| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
| |
Previously we had only Linux using DTPOFF for these; all X86 ELF
targets should. Fixes a side issue mentioned in PR21077.
Differential Revision: http://reviews.llvm.org/D8011
llvm-svn: 231130
|
| |
|
|
|
|
|
|
| |
frame register before checking if there is a DWARF register number for it.
Thanks to H.J. Lu for diagnosing this and providing the testcase!
llvm-svn: 231121
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move the specialized metadata nodes for the new debug info hierarchy
into place, finishing off PR22464. I've done bootstraps (and all that)
and I'm confident this commit is NFC as far as DWARF output is
concerned. Let me know if I'm wrong :).
The code changes are fairly mechanical:
- Bumped the "Debug Info Version".
- `DIBuilder` now creates the appropriate subclass of `MDNode`.
- Subclasses of DIDescriptor now expect to hold their "MD"
counterparts (e.g., `DIBasicType` expects `MDBasicType`).
- Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp`
for printing comments.
- Big update to LangRef to describe the nodes in the new hierarchy.
Feel free to make it better.
Testcase changes are enormous. There's an accompanying clang commit on
its way.
If you have out-of-tree debug info testcases, I just broke your build.
- `upgrade-specialized-nodes.sh` is attached to PR22564. I used it to
update all the IR testcases.
- Unfortunately I failed to find way to script the updates to CHECK
lines, so I updated all of these by hand. This was fairly painful,
since the old CHECKs are difficult to reason about. That's one of
the benefits of the new hierarchy.
This work isn't quite finished, BTW. The `DIDescriptor` subclasses are
almost empty wrappers, but not quite: they still have loose casting
checks (see the `RETURN_FROM_RAW()` macro). Once they're completely
gutted, I'll rename the "MD" classes to "DI" and kill the wrappers. I
also expect to make a few schema changes now that it's easier to reason
about everything.
llvm-svn: 231082
|
| |
|
|
| |
llvm-svn: 230985
|
| |
|
|
| |
llvm-svn: 230979
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A short list of some of the improvements:
1) Now supports -all command line argument, which implies many
other command line arguments to simplify usage.
2) Now supports -no-compiler-generated command line argument to
exclude compiler generated types.
3) Prints base class list.
4) -class-definitions implies -types.
5) Proper display of bitfields.
6) Can now distinguish between struct/class/interface/union.
And a few other minor tweaks.
llvm-svn: 230933
|
| |
|
|
|
|
|
|
|
| |
r228631 stopped using `DW_OP_piece` inside `DIExpression`s in the IR,
but it apparently missed updating these testcases. Caught by verifier
checks for `MDExpression` while working on moving the new hierarchy into
place.
llvm-svn: 230882
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
load instruction
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
|
| |
|
|
| |
llvm-svn: 230744
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Function pointers were not correctly handled by the dumper, and
they would print as "* name". They now print as
"int (__cdecl *name)(int arg1, int arg2)" as they should.
Also, doubles were being printed as floats. This fixes that bug
as well, and adds tests for all builtin types. as well as a test
for function pointers.
llvm-svn: 230703
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for pretty-printing instruction operands. The new
output looks like:
00000000 00000010 ffffffff CIE
Version: 1
Augmentation:
Code alignment factor: 1
Data alignment factor: -4
Return address column: 8
DW_CFA_def_cfa: reg4 +4
DW_CFA_offset: reg8 -4
DW_CFA_nop:
DW_CFA_nop:
00000014 00000010 00000000 FDE cie=00000000 pc=00000000...00000022
DW_CFA_advance_loc: 3
DW_CFA_def_cfa_offset: +12
DW_CFA_nop:
llvm-svn: 230551
|
| |
|
|
|
|
|
|
|
|
|
| |
This adds the --class-definitions flag. If specified, when dumping
types, instead of "class Foo" you will see the full class definition,
with member functions, constructors, access specifiers.
NOTE: Using this option can be very slow, as generating a full class
definition requires accessing many different parts of the PDB.
llvm-svn: 230203
|
| |
|
|
|
|
|
|
|
|
| |
This increases the flexibility of how to dump different
symbol types -- necessary for context-sensitive formatting of
symbol types -- and also improves the modularity by allowing
the dumping to be implemented in the actual dumper, as opposed
to in the PDB library.
llvm-svn: 230184
|
| |
|
|
|
|
|
|
|
| |
This removes a wealth of options, and instead now only provides
three options. -symbols, -types, and -compilands. This greatly
simplifies use of the tool, and makes it easier to understand
what you're going to see when you run the tool.
llvm-svn: 230182
|
| |
|
|
|
|
| |
The bots seem to be happy now.
llvm-svn: 230164
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
NOTE: This patch intentionally breaks the build. It attempts
to resubmit r230083, but with some debug logging in the CMake
and lit config files to determine why certain bots do not
correctly disable the DIA tests when DIA is not available.
