| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We aim to ignore changes in variable locations during the prologue and
epilogue of functions, to avoid using space documenting location changes
that aren't visible. However in D61940 / r362951 this got ripped out as
the previous implementation was unsound.
Instead, use the FrameDestroy flag to identify when we're in the epilogue
of a function, and ignore variable location changes accordingly. This fits
in with existing code that examines the FrameSetup flag.
Some variable locations get shuffled in modified tests as they now cover
greater ranges, which is what would be expected. Some additional
single-location variables are generated too. Two tests are un-xfailed,
they were only xfailed due to r362951 deleting functionality they depended
on.
Apparently some out-of-tree backends don't accurately maintain FrameDestroy
flags -- if you're an out-of-tree maintainer and see changes in variable
locations disappear due to a faulty FrameDestroy flag, it's safe to back
this change out. The impact is just slightly more debug info than necessary.
Differential Revision: https://reviews.llvm.org/D62314
llvm-svn: 363245
|
|
|
|
|
|
|
| |
r362951 was supposed to contain this test, however it didn't get committed
due to operator error. This was originally part of D59431.
llvm-svn: 363161
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This behavior was added in r130928 for both FastISel and SD, and then
disabled in r131156 for FastISel.
This re-enables it for FastISel with the corresponding fix.
This is triggered only when FastISel can't lower the arguments and falls
back to SelectionDAG for it.
FastISel contains a map of "register fixups" where at the end of the
selection phase it replaces all uses of a register with another
register that FastISel sometimes pre-assigned. Code at the end of
SelectionDAGISel::runOnMachineFunction is doing the replacement at the
very end of the function, while other pieces that come in before that
look through the MachineFunction and assume everything is done. In this
case, the real issue is that the code emitting COPY instructions for the
liveins (physreg to vreg) (EmitLiveInCopies) is checking if the vreg
assigned to the physreg is used, and if it's not, it will skip the COPY.
If a register wasn't replaced with its assigned fixup yet, the copy will
be skipped and we'll end up with uses of undefined registers.
This fix moves the replacement of registers before the emission of
copies for the live-ins.
The initial motivation for this fix is to enable tail calls for
swiftself functions, which were blocked because we couldn't prove that
the swiftself argument (which is callee-save) comes from a function
argument (live-in), because there was an extra copy (vreg to vreg).
A few tests are affected by this:
* llvm/test/CodeGen/AArch64/swifterror.ll: we used to spill x21
(callee-save) but never reload it because it's attached to the return.
We now don't even spill it anymore.
* llvm/test/CodeGen/*/swiftself.ll: we tail-call now.
* llvm/test/CodeGen/AMDGPU/mubuf-legalize-operands.ll: I believe this
test was not really testing the right thing, but it worked because the
same registers were re-used.
* llvm/test/CodeGen/ARM/cmpxchg-O0.ll: regalloc changes
* llvm/test/CodeGen/ARM/swifterror.ll: get rid of a copy
* llvm/test/CodeGen/Mips/*: get rid of spills and copies
* llvm/test/CodeGen/SystemZ/swift-return.ll: smaller stack
* llvm/test/CodeGen/X86/atomic-unordered.ll: smaller stack
* llvm/test/CodeGen/X86/swifterror.ll: same as AArch64
* llvm/test/DebugInfo/X86/dbg-declare-arg.ll: stack size changed
Differential Revision: https://reviews.llvm.org/D62361
llvm-svn: 362963
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit reapplies r359426 (which was reverted in r360301 due to
performance problems) and rolls in D61940 to address the performance problem.
I've combined the two to avoid creating a span of slow-performance, and to
ease reverting if more problems crop up.
The summary of D61940: This patch removes the "ChangingRegs" facility in
DbgEntityHistoryCalculator, as its overapproximate nature can produce incorrect
variable locations. An unchanging register doesn't mean a variable doesn't
change its location.
The patch kills off everything that calculates the ChangingRegs vector.
