| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
| |
The reversion apparently deleted the test/Transforms directory.
Will be re-reverting again.
llvm-svn: 358552
|
|
|
|
|
|
|
|
| |
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With this change, the VPlan native path is triggered with the directive:
#pragma clang loop vectorize(enable)
There is no need to specify the vectorize_width(N) clause.
Patch by Francesco Petrogalli <francesco.petrogalli@arm.com>
Differential Revision: https://reviews.llvm.org/D57598
llvm-svn: 357156
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
canonicalization
Remove attempts to commute non-Instructions to the LHS - the codegen changes appear to rely on chance more than anything else and also have a tendency to fight existing instcombine canonicalization which moves constants to the RHS of commutable binary ops.
This is prep work towards:
(a) reusing reorderInputsAccordingToOpcode for alt-shuffles and removing the similar reorderAltShuffleOperands
(b) improving reordering to optimized cases with commutable and non-commutable instructions to still find splat/consecutive ops.
Differential Revision: https://reviews.llvm.org/D59738
llvm-svn: 356913
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
if either zext or OP has another use.
If they have other users we'll just end up increasing the instruction count.
We might be able to weaken this to only one of them having a single use if we can prove that the and will be removed.
Fixes PR41164.
Differential Revision: https://reviews.llvm.org/D59630
llvm-svn: 356690
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Improve computeOverflowForUnsignedAdd/Sub in ValueTracking by
intersecting the computeConstantRange() result into the ConstantRange
created from computeKnownBits(). This allows us to detect some
additional never/always overflows conditions that can't be determined
from known bits.
This revision also adds basic handling for constants to
computeConstantRange(). Non-splat vectors will be handled in a followup.
The signed case will also be handled in a followup, as it needs some
more groundwork.
Differential Revision: https://reviews.llvm.org/D59386
llvm-svn: 356489
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Change from original commit: move test (that uses an X86 triple) into the X86
subdirectory.
Original description:
Gating vectorizing reductions on *all* fastmath flags seems unnecessary;
`reassoc` should be sufficient.
Reviewers: tvvikram, mkuper, kristof.beyls, sdesmalen, Ayal
Reviewed By: sdesmalen
Subscribers: dcaballe, huntergr, jmolloy, mcrosier, jlebar, bixia, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57728
llvm-svn: 355889
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Without checking for integer overflow, invalid members can be added
e.g. if the calculated key overflows, becomes positive and the largest key.
This fixes
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=7560
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=13128
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=13229
Reviewers: Ayal, anna, hsaito, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D55538
llvm-svn: 355613
|
|
|
|
|
|
|
|
|
|
|
|
| |
Second part of D58593.
Compute precise overflow conditions based on all known bits, rather
than just the sign bits. Unsigned a - b overflows iff a < b, and we
can determine whether this always/never happens based on the minimal
and maximal values achievable for a and b subject to the known bits
constraint.
llvm-svn: 355109
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Loop::setAlreadyUnrolled() and
LoopVectorizeHints::setLoopAlreadyUnrolled() both add loop metadata that
stops the same loop from being transformed multiple times. This patch
merges both implementations.
In doing so we fix 3 potential issues:
* setLoopAlreadyUnrolled() kept the llvm.loop.vectorize/interleave.*
metadata even though it will not be used anymore. This already caused
problems such as http://llvm.org/PR40546. Change the behavior to the
one of setAlreadyUnrolled which deletes this loop metadata.
* setAlreadyUnrolled() used to create a new LoopID by calling
MDNode::get with nullptr as the first operand, then replacing it by
the returned references using replaceOperandWith. It is possible
that MDNode::get would instead return an existing node (due to
de-duplication) that then gets modified. To avoid, use a fresh
TempMDNode that does not get uniqued with anything else before
replacing it with replaceOperandWith.
* LoopVectorizeHints::matchesHintMetadataName() only compares the
suffix of the attribute to set the new value for. That is, when
called with "enable", would erase attributes such as
"llvm.loop.unroll.enable", "llvm.loop.vectorize.enable" and
"llvm.loop.distribute.enable" instead of the one to replace.
