summaryrefslogtreecommitdiffstats
path: root/llvm/test/DebugInfo/X86/dbg-value-const-byref.ll
Commit message (Collapse)AuthorAgeFilesLines
* DI: Reverse direction of subprogram -> function edge.Peter Collingbourne2015-11-051-2/+2
| | | | | | | | | | | | | | | | | | | | | | | Previously, subprograms contained a metadata reference to the function they described. Because most clients need to get or set a subprogram for a given function rather than the other way around, this created unneeded inefficiency. For example, many passes needed to call the function llvm::makeSubprogramMap() to build a mapping from functions to subprograms, and the IR linker needed to fix up function references in a way that caused quadratic complexity in the IR linking phase of LTO. This change reverses the direction of the edge by storing the subprogram as function-level metadata and removing DISubprogram's function field. Since this is an IR change, a bitcode upgrade has been provided. Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is attached to the PR. Differential Revision: http://reviews.llvm.org/D14265 llvm-svn: 252219
* DI: Require subprogram definitions to be distinctDuncan P. N. Exon Smith2015-08-281-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | As a follow-up to r246098, require `DISubprogram` definitions (`isDefinition: true`) to be 'distinct'. Specifically, add an assembler check, a verifier check, and bitcode upgrading logic to combat testcase bitrot after the `DIBuilder` change. While working on the testcases, I realized that test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its purpose was to check for a corner case in PR22792 where two subprogram definitions match exactly and share the same metadata node. The new verifier check, requiring that subprogram definitions are 'distinct', precludes that possibility. I updated almost all the IR with the following script: git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' | grep -v test/Bitcode | xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/' Likely some variant of would work for out-of-tree testcases. llvm-svn: 246327
* DI: Disallow uniquable DICompileUnitsDuncan P. N. Exon Smith2015-08-031-1/+1
| | | | | | | | | | | | | | | | | | Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s. The backend is liable to start relying on that (if it hasn't already), so make uniquable `DICompileUnit`s illegal and automatically upgrade old bitcode. This is a nice cleanup, since we can remove an unnecessary `DenseSet` (and the associated uniquing info) from `LLVMContextImpl`. Almost all the testcases were updated with this script: git grep -e '= !DICompileUnit' -l -- test | grep -v test/Bitcode | xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,' I imagine something similar should work for out-of-tree testcases. llvm-svn: 243885
* DI: Remove DW_TAG_arg_variable and DW_TAG_auto_variableDuncan P. N. Exon Smith2015-07-311-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags, using `DW_TAG_variable` in their place Stop exposing the `tag:` field at all in the assembly format for `DILocalVariable`. Most of the testcase updates were generated by the following sed script: find test/ -name "*.ll" -o -name "*.mir" | xargs grep -l 'DILocalVariable' | xargs sed -i '' \ -e 's/tag: DW_TAG_arg_variable, //' \ -e 's/tag: DW_TAG_auto_variable, //' There were only a handful of tests in `test/Assembly` that I needed to update by hand. (Note: a follow-up could change `DILocalVariable::DILocalVariable()` to set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable` (as appropriate), instead of having that logic magically in the backend in `DbgVariable`. I've added a FIXME to that effect.) llvm-svn: 243774
* IR: Give 'DI' prefix to debug info metadataDuncan P. N. Exon Smith2015-04-291-17/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Finish off PR23080 by renaming the debug info IR constructs from `MD*` to `DI*`. The last of the `DIDescriptor` classes were deleted in r235356, and the last of the related typedefs removed in r235413, so this has all baked for about a week. Note: If you have out-of-tree code (like a frontend), I recommend that you get everything compiling and tests passing with the *previous* commit before updating to this one. It'll be easier to keep track of what code is using the `DIDescriptor` hierarchy and what you've already updated, and I think you're extremely unlikely to insert bugs. YMMV of course. Back to *this* commit: I did this using the rename-md-di-nodes.sh upgrade script I've attached to PR23080 (both code and testcases) and filtered through clang-format-diff.py. I edited the tests for test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns were off-by-three. It should work on your out-of-tree testcases (and code, if you've followed the advice in the previous paragraph). Some of the tests are in badly named files now (e.g., test/Assembler/invalid-mdcompositetype-missing-tag.ll should be 'dicompositetype'); I'll come back and move the files in a follow-up commit. llvm-svn: 236120