Previously ChangingRegs spotted epilogues and marked registers as unchanging if
they weren't modified outside the epilogue, increasing the chance that we can
emit a single-location variable record. Without this feature,
debug-loc-offset.mir and pr19307.mir become temporarily XFAIL. They'll be
re-enabled by D62314, using the FrameDestroy flag to identify epilogues, I've
split this into two steps as FrameDestroy isn't necessarily supported by all
backends.
The logic for terminating variable locations at the end of a basic block now
becomes much more enjoyably simple: we just terminate them all.
Other test changes: inlined-argument.ll becomes XFAIL, but for a longer term.
The current algorithm for detecting that a variable has a single-location
doesn't work in this scenario (inlined function in multiple blocks), only other
bugs were making this test work. fission-ranges.ll gets slightly refreshed too,
as the location of "p" is now correctly determined to be a single location.
Differential Revision: https://reviews.llvm.org/D61940
llvm-svn: 362951
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Variable's stack location can stretch longer than it should. If a
variable is placed at the stack in a some nested basic block its range
can be calculated to be up to the next occurrence of the variable's
DBG_VALUE, or up to the end of the function, thus covering a basic
blocks that should not be included in the variable’s location range.
This happens because the DbgEntityHistoryCalculator ends register
locations at the end of a basic block only if the variable’s location
register has been changed throughout the function, which is not the
case for the register used to reference stack objects.
This patch also tries to produce a single value location if the location
list builder managed to merge all the locations into one.
Reviewers: aprantl, dstenb, jmorse
Reviewed By: aprantl, dstenb, jmorse
Subscribers: djtodoro, ivanbaev, asowda
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D61600
llvm-svn: 362923
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Incorrect Debug Variable Range was calculated while "COMPUTING LIVE DEBUG VARIABLES" stage.
Range for Debug Variable("i") computed according to current state of instructions
inside of basic block. But Register Allocator creates new instructions which were not taken
into account when Live Debug Variables computed. In the result DBG_VALUE instruction for
the "i" variable was put after these newly inserted instructions. This is incorrect.
Debug Value for the loop counter should be inserted before any loop instruction.
Differential Revision: https://reviews.llvm.org/D62650
llvm-svn: 362750
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
newly deduced location
When LiveDebugValues deduces new variable's location from spill, restore or
register copy instruction it should close old variable's location. Otherwise
we can have multiple block output locations for same variable. That could lead
to inserting two DBG_VALUEs for same variable to the beginning of the successor
block which results to ignoring of first DBG_VALUE.
Reviewers: aprantl, jmorse, wolfgangp, dstenb
Reviewed By: aprantl
Subscribers: probinson, asowda, ivanbaev, petarj, djtodoro
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D62196
llvm-svn: 362373
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When DwarfDebug::buildLocationList() encountered an undef debug value,
it would truncate all open values, regardless if they were overlapping or
not. This patch fixes so that it only does that for overlapping fragments.
This change unearthed a bug that I had introduced in D57511,
which I have fixed in this patch. The code in DebugHandlerBase that
changes labels for parameter debug values could break DwarfDebug's
assumption that the labels for the entries in the debug value history
are monotonically increasing. Before this patch, that bug could result
in location list entries whose ending address was lower than the
beginning address, and with the changes for undef debug values that this
patch introduces it could trigger an assertion, due to attempting to
emit location list entries with empty ranges. A reproducer for the bug
is added in param-reg-const-mix.mir.
Reviewers: aprantl, jmorse, probinson
Reviewed By: aprantl
Subscribers: javed.absar, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D62379
llvm-svn: 361820
|
|
|
|
|
|
|
|
|
|
|
| |
This lead to errors when dumping binaries with v4 and v5 units linked
together (but could've also errored on v5 units that did/didn't use
str_offsets).
Also improves error handling and messages around invalid str_offsets
contributions.
llvm-svn: 361683
|
|
|
|
|
|
|
|
|
| |
DWARF64 str_offsets header
Rather than trying one and then the other - use the kind of the CU to
select which kind of header to parse.
llvm-svn: 361589
|
|
|
|
|
|
|
|
|
|
|
|
| |
This test case was incorrect because it mixed DWARF32 and DWARF64 for a
single unit (DWARF32 unit referencing a DWARF64 str_offsets section). So
fix enough of the unit parsing for DWARF64 and make the test valid.
