| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are scenarios where mutually recursive functions may cause the SCC
to contain both read only and write only functions. This removes an
assertion when adding read attributes which caused a crash with a the
provided test case, and instead just doesn't add the attributes.
Patch by Luke Lau <luke.lau@intel.com>
Differential Revision: https://reviews.llvm.org/D60761
llvm-svn: 366090
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Porting nonnull attribute to attributor.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: xbolva00, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63604
llvm-svn: 366043
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is analogous to the int2ptr/ptr2int instruction handling introduced
in D54956.
Reviewers: fhahn, efriedma, spatel, nlopes, sanjoy, lebedev.ri
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64708
llvm-svn: 366036
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Deduce "nofree" function attribute. A more concise description of "nofree" is on D49165.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: homerdin, hfinkel, lebedev.ri, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62687
llvm-svn: 365924
|
|
|
|
|
|
| |
This patch adds a test for nofree function attribute.
llvm-svn: 365916
|
|
|
|
| |
llvm-svn: 365912
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce and deduce "nosync" function attribute to indicate that a function
does not synchronize with another thread in a way that other thread might free memory.
Reviewers: jdoerfert, jfb, nhaehnle, arsenm
Subscribers: wdng, hfinkel, nhaenhle, mehdi_amini, steven_wu,
dexonsmith, arsenm, uenoku, hiraditya, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D62766
llvm-svn: 365830
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Deduce the "returned" argument attribute by collecting all potentially
returned values.
Not only the unique return value, if any, can be used by subsequent
attributes but also the set of all potentially returned values as well
as the mapping from returned values to return instructions that they
originate from (see AAReturnedValues::checkForallReturnedValues).
Change in statistics (-stats) for LLVM-TS + Spec2006, totaling ~19% more "returned" arguments.
ADDED: attributor NumAttributesManifested n/a -> 637
ADDED: attributor NumAttributesValidFixpoint n/a -> 25545
ADDED: attributor NumFnArgumentReturned n/a -> 637
ADDED: attributor NumFnKnownReturns n/a -> 25545
ADDED: attributor NumFnUniqueReturned n/a -> 14118
CHANGED: deadargelim NumRetValsEliminated 470 -> 449 ( -4.468%)
REMOVED: functionattrs NumReturned 535 -> n/a
CHANGED: indvars NumElimIdentity 138 -> 164 ( +18.841%)
Reviewers: homerdin, hfinkel, fedor.sergeev, sanjoy, spatel, nlopes, nicholas, reames, efriedma, chandlerc
Subscribers: hiraditya, bollu, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D59919
llvm-svn: 365407
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds a function attribute, nofree, to indicate that a function does
not, directly or indirectly, call a memory-deallocation function (e.g., free,
C++'s operator delete).
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D49165
llvm-svn: 365336
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch introduces a new function attribute, willreturn, to indicate
that a call of this function will either exhibit undefined behavior or
comes back and continues execution at a point in the existing call stack
that includes the current invocation.
This attribute guarantees that the function does not have any endless
loops, endless recursion, or terminating functions like abort or exit.
Patch by Hideto Ueno (@uenoku)
Reviewers: jdoerfert
Subscribers: mehdi_amini, hiraditya, steven_wu, dexonsmith, lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62801
llvm-svn: 364555
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adding nounwind deduction in new attributor framework.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D63379
llvm-svn: 364521
|
|
|
|
|
|
|
|
|
|
|
| |
This is fix for https://bugs.llvm.org/show_bug.cgi?id=41336
Reviewers: jdoerfert
Reviewed by: jdoerfert
Differential Revision: https://reviews.llvm.org/D63045
llvm-svn: 362918
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Pointers that are in-bounds (either through dereferenceable_or_null or
thorough a getelementptr inbounds) cannot be captured with a comparison
against null. There is no way to construct a pointer that is still in
bounds but also NULL.
This helps safe languages that insert null checks before load/store
instructions. Without this patch, almost all pointers would be
considered captured even for simple loads. With this patch, an icmp with
null will not be seen as escaping as long as certain conditions are met.