Fortunately, function was only called with "isvectorized".
Differential Revision: https://reviews.llvm.org/D57566
llvm-svn: 353738
|
|
|
|
|
|
|
|
|
|
| |
Bitcast and certain Ptr2Int/Int2Ptr instructions will not alter the
value of their operand and can therefore be looked through when we
determine non-nullness.
Differential Revision: https://reviews.llvm.org/D54956
llvm-svn: 352293
|
|
|
|
|
|
|
|
|
|
| |
Prior to SSE41 (and sometimes on AVX1), vector select has to be performed as a ((X & C)|(Y & ~C)) bit select.
Exposes a couple of issues with the min/max reduction costs (which only go down to SSE42 for some reason).
The increase pre-SSE41 selection costs also prevent a couple of tests from firing any longer, so I've either tweaked the target or added AVX tests as well to the existing SSE2 tests.
llvm-svn: 351685
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The current llvm.mem.parallel_loop_access metadata has a problem in that
it uses LoopIDs. LoopID unfortunately is not loop identifier. It is
neither unique (there's even a regression test assigning the some LoopID
to multiple loops; can otherwise happen if passes such as LoopVersioning
make copies of entire loops) nor persistent (every time a property is
removed/added from a LoopID's MDNode, it will also receive a new LoopID;
this happens e.g. when calling Loop::setLoopAlreadyUnrolled()).
Since most loop transformation passes change the loop attributes (even
if it just to mark that a loop should not be processed again as
llvm.loop.isvectorized does, for the versioned and unversioned loop),
the parallel access information is lost for any subsequent pass.
This patch unlinks LoopIDs and parallel accesses.
llvm.mem.parallel_loop_access metadata on instruction is replaced by
llvm.access.group metadata. llvm.access.group points to a distinct
MDNode with no operands (avoiding the problem to ever need to add/remove
operands), called "access group". Alternatively, it can point to a list
of access groups. The LoopID then has an attribute
llvm.loop.parallel_accesses with all the access groups that are parallel
(no dependencies carries by this loop).
This intentionally avoid any kind of "ID". Loops that are clones/have
their attributes modifies retain the llvm.loop.parallel_accesses
attribute. Access instructions that a cloned point to the same access
group. It is not necessary for each access to have it's own "ID" MDNode,
but those memory access instructions with the same behavior can be
grouped together.
The behavior of llvm.mem.parallel_loop_access is not changed by this
patch, but should be considered deprecated.
Differential Revision: https://reviews.llvm.org/D52116
llvm-svn: 349725
|
|
|
|
|
|
|
|
|
|
|
| |
The first test claims to show that the vectorizer will
generate a vector load/loop, but then this file runs
other passes which might scalarize that op. I'm removing
instcombine from the RUN line here to break that dependency.
Also, I'm generating full checks to make it clear exactly
what the vectorizer has done.
llvm-svn: 349554
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When multiple loop transformation are defined in a loop's metadata, their order of execution is defined by the order of their respective passes in the pass pipeline. For instance, e.g.
#pragma clang loop unroll_and_jam(enable)
#pragma clang loop distribute(enable)
is the same as
#pragma clang loop distribute(enable)
#pragma clang loop unroll_and_jam(enable)
and will try to loop-distribute before Unroll-And-Jam because the LoopDistribute pass is scheduled after UnrollAndJam pass. UnrollAndJamPass only supports one inner loop, i.e. it will necessarily fail after loop distribution. It is not possible to specify another execution order. Also,t the order of passes in the pipeline is subject to change between versions of LLVM, optimization options and which pass manager is used.
This patch adds 'followup' attributes to various loop transformation passes. These attributes define which attributes the resulting loop of a transformation should have. For instance,
!0 = !{!0, !1, !2}
!1 = !{!"llvm.loop.unroll_and_jam.enable"}
!2 = !{!"llvm.loop.unroll_and_jam.followup_inner", !3}
!3 = !{!"llvm.loop.distribute.enable"}
defines a loop ID (!0) to be unrolled-and-jammed (!1) and then the attribute !3 to be added to the jammed inner loop, which contains the instruction to distribute the inner loop.