(not sure if anyone needs DWARF64 support though - support in
libDebugInfoDWARF has been added piecemeal and LLVM doesn't produce it
at all)
llvm-svn: 361582
|
|
|
|
| |
llvm-svn: 361251
|
|
|
|
|
|
|
|
|
|
| |
This option provides only the base filename, not a full relative path.
Part of the fix for PR41839.
Differential Revision: https://reviews.llvm.org/D62071
llvm-svn: 361245
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Trace through multiple COPYs when looking for a physreg source. Add
hinting for vregs that will be copied into physregs (we only hinted
for vregs getting copied to a physreg previously). Give hinted a
register a bonus when deciding which value to spill. This is part of
my rewrite regallocfast series. In fact this one doesn't even have an
effect unless you also flip the allocation to happen from back to
front of a basic block. Nonetheless it helps to split this up to ease
review of D52010
Patch by Matthias Braun
llvm-svn: 360887
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
textual format
The 3-field form was introduced by D3499 in 2014 and the legacy 2-field
form was planned to be removed in LLVM 4.0
For the textual format, this patch migrates the existing 2-field form to
use the 3-field form and deletes the compatibility code.
test/Verifier/global-ctors-2.ll checks we have a friendly error message.
For bitcode, lib/IR/AutoUpgrade UpgradeGlobalVariables will upgrade the
2-field form (add i8* null as the third field).
Reviewed By: rnk, dexonsmith
Differential Revision: https://reviews.llvm.org/D61547
llvm-svn: 360742
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The condition !AddrPool.empty() is tested before attachRangesOrLowHighPC(), which may add an entry to AddrPool. We emit DW_AT_low_pc (DW_FORM_addrx) but may incorrectly omit DW_AT_addr_base for LineTablesOnly. This can be easily reproduced:
clang -gdwarf-5 -gmlt -c a.cc
Fix this by moving !AddrPool.empty() below.
This was discovered while investigating an lld crash (fixed by D61889) on such object files: ld.lld --gdb-index a.o
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D61891
llvm-svn: 360678
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Follow up to r359122, after a bug was reported in it - the original
change too aggressively tried to move related types out of type units,
which included unnamed types (like array types) which can't reasonably
be declared-but-not-defined.
A step beyond that is that some types in type units can be anonymous, if
they are types with a name for linkage purposes (eg: "typedef struct { }
x;"). So ensure those don't get turned into plain declarations (without
signatures) because, lacking names, they can't be resolved to the
definition.
[Also include a fix for llvm-dwarfdump/libDebugInfoDWARF to pretty print
types in type units]
llvm-svn: 360458
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In certain circumstances, optimizations pick line numbers from debug
intrinsic instructions as the new location for altered instructions. This
is problematic because the line number of a debugging intrinsic is
meaningless (it doesn't produce any machine instruction), only the scope
information is valid. The result can be the line number of a variable
declaration "leaking" into real code from debugging intrinsics, making the
line table un-necessarily jumpy, and potentially different with / without
variable locations.
Fix this by using zero line numbers when promoting dbg.declare intrinsics
into dbg.values: this is safe for debug intrinsics as their line numbers
are meaningless, and reduces the scope for damage / misleading stepping
when optimizations pick locations from the wrong place.
Differential Revision: https://reviews.llvm.org/D59272
llvm-svn: 360415
|
|
|
|
|
|
|
|
|
|
| |
end of blocks"
as it was causing significant compile time regressions.
This reverts commit r359426 while we come up with testcases and additional ideas.
llvm-svn: 360301
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes the https://bugs.llvm.org/show_bug.cgi?id=41355.
Previously with -r we printed relocation section name instead of the target section name.
It was like this: "RELOCATION RECORDS FOR [.rel.text]"
Now it is: "RELOCATION RECORDS FOR [.text]"
Also when relocation target section has more than one relocation section,
we did not combine the output. Now we do.
Differential revision: https://reviews.llvm.org/D61312
llvm-svn: 360143
|
|
|
|
|
|
|
|
|
|
|
| |
of a block"
This reverts commit r359912.