There was a lot of discussion about this patch. See the Phabricator
thread for detals.
Differential Revision: https://reviews.llvm.org/D60047
llvm-svn: 362900
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
NOTE: Note that no attributes are derived yet. This patch will not go in
alone but only with others that derive attributes. The framework is
split for review purposes.
This commit introduces the Attributor pass infrastructure and fixpoint
iteration framework. Further patches will introduce abstract attributes
into this framework.
In a nutshell, the Attributor will update instances of abstract
arguments until a fixpoint, or a "timeout", is reached. Communication
between the Attributor and the abstract attributes that are derived is
restricted to the AbstractState and AbstractAttribute interfaces.
Please see the file comment in Attributor.h for detailed information
including design decisions and typical use case. Also consider the class
documentation for Attributor, AbstractState, and AbstractAttribute.
Reviewers: chandlerc, homerdin, hfinkel, fedor.sergeev, sanjoy, spatel, nlopes, nicholas, reames
Subscribers: mehdi_amini, mgorny, hiraditya, bollu, steven_wu, dexonsmith, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59918
llvm-svn: 362578
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit is a preparation of upcoming patches on attribute deduction.
It will shorten the diffs and make it clear what we inferred before.
Reviewers: chandlerc, homerdin, hfinkel, fedor.sergeev, sanjoy, spatel, nlopes
Subscribers: bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59903
llvm-svn: 362577
|
|
|
|
|
|
|
|
| |
The reversion apparently deleted the test/Transforms directory.
Will be re-reverting again.
llvm-svn: 358552
|
|
|
|
|
|
|
|
| |
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
|
|
|
|
|
|
|
|
|
|
| |
The presence of readnone and an access range attribute (argmemonly,
inaccessiblememonly, inaccessiblemem_or_argmemonly) is considered an
error by the verifier. This seems strict but also not wrong. This
patch makes sure function attribute detection will remove all access
range attributes for readnone functions.
llvm-svn: 341927
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in LLVM IR in this CL as the function attribute
"null-pointer-is-valid"="true" in IR (Under review at D47894).
The CL updates several passes that assumed null pointer dereferencing is
undefined to not optimize when the "null-pointer-is-valid"="true"
attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: efriedma, george.burgess.iv
Subscribers: eraman, haicheng, george.burgess.iv, drinkcat, theraven, reames, sanjoy, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47895
llvm-svn: 336613
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch introduce new intrinsic -
strip.invariant.group that was described in the
RFC: Devirtualization v2
Reviewers: rsmith, hfinkel, nlopes, sanjoy, amharc, kuhar
Subscribers: arsenm, nhaehnle, JDevlieghere, hiraditya, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47103
Co-authored-by: Krzysztof Pszeniczny <krzysztof.pszeniczny@gmail.com>
llvm-svn: 336073
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
launder.invariant.group has the same rules of capturing as
bitcast, gep, etc - the original value is not captured
if the returned pointer is not captured.
With this patch, we mark 40% more functions as noalias when compiling with -fstrict-vtable-pointers;
1078 vs 1778 (39.37%)
Reviewers: sanjoy, davide, nlewycky, majnemer, mehdi_amini
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D32673
llvm-svn: 331587
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PostOrderFunctionAttrs pass
Summary:
This was motivated by absence of PrunEH functionality in new PM.
It was decided that a proper way to do PruneEH is to add NoUnwind inference
into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top.
This change generalizes attribute handling implemented for (a removal of)
Convergent attribute, by introducing a generic builder-like class
AttributeInferer
It registers all the attribute inference requests, storing per-attribute
predicates into a vector, and then goes through an SCC Node, scanning all
the instructions for not breaking attribute assumptions.
The main idea is that as soon all the instructions from all the functions
of SCC Node conform to attribute assumptions then we are free to infer
the attribute as set for all the functions of SCC Node.
It handles two distinct cases of attributes:
- those that might break due to derefinement of the function code
for these attributes we are allowed to apply inference only if all the
functions are "exact definitions". Example - NoUnwind.
