summaryrefslogtreecommitdiffstats
path: root/llvm/test/DebugInfo/incorrect-variable-debugloc.ll
Commit message (Collapse)AuthorAgeFilesLines
* IR: Make metadata typeless in assemblyDuncan P. N. Exon Smith2014-12-151-55/+55
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that `Metadata` is typeless, reflect that in the assembly. These are the matching assembly changes for the metadata/value split in r223802. - Only use the `metadata` type when referencing metadata from a call intrinsic -- i.e., only when it's used as a `Value`. - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode` when referencing it from call intrinsics. So, assembly like this: define @foo(i32 %v) { call void @llvm.foo(metadata !{i32 %v}, metadata !0) call void @llvm.foo(metadata !{i32 7}, metadata !0) call void @llvm.foo(metadata !1, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{metadata !3}, metadata !0) ret void, !bar !2 } !0 = metadata !{metadata !2} !1 = metadata !{i32* @global} !2 = metadata !{metadata !3} !3 = metadata !{} turns into this: define @foo(i32 %v) { call void @llvm.foo(metadata i32 %v, metadata !0) call void @llvm.foo(metadata i32 7, metadata !0) call void @llvm.foo(metadata i32* @global, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{!3}, metadata !0) ret void, !bar !2 } !0 = !{!2} !1 = !{i32* @global} !2 = !{!3} !3 = !{} I wrote an upgrade script that handled almost all of the tests in llvm and many of the tests in cfe (even handling many `CHECK` lines). I've attached it (or will attach it in a moment if you're speedy) to PR21532 to help everyone update their out-of-tree testcases. This is part of PR21532. llvm-svn: 224257
* [dwarfdump] Print the name for referenced specification of abstract_origin DIEs.Frederic Riss2014-10-061-2/+2
| | | | | | | | | | Reviewers: dblaikie, samsonov, echristo, aprantl Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D5466 llvm-svn: 219099
* Revert "Revert "DI: Fold constant arguments into a single MDString""Duncan P. N. Exon Smith2014-10-031-26/+26
| | | | | | | | | | | | | | | | | | | | | | This reverts commit r218918, effectively reapplying r218914 after fixing an Ocaml bindings test and an Asan crash. The root cause of the latter was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a PR to investigate who requires the loose check (and why). Original commit message follows. -- This patch addresses the first stage of PR17891 by folding constant arguments together into a single MDString. Integers are stringified and a `\0` character is used as a separator. Part of PR17891. Note: I've attached my testcases upgrade scripts to the PR. If I've just broken your out-of-tree testcases, they might help. llvm-svn: 219010
* Revert "DI: Fold constant arguments into a single MDString"Duncan P. N. Exon Smith2014-10-021-26/+26
| | | | | | This reverts commit r218914 while I investigate some bots. llvm-svn: 218918
* DI: Fold constant arguments into a single MDStringDuncan P. N. Exon Smith2014-10-021-26/+26
| | | | | | | | | | | | | This patch addresses the first stage of PR17891 by folding constant arguments together into a single MDString. Integers are stringified and a `\0` character is used as a separator. Part of PR17891. Note: I've attached my testcases upgrade scripts to the PR. If I've just broken your out-of-tree testcases, they might help. llvm-svn: 218914
* Move the complex address expression out of DIVariable and into an extraAdrian Prantl2014-10-011-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. llvm-svn: 218787
* Revert r218778 while investigating buldbot breakage.Adrian Prantl2014-10-011-3/+3
| | | | | | "Move the complex address expression out of DIVariable and into an extra" llvm-svn: 218782
* Move the complex address expression out of DIVariable and into an extraAdrian Prantl2014-10-011-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! llvm-svn: 218778
* DebugInfo: Assert that DbgVariables have associated DIEsDavid Blaikie2014-06-011-0/+391
This was previously committed in r209680 and reverted in r209683 after it caused sanitizer builds to crash. The issue seems to be that the DebugLoc associated with dbg.value IR intrinsics isn't necessarily accurate. Instead, we duplicate the DIVariables and add an InlinedAt field to them to record their location. We were using this InlinedAt field to compute the LexicalScope for the variable, but not using it in the abstract DbgVariable construction and mapping. This resulted in a formal parameter to the current concrete function, correctly having no InlinedAt information, but incorrectly having a DebugLoc that described an inlined location within the function... thus an abstract DbgVariable was created for the variable, but its DIE was never constructed (since the LexicalScope had no such variable). This DbgVariable was silently ignored (by testing for a non-null DIE on the abstract DbgVariable). So, fix this by using the right scoping information when constructing abstract DbgVariables. In the long run, I suspect we want to undo the work that added this second kind of location tracking and fix the places where the DebugLoc propagation on the dbg.value intrinsic fails. This will shrink debug info (by not duplicating DIVariables), make it more efficient (by not having to construct new DIVariable metadata nodes to try to map back to a single variable), and benefit all instructions. But perhaps there are insurmountable issues with DebugLoc quality that I'm unaware of... I just don't know how we can't /just keep the DebugLoc from the dbg.declare to the dbg.values and never get this wrong/. Some history context: http://llvm.org/viewvc/llvm-project?view=revision&revision=135629 http://llvm.org/viewvc/llvm-project?view=revision&revision=137253 llvm-svn: 209984
OpenPOWER on IntegriCloud