| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
| |
llvm.invariant.group.barrier may accept pointers to arbitrary address space.
This patch let it accept pointers to i8 in any address space and returns
pointer to i8 in the same address space.
Differential Revision: https://reviews.llvm.org/D39973
llvm-svn: 318413
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We must patch all existing incoming values of Phi node,
otherwise it is possible that we can see poison
where program does not expect to see it.
This is the similar what GVN does.
The added test test/Transforms/GVN/PRE/pre-jt-add.ll shows an
example of wrong optimization done by jump threading due to
GVN PRE did not patch existing incoming value.
Reviewers: mkazantsev, wmi, dberlin, davide
Reviewed By: dberlin
Subscribers: efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D39637
llvm-svn: 317768
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements Chandler's idea [0] for supporting languages that
require support for infinite loops with side effects, such as Rust, providing
part of a solution to bug 965 [1].
Specifically, it adds an `llvm.sideeffect()` intrinsic, which has no actual
effect, but which appears to optimization passes to have obscure side effects,
such that they don't optimize away loops containing it. It also teaches
several optimization passes to ignore this intrinsic, so that it doesn't
significantly impact optimization in most cases.
As discussed on llvm-dev [2], this patch is the first of two major parts.
The second part, to change LLVM's semantics to have defined behavior
on infinite loops by default, with a function attribute for opting into
potential-undefined-behavior, will be implemented and posted for review in
a separate patch.
[0] http://lists.llvm.org/pipermail/llvm-dev/2015-July/088103.html
[1] https://bugs.llvm.org/show_bug.cgi?id=965
[2] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118632.html
Differential Revision: https://reviews.llvm.org/D38336
llvm-svn: 317729
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
pass control flow to successors"
This patch fixes the miscompile that happens when PRE hoists loads across guards and
other instructions that don't always pass control flow to their successors. PRE is now prohibited
to hoist across such instructions because there is no guarantee that the load standing after such
instruction is still valid before such instruction. For example, a load from under a guard may be
invalid before the guard in the following case:
int array[LEN];
...
guard(0 <= index && index < LEN);
use(array[index]);
Differential Revision: https://reviews.llvm.org/D37460
llvm-svn: 316975
|
|
|
|
| |
llvm-svn: 315977
|
|
|
|
| |
llvm-svn: 315976
|
|
|
|
|
|
|
|
|
|
|
| |
This patch reverts rL315440 because of the bug described at
https://bugs.llvm.org/show_bug.cgi?id=34937
The fix for the bug is on review as D38944, but not yet ready. Given this is a regression reverting until a fix is ready is called for.
Max would have done the revert himself, but is having trouble doing a build of fresh LLVM for some reason. I did the build and test to ensure the revert worked as expected on his behalf.
llvm-svn: 315974
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
control flow to successors
This patch fixes the miscompile that happens when PRE hoists loads across guards and
other instructions that don't always pass control flow to their successors. PRE is now prohibited
to hoist across such instructions because there is no guarantee that the load standing after such
instruction is still valid before such instruction. For example, a load from under a guard may be
invalid before the guard in the following case:
int array[LEN];
...
guard(0 <= index && index < LEN);
use(array[index]);
Differential Revision: https://reviews.llvm.org/D37460
llvm-svn: 315440
|
|
|
|
|
|
|
|
| |
This fixes PR34908. Patch by Alex Crichton!
Differential Revision: https://reviews.llvm.org/D38765
llvm-svn: 315429
|
|
|
|
|
|
|
|
|
|
|
| |
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313390
|
|
|
|
| |
llvm-svn: 313387
|
|
|
|
|
|
|
|
|
|
|
| |
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313382
|
|
|
|
|
|
| |
This prepares for https://reviews.llvm.org/D33514
llvm-svn: 312544
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The New Pass Manager infrastructure was forgetting to keep around the optimization remark yaml file that the compiler might have been producing. This meant setting the option to '-' for stdout worked, but setting it to a filename didn't give file output (presumably it was deleted because compilation didn't explicitly keep it). This change just ensures that the file is kept if compilation succeeds.
So far I have updated one of the optimization remark output tests to add a version with the new pass manager. It is my intention for this patch to also include changes to all tests that use `-opt-remark-output=` but I wanted to get the code patch ready for review while I was making all those changes.