Currently, in both pass managers, pass execution is in a fixed order and UnrollAndJamPass will not execute again after LoopDistribute. We hope to fix this in the future by allowing pass managers to run passes until a fixpoint is reached, use Polly to perform these transformations, or add a loop transformation pass which takes the order issue into account.
For mandatory/forced transformations (e.g. by having been declared by #pragma omp simd), the user must be notified when a transformation could not be performed. It is not possible that the responsible pass emits such a warning because the transformation might be 'hidden' in a followup attribute when it is executed, or it is not present in the pipeline at all. For this reason, this patche introduces a WarnMissedTransformations pass, to warn about orphaned transformations.
Since this changes the user-visible diagnostic message when a transformation is applied, two test cases in the clang repository need to be updated.
To ensure that no other transformation is executed before the intended one, the attribute `llvm.loop.disable_nonforced` can be added which should disable transformation heuristics before the intended transformation is applied. E.g. it would be surprising if a loop is distributed before a #pragma unroll_and_jam is applied.
With more supported code transformations (loop fusion, interchange, stripmining, offloading, etc.), transformations can be used as building blocks for more complex transformations (e.g. stripmining+stripmining+interchange -> tiling).
Reviewed By: hfinkel, dmgreen
Differential Revision: https://reviews.llvm.org/D49281
Differential Revision: https://reviews.llvm.org/D55288
llvm-svn: 348944
|
|
|
|
|
|
| |
some tests that failed when experimenting with defaulting to -mprefer-vector-width=256 for skylake-avx512.
llvm-svn: 348063
|
|
|
|
|
|
| |
Instead of defaulting to a cost = 1, expand to element extract/insert like we do for other shuffles.
llvm-svn: 346662
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix PR39417, PR39497
The loop vectorizer may generate runtime SCEV checks for overflow and stride==1
cases, leading to execution of original scalar loop. The latter is forbidden
when optimizing for size. An assert introduced in r344743 triggered the above
PR's showing it does happen. This patch fixes this behavior by preventing
vectorization in such cases.
Differential Revision: https://reviews.llvm.org/D53612
llvm-svn: 345959
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
optsize using masked wide loads
Under Opt for Size, the vectorizer does not vectorize interleave-groups that
have gaps at the end of the group (such as a loop that reads only the even
elements: a[2*i]) because that implies that we'll require a scalar epilogue
(which is not allowed under Opt for Size). This patch extends the support for
masked-interleave-groups (introduced by D53011 for conditional accesses) to
also cover the case of gaps in a group of loads; Targets that enable the
masked-interleave-group feature don't have to invalidate interleave-groups of
loads with gaps; they could now use masked wide-loads and shuffles (if that's
what the cost model selects).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53668
llvm-svn: 345705
|
|
|
|
|
|
| |
Match codegen improvements from D53649/rL345256
llvm-svn: 345263
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
masked-interleaving is enabled
Enable interleave-groups under fold-tail scenario for Opt for size compilation;
D50480 added support for vectorizing loops of arbitrary trip-count without a
remiander, which in turn makes everything in the loop conditional, including
interleave-groups if any. It therefore invalidated all interleave-groups
because we didn't have support for vectorizing predicated interleaved-groups
at the time. In the meantime, D53011 introduced this support, so we don't
have to invalidate interleave-groups when masked-interleaved support is enabled.
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: hsaito
Differential Revision: https://reviews.llvm.org/D53559
llvm-svn: 345115
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
optimizing for size
LV is careful to respect -Os and not to create a scalar epilog in all cases
(runtime tests, trip-counts that require a remainder loop) except for peeling
due to gaps in interleave-groups. This patch fixes that; -Os will now have us
invalidate such interleave-groups and vectorize without an epilog.
The patch also removes a related FIXME comment that is now obsolete, and was
also inaccurate:
"FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a smaller
MaxVF that does not require a scalar epilog."