This should pass now, since the clang test was made less fragile in
r359918.
llvm-svn: 359919
|
|
|
|
|
|
|
|
| |
of a block"
Makes clang/test/Misc/backend-stack-frame-diagnostics-fallback.cpp fail.
llvm-svn: 359912
|
|
|
|
|
|
|
|
|
| |
Add an improved/new heuristic to catch more cases when values are not
live out of a basic block.
Patch by Matthias Braun
llvm-svn: 359906
|
|
|
|
|
|
|
|
|
|
| |
-t is --symbols in llvm-readobj but --section-details (unimplemented) in readelf.
The confusing option should not be used since we aim for improving
compatibility.
Keep just one llvm-readobj -t use case in test/tools/llvm-readobj/symbols.test
llvm-svn: 359661
|
|
|
|
|
|
|
|
|
|
| |
We use both -long-option and --long-option in tests. Switch to --long-option for consistency.
In the "llvm-readelf" mode, -long-option is discouraged as it conflicts with grouped short options and it is not accepted by GNU readelf.
While updating the tests, change llvm-readobj -s to llvm-readobj -S to reduce confusion ("s" is --section-headers in llvm-readobj but --symbols in llvm-readelf).
llvm-svn: 359649
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Prior to this patch, the CommandLine parser would strip an
unlimitted number of dashes from options. This patch limits it to
two.
Reviewers: rnk
Reviewed By: rnk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61229
llvm-svn: 359480
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes PR40795, where constant-valued variable locations can
"leak" into blocks placed at higher addresses. The root of this is that
DbgEntityHistoryCalculator terminates all register variable locations at
the end of each block, but not constant-value variable locations.
Fixing this requires constant-valued DBG_VALUE instructions to be
broadcast into all blocks where the variable location remains valid, as
documented in the LiveDebugValues section of SourceLevelDebugging.rst,
and correct termination in DbgEntityHistoryCalculator.
Differential Revision: https://reviews.llvm.org/D59431
llvm-svn: 359426
|
|
|
|
| |
llvm-svn: 359383
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
defined types into type units
While this doesn't come up in reasonable cases currently (the only user
defined types not in type units are ones without linkage - which makes
for near-ODR violations, because it'd be a type with linkage referencing
a type without linkage - such a type can't be validly defined in more
than one TU, so arguably it shouldn't be in a type unit to begin with -
but it's a convenient way to demonstrate an issue that will become more
revalent with homed modular debug info type definitions - which also
don't need to be in type units but more legitimately so).
Precursor to the Clang change to de-type-unit (by omitting the
'identifier') types homed due to strong linkage vtables. (making that
change without this one would lead to major type duplication in type
units)
llvm-svn: 359122
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Originally committed in r358931
Reverted in r358997
Seems this change made Apple accelerator tables miss names (because
names started respecting the CU NameTableKind GNU & assuming that
shouldn't produce accelerated names too), which is never correct (apple
accelerator tables don't have separators or CU lists - if present, they
must describe all names in all CUs).
Original Description:
Currently to opt in to debug_names in DWARFv5, the IR must contain
'nameTableKind: Default' which also enables debug_pubnames.
Instead, only allow one of {debug_names, apple_names, debug_pubnames,
debug_gnu_pubnames}.
nameTableKind: Default gives debug_names in DWARFv5 and greater,
debug_pubnames in v4 and earlier - and apple_names when tuning for lldb
on MachO.
nameTableKind: GNU always gives gnu_pubnames
llvm-svn: 359026
|
|
|
|
|
|
|
|
| |
Regresses some apple_names situations - still investigating.
This reverts commit r358931.
llvm-svn: 358997
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently to opt in to debug_names in DWARFv5, the IR must contain
'nameTableKind: Default' which also enables debug_pubnames.