- those that do not care about derefinement
for these attributes we are allowed to apply inference as soon as we see
any function definition. Example - removal of Convergent attribute.
Also in this commit:
* Converted all the FunctionAttrs tests to use FileCheck and added new-PM
invocations to them
* FunctionAttrs/convergent.ll test demonstrates a difference in behavior between
new and old PM implementations. Marked with FIXME.
* PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg
combo as intended
* some of "other" tests were updated since function-attrs now infers 'nounwind'
even for old PM pipeline
* -disable-nounwind-inference hidden option added as a possible workaround for a supposedly
rare case when nounwind being inferred by default presents a problem
Reviewers: chandlerc, jlebar
Reviewed By: jlebar
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D44415
llvm-svn: 328377
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
passes for naked functions
- Fix for bug 36078.
- Prevent the functionattrs, function-attrs, globalopt and argpromotion passes
from changing naked functions.
- These passes can perform some alterations to the functions that should not be
applied. An example is removing parameters that are seemingly not used because
they are only referenced in the inline assembly. Another example is marking
the function as fastcc.
llvm-svn: 325788
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
attributes (Step 1)
Summary:
This is a resurrection of work first proposed and discussed in Aug 2015:
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
and initially landed (but then backed out) in Nov 2015:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.
This change is the first in a series that allows source and dest to each
have their own alignments by using the alignment attribute on their arguments.
In this change we:
1) Remove the alignment argument.
2) Add alignment attributes to the source & dest arguments. We, temporarily,
require that the alignments for source & dest be equal.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)
Downstream users may have to update their lit tests that check for
@llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script
may help with updating the majority of your tests, but it does not catch all possible
patterns so some manual checking and updating will be required.
s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g
The remaining changes in the series will:
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments.
Step 3) Update Clang to use the new IRBuilder API.
Step 4) Update Polly to use the new IRBuilder API.
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use
getDestAlignment() and getSourceAlignment() instead.
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reviewers: pete, hfinkel, lhames, reames, bollu
Reviewed By: reames
Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits
Differential Revision: https://reviews.llvm.org/D41675
llvm-svn: 322965
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements Chandler's idea [0] for supporting languages that
require support for infinite loops with side effects, such as Rust, providing
part of a solution to bug 965 [1].
Specifically, it adds an `llvm.sideeffect()` intrinsic, which has no actual
effect, but which appears to optimization passes to have obscure side effects,
such that they don't optimize away loops containing it. It also teaches
several optimization passes to ignore this intrinsic, so that it doesn't
significantly impact optimization in most cases.
As discussed on llvm-dev [2], this patch is the first of two major parts.
The second part, to change LLVM's semantics to have defined behavior
on infinite loops by default, with a function attribute for opting into
potential-undefined-behavior, will be implemented and posted for review in
a separate patch.
[0] http://lists.llvm.org/pipermail/llvm-dev/2015-July/088103.html
[1] https://bugs.llvm.org/show_bug.cgi?id=965
[2] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118632.html
Differential Revision: https://reviews.llvm.org/D38336
llvm-svn: 317729
|
|
|
|
|
|
|
|
|
| |
It now knows the tricks of both functions.
Also, fix a bug that considered allocas of non-zero address space to be always non null
Differential Revision: https://reviews.llvm.org/D37628
llvm-svn: 312869
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixes PR31789 - When loop-vectorize tries to use these intrinsics for a
non-default address space pointer we fail with a "Calling a function with a
bad singature!" assertion. This patch solves this by adding the 'vector of
pointers' argument as an overloaded type which will determine the address
space.
Differential revision: https://reviews.llvm.org/D31490
llvm-svn: 302018
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to its parent function
As discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2016-December/108182.html
...we should be able to propagate 'nonnull' info from a callsite back to its parent.
The original motivation for this patch is our botched optimization of "dyn_cast" (PR28430),
but this won't solve that problem.