(requiresScalarEpilog() has nothing to do with VF).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53420
llvm-svn: 344883
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
opt for size
When optimizing for size, a loop is vectorized only if the resulting vector loop
completely replaces the original scalar loop. This holds if no runtime guards
are needed, if the original trip-count TC does not overflow, and if TC is a
known constant that is a multiple of the VF. The last two TC-related conditions
can be overcome by
1. rounding the trip-count of the vector loop up from TC to a multiple of VF;
2. masking the vector body under a newly introduced "if (i <= TC-1)" condition.
The patch allows loops with arbitrary trip counts to be vectorized under -Os,
subject to the existing cost model considerations. It also applies to loops with
small trip counts (under -O2) which are currently handled as if under -Os.
The patch does not handle loops with reductions, live-outs, or w/o a primary
induction variable, and disallows interleave groups.
(Third, final and main part of -)
Differential Revision: https://reviews.llvm.org/D50480
llvm-svn: 344743
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Teach vectorizer about vectorizing variant value stores to uniform
address. Similar to rL343028, we do not allow vectorization if we have
multiple stores to the same uniform address.
Cost model already has the change for considering the extract
instruction cost for a variant value store. See added test cases for how
vectorization is done.
The patch also contains changes to the ORE messages.
Reviewers: Ayal, mkuper, anemet, hsaito
Subscribers: rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D52656
llvm-svn: 344613
|
|
|
|
|
|
|
|
| |
Landing this as a separate part of https://reviews.llvm.org/D50480, recording
current behavior more accurately, to clarify subsequent diff ([LV] Vectorizing
loops of arbitrary trip count without remainder under opt for size).
llvm-svn: 344606
|
|
|
|
| |
llvm-svn: 344475
|
|
|
|
| |
llvm-svn: 344473
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
interleave-group
The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.
Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53011
llvm-svn: 344472
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Re-trying r344082 because it unintentionally included extra diffs.
Original commit message:
icmp ne (and X, 1), 0 --> trunc X to N x i1
Ideally, we'd do the same for scalars, but there will likely be
regressions unless we add more trunc folds as we're doing here
for vectors.
The motivating vector case is from PR37549:
https://bugs.llvm.org/show_bug.cgi?id=37549
define <4 x float> @bitwise_select(<4 x float> %x, <4 x float> %y, <4 x float> %z, <4 x float> %w) {
%c = fcmp ole <4 x float> %x, %y
%s = sext <4 x i1> %c to <4 x i32>
%s1 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
%s2 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
%cond = or <4 x i32> %s1, %s2
%condtr = trunc <4 x i32> %cond to <4 x i1>
%r = select <4 x i1> %condtr, <4 x float> %z, <4 x float> %w
ret <4 x float> %r
}
Here's a sampling of the vector codegen for that case using
mask+icmp (current behavior) vs. trunc (with this patch):
AVX before:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vandps LCPI0_0(%rip), %xmm0, %xmm0
vxorps %xmm1, %xmm1, %xmm1
vpcmpeqd %xmm1, %xmm0, %xmm0
vblendvps %xmm0, %xmm3, %xmm2, %xmm0
AVX after:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vblendvps %xmm0, %xmm2, %xmm3, %xmm0
AVX512f before:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vpbroadcastd LCPI0_0(%rip), %xmm1 ## xmm1 = [1,1,1,1]
vptestnmd %zmm1, %zmm0, %k1
vblendmps %zmm3, %zmm2, %zmm0 {%k1}
AVX512f after:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vpslld $31, %xmm0, %xmm0
vptestmd %zmm0, %zmm0, %k1
vblendmps %zmm2, %zmm3, %zmm0 {%k1}
AArch64 before:
fcmge v0.4s, v1.4s, v0.4s
zip1 v1.4s, v0.4s, v0.4s
zip2 v0.4s, v0.4s, v0.4s
orr v0.16b, v1.16b, v0.16b
movi v1.4s, #1
and v0.16b, v0.16b, v1.16b
cmeq v0.4s, v0.4s, #0
bsl v0.16b, v3.16b, v2.16b
AArch64 after:
fcmge v0.4s, v1.4s, v0.4s
zip1 v1.4s, v0.4s, v0.4s
zip2 v0.4s, v0.4s, v0.4s
orr v0.16b, v1.16b, v0.16b
bsl v0.16b, v2.16b, v3.16b
PowerPC-le before:
xvcmpgesp 34, 35, 34
vspltisw 0, 1
vmrglw 3, 2, 2
vmrghw 2, 2, 2
xxlor 0, 35, 34
xxlxor 35, 35, 35
xxland 34, 0, 32
vcmpequw 2, 2, 3
xxsel 34, 36, 37, 34
PowerPC-le after:
xvcmpgesp 34, 35, 34
vmrglw 3, 2, 2
vmrghw 2, 2, 2
xxlor 0, 35, 34
xxsel 34, 37, 36, 0
Differential Revision: https://reviews.llvm.org/D52747
llvm-svn: 344181
|
|
|
|
|
|
| |
This commit accidentally included the diffs from D53057.