After a sufficient number of bots fail, this patch will either
be reverted or, if the cause of the failure becomes obvious,
a fix submitted with the log statements removed.
llvm-svn: 230161
|
| |
|
|
|
|
|
| |
It is not correctly detecting the situations where the test is
unsupported. Reverting until we can figure it out.
llvm-svn: 230085
|
| |
|
|
|
|
|
|
|
|
| |
This adds only a very basic set of tests that dump a few
functions and object files.
Differential Revision: http://reviews.llvm.org/D7656
Reviewed By: David Blaikie
llvm-svn: 230083
|
| |
|
|
|
|
|
|
|
| |
There's no way for `DIBuilder` to create a subprogram or global variable
where `getName()` and `getDisplayName()` give different answers. This
testcase managed to achieve the feat though. This was probably just
left behind in some sort of upgrade along the way.
llvm-svn: 229930
|
| |
|
|
|
|
|
|
|
|
| |
This will help us study the format of individual symbol
records more closely.
Differential Revision: http://reviews.llvm.org/D7664
Reviewed by: Timur Iskhodzhanov
llvm-svn: 229730
|
| |
|
|
| |
llvm-svn: 228766
|
| |
|
|
|
|
|
|
|
|
| |
for any padding introduced by SROA. In particular, do not emit debug info
for an alloca that represents only the padding introduced by a previous
iteration.
Fixes PR22495.
llvm-svn: 228632
|
| |
|
|
|
|
|
|
|
|
|
| |
intermediate representation. This
- increases consistency by using the same granularity everywhere
- allows for pieces < 1 byte
- DW_OP_piece didn't actually allow storing an offset.
Part of PR22495.
llvm-svn: 228631
|
| |
|
|
|
|
|
|
| |
Remove handling for DW_TAG_constant. We started producing it in
r110656, but reverted that in r110876 without dropping the support.
Finish the job.
llvm-svn: 228623
|
| |
|
|
|
|
|
|
| |
COFF section flags are not idempotent:
'rd' will make a read-write section because 'd' implies write
'dr' will make a read-only section because 'r' disables write
llvm-svn: 228490
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
described by integer constants. This is a bit ugly, but if the source
language allows arbitrary type casting, the debug info must follow suit.
For example:
void foo() {
float a;
*(int *)&a = 0;
}
For the curious: SROA replaces the float alloca with an i32 alloca, which
is then optimized away and described via dbg.value(i32 0, ...).
llvm-svn: 227827
|
| |
|
|
|
|
|
|
| |
aggregate or scalar, the debug info needs to refer to the absolute offset
(relative to the entire variable) instead of storing the offset inside
the smaller aggregate.
llvm-svn: 227702
|
| |
|
|
| |
llvm-svn: 227701
|
| |
|
|
|
|
|
|
|
|
|
| |
it appeared to be.
Same sort of bug as on ARM where the cmp+branch are lowered to br_cc
(choosing the branch's debugloc for the br_cc's debugloc) then expanded
out to a cmp and a br, but both using the debug loc of the br_cc, thus
losing fidelity.
llvm-svn: 227645
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
it appeared to be.
Also revert r227489 since it didn't actually fix the thing I thought I
was fixing (since the test case was targeting the wrong architecture
initially). The change might be correct & demonstrated by other test
cases, but it's not a priority for me to find those test cases right
now.
Filed PR22417 for the failure.
llvm-svn: 227632
|
| |
|
|
|
|
| |
This reverts commit r227489, since this is the real one failing the bots.
llvm-svn: 227602
|
| |
|
|
| |
llvm-svn: 227489
|
| |
|
|
| |
llvm-svn: 227487
|
| |
|
|
| |
llvm-svn: 227486
|
| |
|
|
| |
llvm-svn: 227485
|
| |
|
|
|
|
| |
member is a typedef (or other sugar) of a declaration.
llvm-svn: 227290
|
| |
|
|
| |
llvm-svn: 227152
|
| |
|
|
|
|
|
|
|
|
|
| |
physical register that is described in a DBG_VALUE.
In the testcase the DBG_VALUE describing "p5" becomes unavailable
because the register its address is in is clobbered and we (currently)
aren't smart enough to realize that the value is rematerialized immediately
after the DBG_VALUE and/or is actually a stack slot.
llvm-svn: 227056
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
At the moment, address calculation is taking the debug line info from the
address node (e.g. TargetGlobalAddress). When a function is called multiple
times, this results in output of the form:
.loc $first_call_location
.. address calculation ..
.. function call ..
.. address calculation ..
.loc $second_call_location
.. function call ..
.loc $first_call_location
.. address calculation ..
.loc $third_call_location
.. function call ..
This patch makes address calculations for function calls take the debug line
info for the call node and results in output of the form:
.loc $first_call_location
.. address calculation ..
.. function call ..
.loc $second_call_location
.. address calculation ..
.. function call ..
.loc $third_call_location
.. address calculation ..
.. function call ..
All other address calculations continue to use the address node.
Test Plan: Fixes test/DebugInfo/multiline.ll on a mips host.