The transform is currently disabled by default while we wait for clang to work-around
potential security problems:
http://lists.llvm.org/pipermail/cfe-dev/2017-January/052066.html
Differential Revision: https://reviews.llvm.org/D27855
llvm-svn: 294998
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Attaching !absolute_symbol to a global variable does two things:
1) Marks it as an absolute symbol reference.
2) Specifies the value range of that symbol's address.
Teach the X86 backend to allow absolute symbols to appear in place of
immediates by extending the relocImm and mov64imm32 matchers. Start using
relocImm in more places where it is legal.
As previously proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/105800.html
Differential Revision: https://reviews.llvm.org/D25878
llvm-svn: 289087
|
|
|
|
|
|
|
|
|
|
|
| |
Trying to infer the 'returned' attribute if an argument is already
'returned' can lead to verification failure: inference might determine
that a different argument is passed through which would result in two
different arguments marked as 'returned'.
This fixes PR30350.
llvm-svn: 281221
|
|
|
|
| |
llvm-svn: 276082
|
|
|
|
|
|
|
|
|
|
|
|
| |
We skipped over ReturnInsts which didn't return an argument which would
lead us to incorrectly conclude that an argument returned by another
ReturnInst was 'returned'.
This reverts commit r275756.
This fixes PR28610.
llvm-svn: 276008
|
|
|
|
|
|
|
|
|
|
| |
argument attribute""
This reverts also r275029, "Update Clang tests after adding inference for the returned argument attribute"
It broke LTO build. Seems miscompilation.
llvm-svn: 275756
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit r275042; the initial commit triggered self-hosting failures
on ARM/AArch64. James Molloy identified the problematic backend code, which has
been disabled in r275677. Trying again...
Original commit message:
Let FuncAttrs infer the 'returned' argument attribute
A function can have one argument with the 'returned' attribute, indicating that
the associated argument is always the return value of the function. Add
FuncAttrs inference logic.
llvm-svn: 275678
|
|
|
|
|
|
| |
Reverting r275027 and r275033. These seem to cause miscompiles on the AArch64 buildbot.
llvm-svn: 275042
|
|
|
|
|
|
|
|
|
|
| |
A function can have one argument with the 'returned' attribute, indicating that
the associated argument is always the return value of the function. Add
FuncAttrs inference logic.
Differential Revision: http://reviews.llvm.org/D22202
llvm-svn: 275027
|
|
|
|
|
|
|
| |
Everywhere where cuda.syncthreads or __syncthreads is used, use the
properly namespaced nvvm.barrier0 instead.
llvm-svn: 274664
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This actually uncovered a surprisingly large chain of ultimately unused
TLI args.
From what I can gather, this argument is a remnant of when
isKnownNonNull would look at the TLI directly.
The current approach seems to be that InferFunctionAttrs runs early in
the pipeline and uses TLI to annotate the TLI-dependent non-null
information as return attributes.
This also removes the dependence of functionattrs on TLI altogether.
llvm-svn: 274455
|
|
|
|
|
|
|
|
|
|
|
| |
There are two separate issues:
- LLVM doesn't consider infinite loops to be side effects: we happily
hoist/sink above/below loops whose bounds are unknown.
- The absence of the noreturn attribute is insufficient for us to know
if a function will definitely return. Relying on noreturn in the
middle-end for any property is an accident waiting to happen.
llvm-svn: 273762
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Below are my super rough notes when porting. They can probably serve as
a basic guide for porting other passes to the new PM. As I port more
passes I'll expand and generalize this and make a proper
docs/HowToPortToNewPassManager.rst document. There is also missing
documentation for general concepts and API's in the new PM which will
require some documentation.
Once there is proper documentation in place we can put up a list of
passes that have to be ported and game-ify/crowdsource the rest of the
porting (at least of the middle end; the backend is still unclear).