Fixes https://bugs.llvm.org/show_bug.cgi?id=33951
Reviewers: anemet, chandlerc
Reviewed By: anemet, chandlerc
Subscribers: javed.absar, chandlerc, fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D36906
llvm-svn: 311271
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
for PRE
When a new phi is generated for scalarpre of an expression, the phiTranslate cache
will become stale: Before PRE, the candidate expression must not be available in a
predecessor block, and phitranslate will cache the information. After PRE, the
expression will become available in all predecessor blocks, so the related entries
in phiTranslate cache becomes stale. The patch will simply remove the stale entries
so phiTranslate can be recomputed next time.
The stale entries in phitranslate cache will not affect correctness but will cause
missing PRE opportunity for later instructions.
Differential Revision: https://reviews.llvm.org/D36124
llvm-svn: 310421
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Recommit after workaround the bug PR31652.
Three bugs fixed in previous recommits: The first one is to use CurrentBlock
instead of PREInstr's Parent as param of performScalarPREInsertion because
the Parent of a clone instruction may be uninitialized. The second one is stop
PRE when CurrentBlock to its predecessor is a backedge and an operand of CurInst
is defined inside of CurrentBlock. The same value defined inside of loop in last
iteration can not be regarded as available. The third one is an out-of-bound
array access in a flipped if guard.
Right now scalarpre doesn't have phi-translate support, so it will miss some
simple pre opportunities. Like the following testcase, current scalarpre cannot
recognize the last "a * b" is fully redundent because a and b used by the last
"a * b" expr are both defined by phis.
long a[100], b[100], g1, g2, g3;
__attribute__((pure)) long goo();
void foo(long a, long b, long c, long d) {
g1 = a * b;
if (__builtin_expect(g2 > 3, 0)) {
a = c;
b = d;
g2 = a * b;
}
g3 = a * b; // fully redundant.
}
The patch adds phi-translate support in scalarpre. This is only a temporary
solution before the newpre based on newgvn is available.
Differential Revision: https://reviews.llvm.org/D32252
llvm-svn: 309397
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Currently, when GVN creates a load and when InstCombine creates a new store for unreachable Load, the DebugLoc info gets lost.
Reviewers: dberlin, davide, aprantl
Reviewed By: aprantl
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D34639
llvm-svn: 308404
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
global and local memory. These scopes restrict how synchronization is
achieved, which can result in improved performance.
This change extends existing notion of synchronization scopes in LLVM to
support arbitrary scopes expressed as target-specific strings, in addition to
the already defined scopes (single thread, system).
The LLVM IR and MIR syntax for expressing synchronization scopes has changed
to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
replaces *singlethread* keyword), or a target-specific name. As before, if
the scope is not specified, it defaults to CrossThread/System scope.
Implementation details:
- Mapping from synchronization scope name/string to synchronization scope id
is stored in LLVM context;
- CrossThread/System and SingleThread scopes are pre-defined to efficiently
check for known scopes without comparing strings;
- Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
the bitcode.
Differential Revision: https://reviews.llvm.org/D21723
llvm-svn: 307722
|
|
|
|
|
|
|
| |
This reverts commit r306313. This breaks selfhost at -O3 and PR33652.
Let me know if you need additional information on reproducing the issue.
llvm-svn: 307021
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The recommit fixes three bugs: The first one is to use CurrentBlock instead of
PREInstr's Parent as param of performScalarPREInsertion because the Parent
of a clone instruction may be uninitialized. The second one is stop PRE when
CurrentBlock to its predecessor is a backedge and an operand of CurInst is
defined inside of CurrentBlock. The same value defined inside of loop in last
iteration can not be regarded as available. The third one is an out-of-bound
array access in a flipped if guard.
Right now scalarpre doesn't have phi-translate support, so it will miss some
simple pre opportunities. Like the following testcase, current scalarpre cannot
recognize the last "a * b" is fully redundent because a and b used by the last
"a * b" expr are both defined by phis.
long a[100], b[100], g1, g2, g3;
__attribute__((pure)) long goo();
void foo(long a, long b, long c, long d) {
g1 = a * b;
if (__builtin_expect(g2 > 3, 0)) {
a = c;
b = d;
g2 = a * b;
}
g3 = a * b; // fully redundant.
