| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
gep operator
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
load instruction
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
|
|
|
|
|
|
|
|
|
|
| |
With a diabolically crafted test case, we could recurse
through this code and return true instead of false.
The larger engineering crime is the use of magic numbers.
Added FIXME comments for those.
llvm-svn: 230515
|
|
|
|
|
| |
From: Fiona Glaser <fglaser@apple.com>
llvm-svn: 230238
|
|
|
|
|
|
|
|
|
|
|
| |
We didn't properly handle the out-of-bounds case for
ConstantAggregateZero and UndefValue. This would manifest as a crash
when the constant folder was asked to fold a load of a constant global
whose struct type has no operands.
This fixes PR22595.
llvm-svn: 229352
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch folds fcmp in some cases of interest in Julia. The patch adds a function CannotBeOrderedLessThanZero that returns true if a value is provably not less than zero. I.e. the function returns true if the value is provably -0, +0, positive, or a NaN. The patch extends InstructionSimplify.cpp to fold instances of fcmp where:
- the predicate is olt or uge
- the first operand is provably not less than zero
- the second operand is zero
The motivation for handling these cases optimizing away domain checks for sqrt in Julia for common idioms such as sqrt(x*x+y*y)..
http://reviews.llvm.org/D6972
llvm-svn: 227298
|
|
|
|
|
|
|
|
|
| |
(X & INT_MIN) ? X & INT_MAX : X into X & INT_MAX
(X & INT_MIN) ? X : X & INT_MAX into X
(X & INT_MIN) ? X | INT_MIN : X into X
(X & INT_MIN) ? X : X | INT_MIN into X | INT_MIN
llvm-svn: 224669
|
|
|
|
| |
llvm-svn: 224553
|
|
|
|
|
|
|
|
|
|
| |
We can always choose an value for undef which might cause %V to shift
out an important bit except for one case, when %V is zero.
However, shl behaves like an identity function when the right hand side
is zero.
llvm-svn: 224405
|
|
|
|
|
|
| |
No functional change intended.
llvm-svn: 224016
|
|
|
|
|
|
|
| |
X shifted by undef results in undef because the undef value can
represent values greater than the width of the operands.
llvm-svn: 223968
|
|
|
|
|
|
| |
Dividing by zero yields an undefined value.
llvm-svn: 223924
|
|
|
|
|
|
|
| |
Exact shifts always keep the non-zero bits of their input. This means
it keeps it's undef bits.
llvm-svn: 223923
|
|
|
|
|
|
| |
We already optimized rem %X, 0 to undef, we should do the same for div.
llvm-svn: 223919
|
|
|
|
|
|
|
| |
This reverts r223624 with a small tweak, hopefully this will make stage3
equivalent.
llvm-svn: 223679
|
|
|
|
|
|
| |
between stage2(gcc-clang) and stage3 clang. Investigating.
llvm-svn: 223624
|
|
|
|
|
|
| |
Code like X < Y && Y == 0 should always be folded away to false.
llvm-svn: 223583
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reapply r223347, with a fix to not crash on uninserted instructions (or more
precisely, instructions in uninserted blocks). bugpoint was able to reduce the
test case somewhat, but it is still somewhat large (and relies on setting
things up to be simplified during inlining), so I've not included it here.
Nevertheless, it is clear what is going on and why.
Original commit message:
Restrict somewhat the memory-allocation pointer cmp opt from r223093
Based on review comments from Richard Smith, restrict this optimization from
applying to globals that might resolve lazily to other dynamically-loaded
modules, and also from dynamic allocas (which might be transformed into malloc
calls). In short, take extra care that the compared-to pointer is really
simultaneously live with the memory allocation.
llvm-svn: 223371
|
|
|
|
| |
llvm-svn: 223364
|
|
|
|
|
|
|
|
|
|
| |
Based on review comments from Richard Smith, restrict this optimization from
applying to globals that might resolve lazily to other dynamically-loaded
modules, and also from dynamic allocas (which might be transformed into malloc
calls). In short, take extra care that the compared-to pointer is really
simultaneously live with the memory allocation.
llvm-svn: 223347
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
System memory allocation functions, which are identified at the IR level by the
noalias attribute on the return value, must return a pointer into a memory region
disjoint from any other memory accessible to the caller. We can use this
property to simplify pointer comparisons between allocated memory and local
stack addresses and the addresses of global variables. Neither the stack nor
global variables can overlap with the region used by the memory allocator.
Fixes PR21556.
llvm-svn: 223093
|
|
|
|
|
|
|
|
|
|
| |
This restores our ability to optimize:
(X & C) ? X & ~C : X into X & ~C
(X & C) ? X : X & ~C into X
(X & C) ? X | C : X into X
(X & C) ? X : X | C into X | C
llvm-svn: 222868
|
|
|
|
|
|
|
|
| |
This handles cases where we are comparing a masked value against itself.