I will however be taking personal responsibility for ensuring that the
LLD/ELF LTO pipeline is ported in a timely fashion. The remaining passes
to be ported are (do something like
`git grep "<the string in the bullet point below>"` to find the pass):
General Scalar:
[ ] Simplify the CFG
[ ] Jump Threading
[ ] MemCpy Optimization
[ ] Promote Memory to Register
[ ] MergedLoadStoreMotion
[ ] Lazy Value Information Analysis
General IPO:
[ ] Dead Argument Elimination
[ ] Deduce function attributes in RPO
Loop stuff / vectorization stuff:
[ ] Alignment from assumptions
[ ] Canonicalize natural loops
[ ] Delete dead loops
[ ] Loop Access Analysis
[ ] Loop Invariant Code Motion
[ ] Loop Vectorization
[ ] SLP Vectorizer
[ ] Unroll loops
Devirtualization / CFI:
[ ] Cross-DSO CFI
[ ] Whole program devirtualization
[ ] Lower bitset metadata
CGSCC passes:
[ ] Function Integration/Inlining
[ ] Remove unused exception handling info
[ ] Promote 'by reference' arguments to scalars
Please let me know if you are interested in working on any of the passes
in the above list (e.g. reply to the post-commit thread for this patch).
I'll probably be tackling "General Scalar" and "General IPO" first FWIW.
Steps as I port "Deduce function attributes in RPO"
---------------------------------------------------
(note: if you are doing any work based on these notes, please leave a
note in the post-commit review thread for this commit with any
improvements / suggestions / incompleteness you ran into!)
Note: "Deduce function attributes in RPO" is a module pass.
1. Do preparatory refactoring.
Do preparatory factoring. In this case all I had to do was to pull out a static helper (r272503).
(TODO: give more advice here e.g. if pass holds state or something)
2. Rename the old pass class.
llvm/lib/Transforms/IPO/FunctionAttrs.cpp
Rename class ReversePostOrderFunctionAttrs -> ReversePostOrderFunctionAttrsLegacyPass
in preparation for adding a class ReversePostOrderFunctionAttrs as the pass in the new PM.
(edit: actually wait what? The new class name will be
ReversePostOrderFunctionAttrsPass, so it doesn't conflict. So this step is
sort of useless churn).
llvm/include/llvm/InitializePasses.h
llvm/lib/LTO/LTOCodeGenerator.cpp
llvm/lib/Transforms/IPO/IPO.cpp
llvm/lib/Transforms/IPO/FunctionAttrs.cpp
Rename initializeReversePostOrderFunctionAttrsPass -> initializeReversePostOrderFunctionAttrsLegacyPassPass
(note that the "PassPass" thing falls out of `s/ReversePostOrderFunctionAttrs/ReversePostOrderFunctionAttrsLegacyPass/`)
Note that the INITIALIZE_PASS macro is what creates this identifier name, so renaming the class requires this renaming too.
Note that createReversePostOrderFunctionAttrsPass does not need to be
renamed since its name is not generated from the class name.
3. Add the new PM pass class.
In the new PM all passes need to have their
declaration in a header somewhere, so you will often need to add a header.
In this case
llvm/include/llvm/Transforms/IPO/FunctionAttrs.h is already there because
PostOrderFunctionAttrsPass was already ported.
The file-level comment from the .cpp file can be used as the file-level
comment for the new header. You may want to tweak the wording slightly
from "this file implements" to "this file provides" or similar.
Add declaration for the new PM pass in this header:
class ReversePostOrderFunctionAttrsPass
: public PassInfoMixin<ReversePostOrderFunctionAttrsPass> {
public:
PreservedAnalyses run(Module &M, AnalysisManager<Module> &AM);
};
Its name should end with `Pass` for consistency (note that this doesn't
collide with the names of most old PM passes). E.g. call it
`<name of the old PM pass>Pass`.
Also, move the doxygen comment from the old PM pass to the declaration of
this class in the header.
Also, include the declaration for the new PM class
`llvm/Transforms/IPO/FunctionAttrs.h` at the top of the file (in this case,
it was already done when the other pass in this file was ported).
Now define the `run` method for the new class.
The main things here are:
a) Use AM.getResult<...>(M) to get results instead of `getAnalysis<...>()`
b) If the old PM pass would have returned "false" (i.e. `Changed ==
false`), then you should return PreservedAnalyses::all();
c) In the old PM getAnalysisUsage method, observe the calls
`AU.addPreserved<...>();`.