}
The patch adds phi-translate support in scalarpre. This is only a temporary
solution before the newpre based on newgvn is available.
llvm-svn: 306313
|
|
|
|
| |
llvm-svn: 305603
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The recommit fixes two bugs: The first one is to use CurrentBlock instead of
PREInstr's Parent as param of performScalarPREInsertion because the Parent
of a clone instruction may be uninitialized. The second one is stop PRE when
CurrentBlock to its predecessor is a backedge and an operand of CurInst is
defined inside of CurrentBlock. The same value defined inside of loop in last
iteration can not be regarded as available.
Right now scalarpre doesn't have phi-translate support, so it will miss some
simple pre opportunities. Like the following testcase, current scalarpre cannot
recognize the last "a * b" is fully redundent because a and b used by the last
"a * b" expr are both defined by phis.
long a[100], b[100], g1, g2, g3;
__attribute__((pure)) long goo();
void foo(long a, long b, long c, long d) {
g1 = a * b;
if (__builtin_expect(g2 > 3, 0)) {
a = c;
b = d;
g2 = a * b;
}
g3 = a * b; // fully redundant.
}
The patch adds phi-translate support in scalarpre. This is only a temporary
solution before the newpre based on newgvn is available.
Differential Revision: https://reviews.llvm.org/D32252
llvm-svn: 305578
|
|
|
|
|
|
| |
Forgot to 'git add' the file.
llvm-svn: 305483
|
|
|
|
|
|
| |
investigating.
llvm-svn: 304350
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The recommit is to fix a bug about ExtractValue and InsertValue ops. For those
ops, some varargs inside GVN::Expression are not value numbers but raw index
numbers. It is wrong to do phi-translate for raw index numbers, and the fix is
to stop doing that.
Right now scalarpre doesn't have phi-translate support, so it will miss some
simple pre opportunities. Like the following testcase, current scalarpre cannot
recognize the last "a * b" is fully redundent because a and b used by the last
"a * b" expr are both defined by phis.
long a[100], b[100], g1, g2, g3;
__attribute__((pure)) long goo();
void foo(long a, long b, long c, long d) {
g1 = a * b;
if (__builtin_expect(g2 > 3, 0)) {
a = c;
b = d;
g2 = a * b;
}
g3 = a * b; // fully redundant.
}
The patch adds phi-translate support in scalarpre. This is only a temporary
solution before the newpre based on newgvn is available.
Differential Revision: https://reviews.llvm.org/D32252
llvm-svn: 304050
|
|
|
|
| |
llvm-svn: 303969
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Right now scalarpre doesn't have phi-translate support, so it will miss some
simple pre opportunities. Like the following testcase, current scalarpre cannot
recognize the last "a * b" is fully redundent because a and b used by the last
"a * b" expr are both defined by phis.
long a[100], b[100], g1, g2, g3;
__attribute__((pure)) long goo();
void foo(long a, long b, long c, long d) {
g1 = a * b;
if (__builtin_expect(g2 > 3, 0)) {
a = c;
b = d;
g2 = a * b;
}
g3 = a * b; // fully redundant.
}
The patch adds phi-translate support in scalarpre. This is only a temporary
solution before the newpre based on newgvn is available.
Differential Revision: https://reviews.llvm.org/D32252
llvm-svn: 303923
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This fixes the immediate crash caused by introducing an incorrect inttoptr
before attempting the conversion. There may still be a legality
check missing somewhere earlier for non-integral pointers, but this change
seems necessary in any case.
Reviewers: sanjoy, dberlin
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32623
llvm-svn: 302587
|
|
|
|
|
|
|
|
| |
Transforms/IndVarSimplify/2011-10-27-lftrnull will fail if this regresses.
Transforms/GVN/PRE/2011-06-01-NonLocalMemdepMiscompile.ll has been changed to still test what it was
trying to test.
llvm-svn: 302446
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixes PR31789 - When loop-vectorize tries to use these intrinsics for a
non-default address space pointer we fail with a "Calling a function with a
bad singature!" assertion. This patch solves this by adding the 'vector of
pointers' argument as an overloaded type which will determine the address
space.
Differential revision: https://reviews.llvm.org/D31490
llvm-svn: 302018
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
llvm.invariant.group.barrier returns pointer that mustalias
pointer it takes. It can't be marked with `returned` attribute,
because it would be remove easily. The other reason is that
only Alias Analysis can know about this, because if any other
pass would know it, then the result would be replaced with it's
argument, which would be invalid.