llvm-svn: 344178
|
|
|
|
|
|
|
| |
This test uses an x86 triple, so it needs to be in the x86 specific
test directory.
llvm-svn: 344087
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
icmp ne (and X, 1), 0 --> trunc X to N x i1
Ideally, we'd do the same for scalars, but there will likely be
regressions unless we add more trunc folds as we're doing here
for vectors.
The motivating vector case is from PR37549:
https://bugs.llvm.org/show_bug.cgi?id=37549
define <4 x float> @bitwise_select(<4 x float> %x, <4 x float> %y, <4 x float> %z, <4 x float> %w) {
%c = fcmp ole <4 x float> %x, %y
%s = sext <4 x i1> %c to <4 x i32>
%s1 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
%s2 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
%cond = or <4 x i32> %s1, %s2
%condtr = trunc <4 x i32> %cond to <4 x i1>
%r = select <4 x i1> %condtr, <4 x float> %z, <4 x float> %w
ret <4 x float> %r
}
Here's a sampling of the vector codegen for that case using
mask+icmp (current behavior) vs. trunc (with this patch):
AVX before:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vandps LCPI0_0(%rip), %xmm0, %xmm0
vxorps %xmm1, %xmm1, %xmm1
vpcmpeqd %xmm1, %xmm0, %xmm0
vblendvps %xmm0, %xmm3, %xmm2, %xmm0
AVX after:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vblendvps %xmm0, %xmm2, %xmm3, %xmm0
AVX512f before:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vpbroadcastd LCPI0_0(%rip), %xmm1 ## xmm1 = [1,1,1,1]
vptestnmd %zmm1, %zmm0, %k1
vblendmps %zmm3, %zmm2, %zmm0 {%k1}
AVX512f after:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vpslld $31, %xmm0, %xmm0
vptestmd %zmm0, %zmm0, %k1
vblendmps %zmm2, %zmm3, %zmm0 {%k1}
AArch64 before:
fcmge v0.4s, v1.4s, v0.4s
zip1 v1.4s, v0.4s, v0.4s
zip2 v0.4s, v0.4s, v0.4s
orr v0.16b, v1.16b, v0.16b
movi v1.4s, #1
and v0.16b, v0.16b, v1.16b
cmeq v0.4s, v0.4s, #0
bsl v0.16b, v3.16b, v2.16b
AArch64 after:
fcmge v0.4s, v1.4s, v0.4s
zip1 v1.4s, v0.4s, v0.4s
zip2 v0.4s, v0.4s, v0.4s
orr v0.16b, v1.16b, v0.16b
bsl v0.16b, v2.16b, v3.16b
PowerPC-le before:
xvcmpgesp 34, 35, 34
vspltisw 0, 1
vmrglw 3, 2, 2
vmrghw 2, 2, 2
xxlor 0, 35, 34
xxlxor 35, 35, 35
xxland 34, 0, 32
vcmpequw 2, 2, 3
xxsel 34, 36, 37, 34
PowerPC-le after:
xvcmpgesp 34, 35, 34
vmrglw 3, 2, 2
vmrghw 2, 2, 2
xxlor 0, 35, 34
xxsel 34, 37, 36, 0
Differential Revision: https://reviews.llvm.org/D52747
llvm-svn: 344082
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
At the point when we perform `emitTransformedIndex`, we have a broken IR (in
particular, we have Phis for which not every incoming value is properly set). On
such IR, it is illegal to create SCEV expressions, because their internal
simplification process may try to prove some predicates and break when it
stumbles across some broken IR.