The analysis could be further improved by making it recursive but such
expense is not currently justified.
llvm-svn: 222716
|
|
|
|
|
|
| |
This is a generalization of the X - (0 - Y) -> X transform.
llvm-svn: 222611
|
|
|
|
|
|
|
|
|
| |
Exact shifts may not shift out any non-zero bits. Use computeKnownBits
to determine when this occurs and just return the left hand side.
This fixes PR21477.
llvm-svn: 221325
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ConstantFolding crashes when trying to InstSimplify the following load:
@a = private unnamed_addr constant %mst {
i8* inttoptr (i64 -1 to i8*),
i8* inttoptr (i64 -1 to i8*)
}, align 8
%x = load <2 x i8*>* bitcast (%mst* @a to <2 x i8*>*), align 8
This patch fix this by adding support to this type of folding:
%x = load <2 x i8*>* bitcast (%mst* @a to <2 x i8*>*), align 8
==> gets folded to:
%x = <2 x i8*> <i8* inttoptr (i64 -1 to i8*), i8* inttoptr (i64 -1 to i8*)>
llvm-svn: 220380
|
|
|
|
|
|
|
|
|
| |
This function was complicated by the fact that it tried to perform
canonicalizations that were already preformed by InstSimplify. Remove
this extra code and move the tests over to InstSimplify. Add asserts to
make sure our preconditions hold before we make any assumptions.
llvm-svn: 220314
|
|
|
|
|
|
|
|
|
| |
The newly introduced 'nonnull' metadata is analogous to existing 'nonnull' attributes, but applies to load instructions rather than call arguments or returns. Long term, it would be nice to combine these into a single construct. The value of the load is allowed to vary between successive loads, but null is not a valid value to be loaded by any load marked nonnull.
Reviewed by: Hal Finkel
Differential Revision: http://reviews.llvm.org/D5220
llvm-svn: 220240
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reapply r216913, a fix for PR20832 by Andrea Di Biagio. The commit was reverted
because of buildbot failures, and credit goes to Ulrich Weigand for isolating
the underlying issue (which can be confirmed by Valgrind, which does helpfully
light up like the fourth of July). Uli explained the problem with the original
patch as:
It seems the problem is calling multiplySignificand with an addend of category
fcZero; that is not expected by this routine. Note that for fcZero, the
significand parts are simply uninitialized, but the code in (or rather, called
from) multiplySignificand will unconditionally access them -- in effect using
uninitialized contents.
This version avoids using a category == fcZero addend within
multiplySignificand, which avoids this problem (the Valgrind output is also now
clean).
Original commit message:
[APFloat] Fixed a bug in method 'fusedMultiplyAdd'.
When folding a fused multiply-add builtin call, make sure that we propagate the
correct result in the case where the addend is zero, and the two other operands
are finite non-zero.
Example:
define double @test() {
%1 = call double @llvm.fma.f64(double 7.0, double 8.0, double 0.0)
ret double %1
}
Before this patch, the instruction simplifier wrongly folded the builtin call
in function @test to constant 'double 7.0'.
With this patch, method 'fusedMultiplyAdd' correctly evaluates the multiply and
propagates the expected result (i.e. 56.0).
Added test fold-builtin-fma.ll with the reproducible from PR20832 plus extra
test cases to verify the behavior of method 'fusedMultiplyAdd' in the presence
of NaN/Inf operands.
This fixes PR20832.
llvm-svn: 219708
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
consider:
C1 = INT_MIN
C2 = -1
C1 * C2 overflows without a doubt but consider the following:
%x = i32 INT_MIN
This means that (%X /s C1) is 1 and (%X /s C1) /s C2 is -1.
N. B. Move the unsigned version of this transform to InstSimplify, it
doesn't create any new instructions.
This fixes PR21243.
llvm-svn: 219567
|
|
|
|
|
|
|
|
|
|
|
| |
Let's consider the case where:
%x i16 = 32768
%y i16 = 384
%x srem %y = 65408
(%x srem %y) urem %y = 128
llvm-svn: 217939
|
|
|
|
|
|
|
|
| |
Patch by Sonam Kumari!
Differential Revision: http://reviews.llvm.org/D5350
llvm-svn: 217937
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some ICmpInsts when anded/ored with another ICmpInst trivially reduces
to true or false depending on whether or not all integers or no integers
satisfy the intersected/unioned range.
This sort of trivial looking code can come about when InstCombine
performs a range reduction-type operation on sdiv and the like.