In the case `Changed == true`, for each preserved analysis you should do
call `PA.preserve<...>()` on a PreservedAnalyses object and return it.
E.g.:
PreservedAnalyses PA;
PA.preserve<CallGraphAnalysis>();
return PA;
Note that calls to skipModule/skipFunction are not supported in the new PM
currently, so optnone and optimization bisect support do not work. You can
just drop those calls for now.
4. Add the pass to the new PM pass registry to make it available in opt.
In llvm/lib/Passes/PassBuilder.cpp add a #include for your header.
`#include "llvm/Transforms/IPO/FunctionAttrs.h"`
In this case there is already an include (from when
PostOrderFunctionAttrsPass was ported).
Add your pass to llvm/lib/Passes/PassRegistry.def
In this case, I added
`MODULE_PASS("rpo-functionattrs", ReversePostOrderFunctionAttrsPass())`
The string is from the `INITIALIZE_PASS*` macros used in the old pass
manager.
Then choose a test that uses the pass and use the new PM `-passes=...` to
run it.
E.g. in this case there is a test that does:
; RUN: opt < %s -basicaa -functionattrs -rpo-functionattrs -S | FileCheck %s
I have added the line:
; RUN: opt < %s -aa-pipeline=basic-aa -passes='require<targetlibinfo>,cgscc(function-attrs),rpo-functionattrs' -S | FileCheck %s
The `-aa-pipeline=basic-aa` and
`require<targetlibinfo>,cgscc(function-attrs)` are what is needed to run
functionattrs in the new PM (note that in the new PM "functionattrs"
becomes "function-attrs" for some reason). This is just pulled from
`readattrs.ll` which contains the change from when functionattrs was ported
to the new PM.
Adding rpo-functionattrs causes the pass that was just ported to run.
llvm-svn: 272505
|
|
|
|
|
|
|
|
|
|
| |
The memory location that corresponds to a volatile operation is very
special. They are observed by the machine in ways which we cannot
reason about.
Differential Revision: http://reviews.llvm.org/D20555
llvm-svn: 270879
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It turns out that too many passes are relying on alias analysis results
for control dependencies. Until we fix that by introducing a more accurate
modelling of control dependencies, special case assume in MemorySSA instead.
Also introduce tests to ensure we don't regress the FunctionAttrs or LICM
passes.
Differential Revision: http://reviews.llvm.org/D20658
llvm-svn: 270823
|
|
|
|
|
|
|
|
| |
A volatile load has side effects beyond what callers expect readonly to
signify. For example, it is not safe to reorder two function calls
which each perform a volatile load to the same memory location.
llvm-svn: 270671
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Fixes PR26774.
If you're aware of the issue, feel free to skip the "Motivation"
section and jump directly to "This patch".
Motivation:
I define "refinement" as discarding behaviors from a program that the
optimizer has license to discard. So transforming:
```
void f(unsigned x) {
unsigned t = 5 / x;
(void)t;
}
```
to
```
void f(unsigned x) { }
```
is refinement, since the behavior went from "if x == 0 then undefined
else nothing" to "nothing" (the optimizer has license to discard
undefined behavior).
Refinement is a fundamental aspect of many mid-level optimizations done
by LLVM. For instance, transforming `x == (x + 1)` to `false` also
involves refinement since the expression's value went from "if x is
`undef` then { `true` or `false` } else { `false` }" to "`false`" (by
definition, the optimizer has license to fold `undef` to any non-`undef`
value).
Unfortunately, refinement implies that the optimizer cannot assume
that the implementation of a function it can see has all of the
behavior an unoptimized or a differently optimized version of the same
function can have. This is a problem for functions with comdat
linkage, where a function can be replaced by an unoptimized or a
differently optimized version of the same source level function.