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D7050
llvm-svn: 227005
|
| |
|
|
| |
llvm-svn: 226919
|
| |
|
|
|
|
|
|
|
|
|
| |
problems when inlining two calls to the same function from the same call site."
The underlying bug has been fixed in r226736 so there's no need to
workaround this anymore.
This reverts commit r220923.
llvm-svn: 226842
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
calls being coalesced
When two calls from the same MDLocation are inlined they currently get
treated as one inlined function call (creating difficulty debugging,
duplicate variables, etc).
Clang worked around this by including column information on inline calls
which doesn't address LTO inlining or calls to the same function from
the same line and column (such as through a macro). It also didn't
address ctor and member function calls.
By making the inlinedAt locations distinct, every call site has an
explicitly distinct location that cannot be coalesced with any other
call.
This can produce linearly (2x in the worst case where every call is
inlined and the call instruction has a non-call instruction at the same
location) more debug locations. Any increase beyond that are in cases
where the Clang workaround was insufficient and the new scheme is
creating necessary distinct nodes that were being erroneously coalesced
previously.
After this change to LLVM the incomplete workarounds in Clang. That
should reduce the number of debug locations (in a build without column
info, the default on Darwin, not the default on Linux) by not creating
pseudo-distinct locations for every call to an inline function.
(oh, and I made the inlined-at chain rebuilding iterative instead of
recursive because I was having trouble wrapping my head around it the
way it was - open to discussion on the right design for that function
(including going back to a recursive solution))
llvm-svn: 226736
|
| |
|
|
|
|
| |
elements and the ordering is sane and cleanup the accessors.
llvm-svn: 226627
|
| |
|
|
|
|
| |
Follow-up to r226588.
llvm-svn: 226616
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reapplies r225379.
ChangeLog:
- The assertion that this commit previously ran into about the inability
to handle indirect variables has since been removed and the backend
can handle this now.
- Testcases were upgrade to the new MDLocation format.
- Instead of keeping a DebugDeclares map, we now use
llvm::FindAllocaDbgDeclare().
Original commit message follows.
Debug info: Teach SROA how to update debug info for fragmented variables.
This allows us to generate debug info for extremely advanced code such as
typedef struct { long int a; int b;} S;
int foo(S s) {
return s.b;
}
which at -O1 on x86_64 is codegen'd into
define i32 @foo(i64 %s.coerce0, i32 %s.coerce1) #0 {
ret i32 %s.coerce1, !dbg !24
}
with this patch we emit the following debug info for this
TAG_formal_parameter [3]
AT_location( 0x00000000
0x0000000000000000 - 0x0000000000000006: rdi, piece 0x00000008, rsi, piece 0x00000004
0x0000000000000006 - 0x0000000000000008: rdi, piece 0x00000008, rax, piece 0x00000004 )
AT_name( "s" )
AT_decl_file( "/Volumes/Data/llvm/_build.ninja.release/test.c" )
Thanks to chandlerc, dblaikie, and echristo for their feedback on all
previous iterations of this patch!
llvm-svn: 226598
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
frontends to use a DIExpression with a DW_OP_deref instead.
This is not only a much more natural place for this informationl; there
is also a technical reason: The FlagIndirectVariable is used to mark a
variable that is turned into a reference by virtue of the calling
convention; this happens for example to aggregate return values.
The inliner, for example, may actually need to undo this indirection to
correctly represent the value in its new context. This is impossible to
implement because the DIVariable can't be safely modified. We can however
safely construct a new DIExpression on the fly.
llvm-svn: 226476
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
llvm-svn: 226048
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
emitDebugLocValue() into DwarfExpression.
Ought to be NFC, but it actually uncovered a bug in the debug-loc-asan.ll
testcase. The testcase checks that the address of variable "y" is stored
at [RSP+16], which also lines up with the comment.
It also check(ed) that the *value* of "y" is stored in RDI before that,
but that is actually incorrect, since RDI is the very value that is
stored in [RSP+16]. Here's the assembler output:
movb 2147450880(%rcx), %r8b
#DEBUG_VALUE: bar:y <- RDI
cmpb $0, %r8b
movq %rax, 32(%rsp) # 8-byte Spill
movq %rsi, 24(%rsp) # 8-byte Spill
movq %rdi, 16(%rsp) # 8-byte Spill
.Ltmp3:
#DEBUG_VALUE: bar:y <- [RSP+16]
Fixed the comment to spell out the correct register and the check to
expect an address rather than a value.
Note that the range that is emitted for the RDI location was and is still
wrong, it claims to begin at the function prologue, but really it should
start where RDI is first assigned.
llvm-svn: 225851
|
| |
|
|
|
|
|
|
|
|
|
|
| |
The ppc64le platform will emit a .localentry directive. This is triggering
a false-positive against a CHECK-NOT: .loc in multiline.ll.
Add a space "{{ }}" to the check-not line to allow for arguments, and
prevent .localentry from matching.
Differential Revision: http://reviews.llvm.org/D6935
llvm-svn: 225810
|