHal Finkel2012-12-251-0/+60
| | | | llvm-svn: 171076
* LoopVectorize: support vectorizing intrinsic callsPaul Redmond2012-12-091-0/+851
- added function to VectorTargetTransformInfo to query cost of intrinsics - vectorize trivially vectorizable intrinsic calls such as sin, cos, log, etc. Reviewed by: Nadav llvm-svn: 169711
OpenPOWER on IntegriCloud