We can think about returned pointer as something that mustalias, but
it doesn't have to be bitwise the same as the argument.
Reviewers: dberlin, chandlerc, hfinkel, sanjoy
Subscribers: reames, nlewycky, rsmith, anna, amharc
Differential Revision: https://reviews.llvm.org/D31585
llvm-svn: 301227
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
See http://llvm.org/docs/LangRef.html#non-integral-pointer-type
The NewGVN test does not fail without these changes (perhaps it does
try to coerce pointers <-> integers to begin with?), but I added the
test case anyway.
Reviewers: dberlin
Subscribers: mcrosier, llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D32208
llvm-svn: 300730
|
|
|
|
|
|
| |
In preparation for allowing allocas to have non-0 addrspace.
llvm-svn: 299876
|
|
|
|
|
|
| |
renamed. NFC
llvm-svn: 298280
|
|
|
|
|
|
|
|
|
|
| |
override the layout.
There isn't much point in a flag that only works if the data layout is empty.
Differential Revision: https://reviews.llvm.org/D30014
llvm-svn: 295468
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
DebugLoc shouldn't be propagated across basic blocks to prevent incorrect stepping and imprecise sample profile result. rL288903 addressed the wrong DebugLoc propagation issue by limiting the copy of DebugLoc when GVN removes a fully redundant load that is dominated by some other load. However, DebugLoc is still incorrectly propagated in the following example:
```
1: extern int g;
2:
3: void foo(int x, int y, int z) {
4: if (x)
5: g = 0;
6: else
7: g = 1;
8:
9: int i = 0;
10: for ( ; i < y ; i++)
11: if (i > z)
12: g++;
13: }
```
Below is LLVM IR representation of the program before GVN:
```
@g = external local_unnamed_addr global i32, align 4
; Function Attrs: nounwind uwtable
define void @foo(i32 %x, i32 %y, i32 %z) local_unnamed_addr #0 !dbg !4 {
entry:
%not.tobool = icmp eq i32 %x, 0, !dbg !8
%.sink = zext i1 %not.tobool to i32, !dbg !8
store i32 %.sink, i32* @g, align 4, !tbaa !9
%cmp8 = icmp sgt i32 %y, 0, !dbg !13
br i1 %cmp8, label %for.body.preheader, label %for.end, !dbg !17
for.body.preheader: ; preds = %entry
br label %for.body, !dbg !19
for.body: ; preds = %for.body.preheader, %for.inc
%i.09 = phi i32 [ %inc4, %for.inc ], [ 0, %for.body.preheader ]
%cmp1 = icmp sgt i32 %i.09, %z, !dbg !19
br i1 %cmp1, label %if.then2, label %for.inc, !dbg !21
if.then2: ; preds = %for.body
%0 = load i32, i32* @g, align 4, !dbg !22, !tbaa !9
%inc = add nsw i32 %0, 1, !dbg !22
store i32 %inc, i32* @g, align 4, !dbg !22, !tbaa !9
br label %for.inc, !dbg !23
for.inc: ; preds = %for.body, %if.then2
%inc4 = add nuw nsw i32 %i.09, 1, !dbg !24
%exitcond = icmp ne i32 %inc4, %y, !dbg !13
br i1 %exitcond, label %for.body, label %for.end.loopexit, !dbg !17
for.end.loopexit: ; preds = %for.inc
br label %for.end, !dbg !26
for.end: ; preds = %for.end.loopexit, %entry
ret void, !dbg !26
}
```
where
```
!21 = !DILocation(line: 11, column: 9, scope: !15)
!22 = !DILocation(line: 12, column: 8, scope: !20)
!23 = !DILocation(line: 12, column: 7, scope: !20)
!24 = !DILocation(line: 10, column: 20, scope: !25)
```
And below is after GVN:
```
@g = external local_unnamed_addr global i32, align 4
define void @foo(i32 %x, i32 %y, i32 %z) local_unnamed_addr !dbg !4 {
entry:
%not.tobool = icmp eq i32 %x, 0, !dbg !8
%.sink = zext i1 %not.tobool to i32, !dbg !8
store i32 %.sink, i32* @g, align 4, !tbaa !9
%cmp8 = icmp sgt i32 %y, 0, !dbg !13
br i1 %cmp8, label %for.body.preheader, label %for.end, !dbg !17
for.body.preheader: ; preds = %entry
br label %for.body, !dbg !19
for.body: ; preds = %for.inc, %for.body.preheader
%0 = phi i32 [ %1, %for.inc ], [ %.sink, %for.body.preheader ], !dbg !21
%i.09 = phi i32 [ %inc4, %for.inc ], [ 0, %for.body.preheader ]
%cmp1 = icmp sgt i32 %i.09, %z, !dbg !19
br i1 %cmp1, label %if.then2, label %for.inc, !dbg !22
if.then2: ; preds = %for.body
%inc = add nsw i32 %0, 1, !dbg !21