The only purpose of using SCEV in this particular place is attempt to simplify
the generated code slightly. It seems that the result isn't worth it, because
some trivial cases (like addition of zero and multiplication by 1) can be
handled separately if needed, but more generally InstCombine is able to achieve
the goals we want to achieve by using SCEV.
This patch fixes a functional crash described in PR39160, and as side-effect it
also generates a bit smarter code in some simple cases. It also may cause some
optimality loss (i.e. we will now generate `mul` by power of `2` instead of
shift etc), but there is nothing what InstCombine could not handle later. In
case of dire need, we can support more trivial cases just in place.
Note that this patch only fixes one particular case of the general problem that
LV misuses SCEV, attempting to create SCEVs or prove predicates on invalid IR.
The general solution, however, seems complex enough.
Differential Revision: https://reviews.llvm.org/D52881
Reviewed By: fhahn, hsaito
llvm-svn: 343954
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes PR39099.
When strided loads are predicated, each of them will form an interleaved-group
(with gaps). However, subsequent stages of vectorization (planning and
transformation) assume that if a load is part of an Interleave-Group it is not
predicated, resulting in wrong code - unmasked wide loads are created.
The Interleaving Analysis does take care not to have conditional interleave
groups of size > 1, but until we extend the planning and transformation stages
to support masked-interleave-groups we should also avoid having them for
size == 1.
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D52682
llvm-svn: 343931
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We are overly conservative in loop vectorizer with respect to stores to loop
invariant addresses.
More details in https://bugs.llvm.org/show_bug.cgi?id=38546
This is the first part of the fix where we start with vectorizing loop invariant
values to loop invariant addresses.
This also includes changes to ORE for stores to invariant address.
Reviewers: anemet, Ayal, mkuper, mssimpso
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50665
llvm-svn: 343028
|
|
|
|
|
|
|
|
|
|
|
|
| |
There were two combines not covered by the check before now, neither of which
actually differed from normal in the benefit analysis.
The most recent seems to be because it was just added at the top of the
function (naturally). The older is from way back in 2008 (r46687) when we just
didn't put those checks in so routinely, and has been diligently maintained
since.
llvm-svn: 341831
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix a latent bug in loop vectorizer which generates incorrect code for
memory accesses that are executed conditionally. As pointed in review,
this bug definitely affects uniform loads and may affect conditional
stores that should have turned into scatters as well).
The code gen for conditionally executed uniform loads on architectures
that support masked gather instructions is broken.
Without this patch, we were unconditionally executing the *conditional*
load in the vectorized version.
This patch does the following:
1. Uniform conditional loads on architectures with gather support will
have correct code generated. In particular, the cost model
(setCostBasedWideningDecision) is fixed.
2. For the recipes which are handled after the widening decision is set,
we use the isScalarWithPredication(I, VF) form which is added in the
patch.
3. Fix the vectorization cost model for scalarization
(getMemInstScalarizationCost): implement and use isPredicatedInst to
identify *all* predicated instructions, not just scalar+predicated. So,
now the cost for scalarization will be increased for maskedloads/stores
and gather/scatter operations. In short, we should be choosing the
gather/scatter in place of scalarization on archs where it is
profitable.
4. We needed to weaken the assert in useEmulatedMaskMemRefHack.
Reviewers: Ayal, hsaito, mkuper
Differential Revision: https://reviews.llvm.org/D51313
llvm-svn: 341673
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is fix for PR38786.
First order recurrence phis were incorrectly treated as uniform,
which caused them to be vectorized as uniform instructions.
Patch by Ayal Zaks and Orivej Desh!
Reviewed by: Anna
Differential Revision: https://reviews.llvm.org/D51639
llvm-svn: 341416
|
|
|
|
|
|
|
|
|
|
| |
Support for sgt/slt was added in rL294898, this adds the same cases also for unsigned compares.