Instead, only allow one of {debug_names, apple_names, debug_pubnames,
debug_gnu_pubnames}.
nameTableKind: Default gives debug_names in DWARFv5 and greater,
debug_pubnames in v4 and earlier - and apple_names when tuning for lldb
on MachO.
nameTableKind: GNU always gives gnu_pubnames
llvm-svn: 358931
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Companion to https://reviews.llvm.org/D59347
Reviewers: rnk, zturner, probinson, dblaikie, deadalnix
Subscribers: aprantl, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59348
llvm-svn: 358220
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Currently the DbgValueHistorymap only keeps track of clobbered registers
for the last debug value that it has encountered. This could lead to
preceding register-described debug values living on longer in the
location lists than they should. See PR40283 for an example. This
patch does not introduce tracking of multiple registers, but changes
the DbgValueHistoryMap structure to allow for that in a follow-up
patch. This patch is not NFC, as it at least fixes two bugs in
DwarfDebug (both are covered in the new clobbered-fragments.mir test):
* If a debug value was clobbered (its End pointer set), the value would
still be added to OpenRanges, meaning that the succeeding location list
entries could potentially contain stale values.
* If a debug value was clobbered, and there were non-overlapping
fragments that were still live after the clobbering, DwarfDebug would
not create a location list entry starting directly after the
clobbering instruction. This meant that the location list could have
a gap until the next debug value for the variable was encountered.
Before this patch, the history map was represented by <Begin, End>
pairs, where a new pair was created for each new debug value. When
dealing with partially overlapping register-described debug values, such
as in the following example:
DBG_VALUE $reg2, $noreg, !1, !DIExpression(DW_OP_LLVM_fragment, 32, 32)
[...]
DBG_VALUE $reg3, $noreg, !1, !DIExpression(DW_OP_LLVM_fragment, 64, 32)
[...]
$reg2 = insn1
[...]
$reg3 = insn2
the history map would then contain the entries `[<DV1, insn1>, [<DV2, insn2>]`.
This would leave it up to the users of the map to be aware of
the relative order of the instructions, which e.g. could make
DwarfDebug::buildLocationList() needlessly complex. Instead, this patch
makes the history map structure monotonically increasing by dropping the
End pointer, and replacing that with explicit clobbering entries in the
vector. Each debug value has an "end index", which if set, points to the
entry in the vector that ends the debug value. The ending entry can
either be an overlapping debug value, or an instruction which clobbers
the register that the debug value is described by. The ending entry's
instruction can thus either be excluded or included in the debug value's
range. If the end index is not set, the debug value that the entry
introduces is valid until the end of the function.
Changes to test cases:
* DebugInfo/X86/pieces-3.ll: The range of the first DBG_VALUE, which
describes that the fragment (0, 64) is located in RDI, was
incorrectly ended by the clobbering of RAX, which the second
(non-overlapping) DBG_VALUE was described by. With this patch we
get a second entry that only describes RDI after that clobbering.
* DebugInfo/ARM/partial-subreg.ll: This test seems to indiciate a bug
in LiveDebugValues that is caused by it not being aware of fragments.
I have added some comments in the test case about that. Also, before
this patch DwarfDebug would incorrectly include a register-described
debug value from a preceding block in a location list entry.
Reviewers: aprantl, probinson, dblaikie, rnk, bjope
Reviewed By: aprantl
Subscribers: javed.absar, kristof.beyls, jdoerfert, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D59941
llvm-svn: 358072
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
single instructions that store the condition code as an operand.
Summary:
This avoids needing an isel pattern for each condition code. And it removes translation switches for converting between Jcc instructions and condition codes.
Now the printer, encoder and disassembler take care of converting the immediate. We use InstAliases to handle the assembly matching. But we print using the asm string in the instruction definition. The instruction itself is marked IsCodeGenOnly=1 to hide it from the assembly parser.
Reviewers: spatel, lebedev.ri, courbet, gchatelet, RKSimon
Reviewed By: RKSimon
Subscribers: MatzeB, qcolombet, eraman, hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60228
llvm-svn: 357802
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cost 0 anyway for free regs
The 2nd loop calculates spill costs but reports free registers as cost
0 anyway, so there is little benefit from having a separate early
loop.
Surprisingly this is not NFC, as many register are marked regDisabled
so the first loop often picks up later registers unnecessarily instead
of the first one available in the allocation order...