This fixes PR20916.
llvm-svn: 217750
|
|
|
|
|
|
|
| |
This reverts revision 216913; the new test added at revision 216913
caused regression failures on a couple of buildbots.
llvm-svn: 216914
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When folding a fused multiply-add builtin call, make sure that we propagate the
correct result in the case where the addend is zero, and the two other operands
are finite non-zero.
Example:
define double @test() {
%1 = call double @llvm.fma.f64(double 7.0, double 8.0, double 0.0)
ret double %1
}
Before this patch, the instruction simplifier wrongly folded the builtin call
in function @test to constant 'double 7.0'.
With this patch, method 'fusedMultiplyAdd' correctly evaluates the multiply and
propagates the expected result (i.e. 56.0).
Added test fold-builtin-fma.ll with the reproducible from PR20832 plus extra
test cases to verify the behavior of method 'fusedMultiplyAdd' in the presence
of NaN/Inf operands.
This fixes PR20832.
Differential Revision: http://reviews.llvm.org/D5152
llvm-svn: 216913
|
|
|
|
|
|
|
|
| |
Several combines involving icmp (shl C2, %X) C1 can be simplified
without introducing any new instructions. Move them to InstSimplify;
while we are at it, make them more powerful.
llvm-svn: 216642
|
|
|
|
|
|
|
|
|
| |
It's incorrect to perform this simplification if the types differ.
A bitcast would need to be inserted for this to work.
This fixes PR20771.
llvm-svn: 216597
|
|
|
|
| |
llvm-svn: 216586
|
|
|
|
|
|
| |
It caused PR 20771. I'll land a test on the clang side.
llvm-svn: 216582
|
|
|
|
|
|
|
|
| |
'shl nuw CI, x' produces [CI, CI << CLZ(CI)]
'shl nsw CI, x' produces [CI << CLO(CI)-1, CI] if CI is negative
'shl nsw CI, x' produces [CI, CI << CLZ(CI)-1] if CI is non-negative
llvm-svn: 216570
|
|
|
|
|
|
|
| |
Save InstCombine some work if we can perform this fold during
InstSimplify.
llvm-svn: 216441
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
consider:
long long *f(long long *b, long long *e) {
return b + (e - b);
}
we would lower this to something like:
define i64* @f(i64* %b, i64* %e) {
%1 = ptrtoint i64* %e to i64
%2 = ptrtoint i64* %b to i64
%3 = sub i64 %1, %2
%4 = ashr exact i64 %3, 3
%5 = getelementptr inbounds i64* %b, i64 %4
ret i64* %5
}
This should fold away to just 'e'.
N.B. This adds m_SpecificInt as a convenient way to match against a
particular 64-bit integer when using LLVM's match interface.
llvm-svn: 216439
|
|
|
|
|
|
|
|
|
| |
Given something like X01XX + X01XX, we know that the result must look
like X1XXX.
Adapted from a patch by Richard Smith, test-case written by me.
llvm-svn: 216250
|
|
|
|
|
|
|
|
|
|
|
| |
If the NUW bit is set for 0 - Y, we know that all values for Y other
than 0 would produce a poison value. This allows us to replace (0 - Y)
with 0 in the expression (X - (0 - Y)) which will ultimately leave us
with X.
This partially fixes PR20189.
llvm-svn: 214384
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the first commit in a series that add an @llvm.assume intrinsic which
can be used to provide the optimizer with a condition it may assume to be true
(when the control flow would hit the intrinsic call). Some basic properties are added here:
- llvm.invariant(true) is dead.
- llvm.invariant(false) is unreachable (this directly corresponds to the
documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef).
The intrinsic is tagged as writing arbitrarily, in order to maintain control
dependencies. BasicAA has been updated, however, to return NoModRef for any
particular location-based query so that we don't unnecessarily block code
motion.
llvm-svn: 213973
|
|
|
|
|
|
|
|
|
| |
This attribute indicates that the parameter or return pointer is
dereferenceable. Practically speaking, loads from such a pointer within the
associated byte range are safe to speculatively execute. Such pointer
parameters are common in source languages (C++ references, for example).
llvm-svn: 213385
|
|
|
|
|
|
|
|
|
| |
Refactor code, no functionality change, test case moved from instcombine to instsimplify.
Differential Revision: http://reviews.llvm.org/D4102
llvm-svn: 213231
|
|
|
|
|
|
|
| |
@icmp_sdiv_neg1 should have referred to %a instead of %call, it was
renamed at the last second.
llvm-svn: 212983
|
|
|
|
|
|
|
|
|
|
|
| |
Determining the bounds of x/ -1 would start off with us dividing it by
INT_MIN. Suffice to say, this would not work very well.
Instead, handle it upfront by checking for -1 and mapping it to the
range: [INT_MIN + 1, INT_MAX. This means that the result of our
division can be any value other than INT_MIN.
llvm-svn: 212981
|