This is the Alive proof: https://rise4fun.com/Alive/nyY
Differential Revision: https://reviews.llvm.org/D50972
llvm-svn: 341353
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SCEVs"
This reverts r319889.
Unfortunately, wrapping flags are not a part of SCEV's identity (they
do not participate in computing a hash value or in equality
comparisons) and in fact they could be assigned after the fact w/o
rebuilding a SCEV.
Grep for const_cast's to see quite a few of examples, apparently all
for AddRec's at the moment.
So, if 2 expressions get built in 2 slightly different ways: one with
flags set in the beginning, the other with the flags attached later
on, we may end up with 2 expressions which are exactly the same but
have their operands swapped in one of the commutative N-ary
expressions, and at least one of them will have "sorted by complexity"
invariant broken.
2 identical SCEV's won't compare equal by pointer comparison as they
are supposed to.
A real-world reproducer is added as a regression test: the issue
described causes 2 identical SCEV expressions to have different order
of operands and therefore compare not equal, which in its turn
prevents LoadStoreVectorizer from vectorizing a pair of consecutive
loads.
On a larger example (the source of the test attached, which is a
bugpoint) I have seen even weirder behavior: adding a constant to an
existing SCEV changes the order of the existing terms, for instance,
getAddExpr(1, ((A * B) + (C * D))) returns (1 + (C * D) + (A * B)).
Differential Revision: https://reviews.llvm.org/D40645
llvm-svn: 340777
|
|
|
|
|
|
| |
are done"
llvm-svn: 336410
|
|
|
|
| |
llvm-svn: 336268
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch changes order of transform in InstCombineCompares to avoid
performing transforms based on ranges which produce complex bit arithmetics
before more simple things (like folding with constants) are done. See PR37636
for the motivating example.
Differential Revision: https://reviews.llvm.org/D48584
Reviewed By: spatel, lebedev.ri
llvm-svn: 336172
|
|
|
|
|
|
|
|
| |
redundant-vf2-cost.ll is X86 specific. Moved from
test/Transforms/LoopVectorize/redundant-vf2-cost.ll to
test/Transforms/LoopVectorize/X86/redundant-vf2-cost.ll
llvm-svn: 334854
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These weren't included in D19544 - probably just an oversight.
D40044 made it more likely that we'll have LLVM math intrinsics rather
than libcalls, so this bug was more easily exposed.
As the tests/code show, we already have the complete mappings for pow/exp/log.
I don't have any experience with SVML, so I don't know if anything else is
missing. It's also not clear to me that we should be doing this transform in
IR rather than DAG/isel, but that's a separate issue.
Differential Revision: https://reviews.llvm.org/D47610
llvm-svn: 334211
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Getelementptr returns a vector of pointers, instead of a single address,
when one or more of its arguments is a vector. In such case it is not
possible to simplify the expression by inserting a bitcast of operand(0)
into the destination type, as it will create a bitcast between different
sizes.
Reviewers: majnemer, mkuper, mssimpso, spatel
Reviewed By: spatel
Subscribers: lebedev.ri, llvm-commits
Differential Revision: https://reviews.llvm.org/D46379
llvm-svn: 333783
|
|
|
|
| |
llvm-svn: 333707
|
|
|
|
|
|
| |
I removed the 'fast' flag from the calls because that's not required.
llvm-svn: 333695
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch aims to match the changes introduced in gcc by
https://gcc.gnu.org/ml/gcc-cvs/2018-04/msg00534.html. The
IBT feature definition is removed, with the IBT instructions
being freely available on all X86 targets. The shadow stack
instructions are also being made freely available, and the
use of all these CET instructions is controlled by the module
flags derived from the -fcf-protection clang option. The hasSHSTK
option remains since clang uses it to determine availability of
shadow stack instruction intrinsics, but it is no longer directly used.
Comes with a clang patch (D46881).
Patch by mike.dvoretsky
Differential Revision: https://reviews.llvm.org/D46882
llvm-svn: 332705
|
|
|
|
| |
llvm-svn: 331878
|