Patch by Matthias Braun
llvm-svn: 356499
|
|
|
|
|
|
|
| |
Moved the X86 dependant .ll tests added in r356451 from
test/DebugInfo/Generic to test/DebugInfo/X86.
llvm-svn: 356460
|
|
|
|
|
|
|
|
|
|
|
|
| |
Moving subprogram specific flags into DISPFlags makes IR code more readable.
In addition, we provide free space in DIFlags for other
'non-subprogram-specific' debug info flags.
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D59288
llvm-svn: 356454
|
|
|
|
|
|
| |
Differential revision: https://reviews.llvm.org/D58786
llvm-svn: 355303
|
|
|
|
|
|
|
|
|
|
|
|
| |
When using full LTO it is possible that template function definition DIE
is bound to one compilation unit and it's declaration to another. We should
add function declaration attributes on behalf of its owner CU otherwise
we may end up with malformed file identifier in function declaration
DW_AT_decl_file attribute.
Differential revision: https://reviews.llvm.org/D58538
llvm-svn: 354978
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In this patch SelectionDAG tries to salvage any dbg.values that are going to be
dropped, in case they can be recovered from Values in the current BB. It also
strengthens SelectionDAGs handling of dangling debug data, so that dbg.values
are *always* emitted (as Undef or otherwise) instead of dangling forever.
The motivation behind this patch exists in the new test case: a memory address
(here a bitcast and GEP) exist in one basic block, and a dbg.value referring to
the address is left in the 'next' block. The base pointer is live across all
basic blocks. In current llvm trunk the dbg.value cannot be encoded, and it
isn't even emitted as an Undef DBG_VALUE.
The change is simply: if we're definitely going to drop a dbg.value, repeatedly
apply salvageDebugInfo to its operand until either we find something that can
be encoded, or we can't salvage any further in which case we produce an Undef
DBG_VALUE. To know when we're "definitely going to drop a dbg.value",
SelectionDAG signals SelectionDAGBuilder when all IR instructions have been
encoded to force salvaging. This ensures that any dbg.value that's dangling
after DAG creation will have a corresponding DBG_VALUE encoded.
Differential Revision: https://reviews.llvm.org/D57694
llvm-svn: 353954
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SelectionDAGBuilder has special handling for dbg.value intrinsics that are
understood to define the location of function parameters on entry to the
function. To enable this, we avoid recording a dbg.value as a virtual register
reference if it might be such a parameter, so that it later hits
EmitFuncArgumentDbgValue.
This patch reduces the set of circumstances where we avoid recording a
dbg.value as a virtual register reference, to allow more "normal" variables
to be recorded that way. We now only bypass for potential parameters if:
* The dbg.value operand is an Argument,
* The Variable is a parameter, and
* The Variable is not inlined.
meaning it's very likely that the dbg.value is a function-entry parameter
location.
Differential Revision: https://reviews.llvm.org/D57584
llvm-svn: 353948
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is a follow-up to D57510. This patch stops DebugHandlerBase from
changing the starting label for the first non-overlapping,
register-described parameter DBG_VALUEs to the beginning of the
function. That code did not consider what defined the registers, which
could result in the ranges for the debug values starting before their
defining instructions. We currently do not emit debug values for
constant values directly at the start of the function, so this code is
still useful for such values, but my intention is to remove the code
from DebugHandlerBase completely when we get there. One reason for
removing it is that the code violates the history map's ranges, which I
think can make it quite confusing when troubleshooting.
In D57510, PrologEpilogInserter was amended so that parameter DBG_VALUEs
now are kept at the start of the entry block, even after emission of
prologue code. That was done to reduce the degradation of debug
completeness from this patch. PR40638 is another example, where the
lexical-scope trimming that LDV does, in combination with scheduling,
results in instructions after the prologue being left without locations.
There might be other cases where the DBG_VALUEs are pushed further down,
for which the DebugHandlerBase code may be helpful, but as it now quite
often result in incorrect locations, even after the prologue, it seems
better to remove that code, and try to work our way up with accurate
locations.
In the long run we should maybe not aim to provide accurate locations
inside the prologue. Some single location descriptions, at least those
referring to stack values, generate inaccurate values inside the
epilogue, so we maybe should not aim to achieve accuracy for location
lists. However, it seems that we now emit line number programs that can
result in GDB and LLDB stopping inside the prologue when doing line
number stepping into functions. See PR40188 for more information.