store i32 %inc, i32* @g, align 4, !dbg !21, !tbaa !9
br label %for.inc, !dbg !23
for.inc: ; preds = %if.then2, %for.body
%1 = phi i32 [ %inc, %if.then2 ], [ %0, %for.body ]
%inc4 = add nuw nsw i32 %i.09, 1, !dbg !24
%exitcond = icmp ne i32 %inc4, %y, !dbg !13
br i1 %exitcond, label %for.body, label %for.end.loopexit, !dbg !17
for.end.loopexit: ; preds = %for.inc
br label %for.end, !dbg !26
for.end: ; preds = %for.end.loopexit, %entry
ret void, !dbg !26
}
```
As you see, GVN removes the load in if.then2 block and creates a phi instruction in for.body for it. The problem is that DebugLoc of remove load instruction is propagated to the newly created phi instruction, which is wrong. rL288903 cannot handle this case because ValuesPerBlock.size() is not 1 in this example when the load is removed.
Reviewers: aprantl, andreadb, wolfgangp
Reviewed By: andreadb
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D29254
llvm-svn: 293688
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Fence instructions are currently marked as `ModRef` for all memory locations.
We can improve this for constant memory locations (such as constant globals),
since fence instructions cannot modify these locations.
This helps us to forward constant loads across fences (added test case in GVN).
There were no changes in behaviour for similar test cases in early-cse and licm.
Reviewers: dberlin, sanjoy, reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28914
llvm-svn: 292546
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Memory Dependence Analysis was limited to return only local dependencies
for invariant.group handling. Now it returns NonLocal when it finds it
and then by asking getNonLocalPointerDependency we get found dep.
Thanks to this we are able to devirtualize loops!
void indirect(A &a, int n) {
for (int i = 0 ; i < n; i++)
a.foo();
}
void test(int n) {
A a;
indirect(a);
}
After inlining a.foo() will be changed to direct call, even if foo and A::A()
is external (but only if vtable definition is be available).
Reviewers: nlewycky, dberlin, chandlerc, rsmith
Subscribers: mehdi_amini, davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D28137
llvm-svn: 291762
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
By using stripPointerCasts we can get to the root
value and then walk down the bitcast graph
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28181
llvm-svn: 291405
|
|
|
|
|
|
|
|
|
|
|
| |
GVN
performing partial redundancy elimination (PRE). Not doing so can cause jumpy line
tables and confusing (though correct) source attributions.
Differential Revision: https://reviews.llvm.org/D27857
llvm-svn: 291037
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
gep 0, 0 is equivalent to bitcast. LLVM canonicalizes it
to getelementptr because it make SROA can then handle it.
Simple case like
void g(A &a) {
z(a);
if (glob)
a.foo();
}
void testG() {
A a;
g(a);
}
was not devirtualized with -fstrict-vtable-pointers because luck of
handling for gep 0 in Memory Dependence Analysis
Reviewers: dberlin, nlewycky, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28126
llvm-svn: 290763
|
|
|
|
|
|
|
| |
frustrating Subversion clients that fails to do line ending translation
of text files.
llvm-svn: 290404
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change adds some verification in the IR verifier around struct path
TBAA metadata.
Other than some basic sanity checks (e.g. we get constant integers where
we expect constant integers), this checks:
- That by the time an struct access tuple `(base-type, offset)` is
"reduced" to a scalar base type, the offset is `0`. For instance, in
C++ you can't start from, say `("struct-a", 16)`, and end up with
`("int", 4)` -- by the time the base type is `"int"`, the offset
better be zero. In particular, a variant of this invariant is needed
for `llvm::getMostGenericTBAA` to be correct.