For instance, FunctionAttrs cannot assume a comdat function is
actually `readnone` even if it does not have any loads or stores in
it; since there may have been loads and stores in the "original
function" that were refined out in the currently visible variant, and
at the link step the linker may in fact choose an implementation with
a load or a store. As an example, consider a function that does two
atomic loads from the same memory location, and writes to memory only
if the two values are not equal. The optimizer is allowed to refine
this function by first CSE'ing the two loads, and the folding the
comparision to always report that the two values are equal. Such a
refined variant will look like it is `readonly`. However, the
unoptimized version of the function can still write to memory (since
the two loads //can// result in different values), and selecting the
unoptimized version at link time will retroactively invalidate
transforms we may have done under the assumption that the function
does not write to memory.
Note: this is not just a problem with atomics or with linking
differently optimized object files. See PR26774 for more realistic
examples that involved neither.
This patch:
This change introduces a new set of linkage types, predicated as
`GlobalValue::mayBeDerefined` that returns true if the linkage type
allows a function to be replaced by a differently optimized variant at
link time. It then changes a set of IPO passes to bail out if they see
such a function.
Reviewers: chandlerc, hfinkel, dexonsmith, joker.eph, rnk
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18634
llvm-svn: 265762
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously we had a notion of convergent functions but not of convergent
calls. This is insufficient to correctly analyze calls where the target
is unknown, e.g. indirect calls.
Now a call is convergent if it targets a known-convergent function, or
if it's explicitly marked as convergent. As usual, we can remove
convergent where we can prove that no convergent operations are
performed in the call.
Originally landed as r261544, then reverted in r261544 for (incidental)
build breakage. Re-landed here with no changes.
Reviewers: chandlerc, jingyue
Subscribers: llvm-commits, tra, jhen, hfinkel
Differential Revision: http://reviews.llvm.org/D17739
llvm-svn: 263481
|
|
|
|
|
|
|
| |
This reverts r261544, which was causing a test failure in
Transforms/FunctionAttrs/readattrs.ll.
llvm-svn: 261549
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously we had a notion of convergent functions but not of convergent
calls. This is insufficient to correctly analyze calls where the target
is unknown, e.g. indirect calls.
Now a call is convergent if it targets a known-convergent function, or
if it's explicitly marked as convergent. As usual, we can remove
convergent where we can prove that no convergent operations are
performed in the call.
Reviewers: chandlerc, jingyue
Subscribers: hfinkel, jhen, tra, llvm-commits
Differential Revision: http://reviews.llvm.org/D17317
llvm-svn: 261544
|
|
|
|
|
|
| |
This test builds on 261250 (IR support for cmpxchg of pointers) and 261245 (capture tracking support for cmpxchg) to show that correctly analyze the capturing of pointers in a cmpxchg of pointer type.
llvm-svn: 261284
|
|
|
|
|
|
|
|
|
|
|
|
| |
These atomic operations are conceptually both a load and store from the same location. As such, we can treat them as the most conservative of those two components which in practice, means we can treat them like stores. An cmpxchg or atomicrmw captures the values, but not the locations accessed.
Note: We can probably be more aggressive about the comparison value in an cmpxhg since to have it be in memory, it must already be captured, but I figured it was better to avoid that for the moment.
Note 2: It turns out that since we don't actually support cmpxchg of pointer type, writing a negative test is impossible.
Differential Revision: http://reviews.llvm.org/D17400
llvm-svn: 261245
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
convert one test to use this.
This is a particularly significant milestone because it required
a working per-function AA framework which can be queried over each
function from within a CGSCC transform pass (and additionally a module
analysis to be accessible). This is essentially *the* point of the
entire pass manager rewrite. A CGSCC transform is able to query for
multiple different function's analysis results. It works. The whole
thing appears to actually work and accomplish the original goal. While
we were able to hack function attrs and basic-aa to "work" in the old
pass manager, this port doesn't use any of that, it directly leverages
the new fundamental functionality.
For this to work, the CGSCC framework also has to support SCC-based
behavior analysis, etc. The only part of the CGSCC pass infrastructure
not sorted out at this point are the updates in the face of inlining and
running function passes that mutate the call graph.
The changes are pretty boring and boiler-plate. Most of the work was
factored into more focused preperatory patches. But this is what wires
it all together.
llvm-svn: 261203
|