A summary of some of the changed test cases is available in PR40188#c2.
Reviewers: aprantl, dblaikie, rnk, jmorse
Reviewed By: aprantl
Subscribers: jdoerfert, jholewinski, jvesely, javed.absar, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D57511
llvm-svn: 353928
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is a preparatory change for removing the code from
DebugHandlerBase::beginFunction() which changes the starting label for
the first non-overlapping DBG_VALUEs of parameters to the beginning of
the function. It does that to be able to show parameters when entering a
function. However, that code does not consider what defines the values,
which can result in the ranges for the debug values starting before
their defining instructions. That code is removed in a follow-up patch.
When prologue code is inserted, it leads to DBG_VALUEs that start
directly in the entry block being moved down after the prologue
instructions. This patch fixes that by stashing away DBG_VALUEs for
parameters before emitting the prologue, and then reinserts them at the
start of the block. This assumes that there is no target that somehow
clobbers parameter registers in the frame setup; there is no such case
in the lit tests at least.
See PR40188 for more information.
Reviewers: aprantl, dblaikie, rnk, jmorse
Reviewed By: aprantl
Subscribers: bjope, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D57510
llvm-svn: 353823
|
|
|
|
| |
llvm-svn: 353785
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
anything to the .dwo file
This configuration (due to r349207) was intended not to emit any DWO CU,
but a degenerate CU was still being emitted - containing a header and a
DW_TAG_compile_unit with no attributes.
Under that situation, emit nothing to the .dwo file. (since this is a
dynamic property of the input the .dwo file is still emitted, just with
nothing in it (so a valid, but empty, ELF file) - if some other CU
didn't satisfy this criteria, its DWO CU would still go there, etc)
llvm-svn: 353771
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch fixes PR40587.
When a dbg.value instrinsic is emitted to the DAG
by using EmitFuncArgumentDbgValue the resulting
DBG_VALUE is hoisted to the beginning of the entry
block. I think the idea is to be able to locate
a formal argument already from the start of the
function.
However, EmitFuncArgumentDbgValue only checked that
the value that was used to describe a variable was
originating from a function parameter, not that the
variable itself actually was an argument to the
function. So when for example assigning a local
variable "local" the value from an argument "a",
the assocated DBG_VALUE instruction would be hoisted
to the beginning of the function, even if the scope
for "local" started somewhere else (or if "local"
was mapped to other values earlier in the function).
This patch adds some logic to EmitFuncArgumentDbgValue
to check that the variable being described actually
is an argument to the function. And that the dbg.value
being lowered already is in the entry block. Otherwise
we bail out, and the dbg.value will be handled as an
ordinary dbg.value (not as a "FuncArgumentDbgValue").
A tricky situation is when both the variable and
the value is related to function arguments, but not
neccessarily the same argument. We make sure that we
do not describe the same argument more than once as
a "FuncArgumentDbgValue". This solution works as long
as opt has injected a "first" dbg.value that corresponds
to the formal argument at the function entry.
Reviewers: jmorse, aprantl
Subscribers: jyknight, hiraditya, fedor.sergeev, dstenb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57702
llvm-svn: 353735
|
|
|
|
|
|
|
|
|
|
| |
location description's length.
Reviewer: davide, JDevliegere
Differential Revision: https://reviews.llvm.org/D57550
llvm-svn: 352889
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A FrameIndex should be valid throughout a block regardless of what instructions
get selected in that block -- therefore we shouldn't harness dbg.values that
refer to FrameIndexes to an SDNode. There are numerous codegen reasons why
an SDNode never appears or doesn't become a location that a DBG_VALUE can
refer to. None of them actually affect the variable location.
Therefore, before any other tests to encode dbg_values in a SelectionDAG,
identify FrameIndex operands and encode them unattached to any SDNode.
Differential Revision: https://reviews.llvm.org/D57328
llvm-svn: 352467
|
|
|
|
|
|
| |
This should have had a target triple in it, my mistake.
llvm-svn: 352460
|