- That there are no cycles in a struct path.
- That struct type nodes have their offsets listed in an ascending
order.
- That when generating the struct access path, you eventually reach the
access type listed in the tbaa tag node.
Reviewers: dexonsmith, chandlerc, reames, mehdi_amini, manmanren
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D26438
llvm-svn: 289402
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
of the dominating load.
In the case of a fully redundant load LI dominated by an equivalent load V, GVN
should always preserve the original debug location of V. Otherwise, we risk to
introduce an incorrect stepping.
If V has debug info, then clearly it should not be modified. If V has a null
debugloc, then it is still potentially incorrect to propagate LI's debugloc
because LI may not post-dominate V.
Differential Revision: https://reviews.llvm.org/D27468
llvm-svn: 288903
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
load-elimination
[recommitting after the fix in r288307]
This includes the intervening store and the load/store that we're trying
to forward from in the optimization remark for the missed load
elimination.
This is hooked up under a new mode in ORE that allows for compile-time
budget for a bit more analysis to print more insightful messages. This
mode is currently enabled for -fsave-optimization-record (-Rpass is
trickier since it is controlled in the front-end).
With this we can now print the red remark in http://lab.llvm.org:8080/artifacts/opt-view_test-suite/build/SingleSource/Benchmarks/Dhrystone/CMakeFiles/dry.dir/html/_org_test-suite_SingleSource_Benchmarks_Dhrystone_dry.c.html#L446
Differential Revision: https://reviews.llvm.org/D26490
llvm-svn: 288381
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[recommitting after the fix in r288307]
This requires some changes to the opt-diag API. Hal and I have
discussed this at the Dev Meeting and came up with a streaming delimiter
(setExtraArgs) to solve this.
Arguments after this delimiter are only included in the optimization
records and not in the remarks printed in the compiler output. (Note,
how in the test the content of the YAML file changes but the remarks on
the compiler output don't.)
This implements the green GVN message with a bug fix at line
http://lab.llvm.org:8080/artifacts/opt-view_test-suite/build/SingleSource/Benchmarks/Dhrystone/CMakeFiles/dry.dir/html/_org_test-suite_SingleSource_Benchmarks_Dhrystone_dry.c.html#L446
The fix is that now we properly include the constant value in the
message: "load of type i32 eliminated in favor of 7"
Differential Revision: https://reviews.llvm.org/D26489
llvm-svn: 288380
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[recommitting after the fix in r288307]
Follow-on patches will add more interesting cases.
The goal of this patch-set is to get the GVN messages printed in
opt-viewer from Dhrystone as was presented in my Dev Meeting talk. This
is the optimization view for the function (the last remark in the
function has a bug which is fixed in this series):
http://lab.llvm.org:8080/artifacts/opt-view_test-suite/build/SingleSource/Benchmarks/Dhrystone/CMakeFiles/dry.dir/html/_org_test-suite_SingleSource_Benchmarks_Dhrystone_dry.c.html#L430
Differential Revision: https://reviews.llvm.org/D26488
llvm-svn: 288370
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If LoopInfo is available during GVN, BasicAA will use it. However
MergeBlockIntoPredecessor does not update LI as it merges blocks.
This didn't use to cause problems because LI was freed before
GVN/BasicAA. Now with OptimizationRemarkEmitter, the lifetime of LI is
extended so LI needs to be kept up-to-date during GVN.
Differential Revision: https://reviews.llvm.org/D27288
llvm-svn: 288307
|
|
|
|
|
|
|
|
| |
This reverts commit r288210.
The failure on the stage2 LTO build is back.
llvm-svn: 288226
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[recommiting patches one-by-one to see which breaks the stage2 LTO bot]
Follow-on patches will add more interesting cases.
The goal of this patch-set is to get the GVN messages printed in
opt-viewer from Dhrystone as was presented in my Dev Meeting talk. This
is the optimization view for the function (the last remark in the
function has a bug which is fixed in this series):
http://lab.llvm.org:8080/artifacts/opt-view_test-suite/build/SingleSource/Benchmarks/Dhrystone/CMakeFiles/dry.dir/html/_org_test-suite_SingleSource_Benchmarks_Dhrystone_dry.c.html#L430
Differential Revision: https://reviews.llvm.org/D26488
llvm-svn: 288210
|