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-04-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | the call instruction See r230786 and r230794 for similar changes to gep and load respectively. Call is a bit different because it often doesn't have a single explicit type - usually the type is deduced from the arguments, and just the return type is explicit. In those cases there's no need to change the IR. When that's not the case, the IR usually contains the pointer type of the first operand - but since typed pointers are going away, that representation is insufficient so I'm just stripping the "pointerness" of the explicit type away. This does make the IR a bit weird - it /sort of/ reads like the type of the first operand: "call void () %x(" but %x is actually of type "void ()*" and will eventually be just of type "ptr". But this seems not too bad and I don't think it would benefit from repeating the type ("void (), void () * %x(" and then eventually "void (), ptr %x(") as has been done with gep and load. This also has a side benefit: since the explicit type is no longer a pointer, there's no ambiguity between an explicit type and a function that returns a function pointer. Previously this case needed an explicit type (eg: a function returning a void() function was written as "call void () () * @x(" rather than "call void () * @x(" because of the ambiguity between a function returning a pointer to a void() function and a function returning void). No ambiguity means even function pointer return types can just be written alone, without writing the whole function's type. This leaves /only/ the varargs case where the explicit type is required. Given the special type syntax in call instructions, the regex-fu used for migration was a bit more involved in its own unique way (as every one of these is) so here it is. Use it in conjunction with the apply.sh script and associated find/xargs commands I've provided in rr230786 to migrate your out of tree tests. Do let me know if any of this doesn't cover your cases & we can iterate on a more general script/regexes to help others with out of tree tests. About 9 test cases couldn't be automatically migrated - half of those were functions returning function pointers, where I just had to manually delete the function argument types now that we didn't need an explicit function type there. The other half were typedefs of function types used in calls - just had to manually drop the * from those. import fileinput import sys import re pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)') addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$") func_end = re.compile("(?:void.*|\)\s*)\*$") def conv(match, line): if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)): return line return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():] for line in sys.stdin: sys.stdout.write(conv(re.search(pat, line), line)) llvm-svn: 235145
* DebugInfo: Move new hierarchy into placeDuncan P. N. Exon Smith2015-03-031-12/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Move the specialized metadata nodes for the new debug info hierarchy into place, finishing off PR22464. I've done bootstraps (and all that) and I'm confident this commit is NFC as far as DWARF output is concerned. Let me know if I'm wrong :). The code changes are fairly mechanical: - Bumped the "Debug Info Version". - `DIBuilder` now creates the appropriate subclass of `MDNode`. - Subclasses of DIDescriptor now expect to hold their "MD" counterparts (e.g., `DIBasicType` expects `MDBasicType`). - Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp` for printing comments. - Big update to LangRef to describe the nodes in the new hierarchy. Feel free to make it better. Testcase changes are enormous. There's an accompanying clang commit on its way. If you have out-of-tree debug info testcases, I just broke your build. - `upgrade-specialized-nodes.sh` is attached to PR22564. I used it to update all the IR testcases. - Unfortunately I failed to find way to script the updates to CHECK lines, so I updated all of these by hand. This was fairly painful, since the old CHECKs are difficult to reason about. That's one of the benefits of the new hierarchy. This work isn't quite finished, BTW. The `DIDescriptor` subclasses are almost empty wrappers, but not quite: they still have loose casting checks (see the `RETURN_FROM_RAW()` macro). Once they're completely gutted, I'll rename the "MD" classes to "DI" and kill the wrappers. I also expect to make a few schema changes now that it's easier to reason about everything. llvm-svn: 231082
* IR: Move MDLocation into placeDuncan P. N. Exon Smith2015-01-141-6/+6
| | | | | | | | | | | | | | | | | | | | This commit moves `MDLocation`, finishing off PR21433. There's an accompanying clang commit for frontend testcases. I'll attach the testcase upgrade script I used to PR21433 to help out-of-tree frontends/backends. This changes the schema for `DebugLoc` and `DILocation` from: !{i32 3, i32 7, !7, !8} to: !MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8) Note that empty fields (line/column: 0 and inlinedAt: null) don't get printed by the assembly writer. llvm-svn: 226048
* IR: Make metadata typeless in assemblyDuncan P. N. Exon Smith2014-12-151-30/+30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that `Metadata` is typeless, reflect that in the assembly. These are the matching assembly changes for the metadata/value split in r223802. - Only use the `metadata` type when referencing metadata from a call intrinsic -- i.e., only when it's used as a `Value`. - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode` when referencing it from call intrinsics. So, assembly like this: define @foo(i32 %v) { call void @llvm.foo(metadata !{i32 %v}, metadata !0) call void @llvm.foo(metadata !{i32 7}, metadata !0) call void @llvm.foo(metadata !1, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{metadata !3}, metadata !0) ret void, !bar !2 } !0 = metadata !{metadata !2} !1 = metadata !{i32* @global} !2 = metadata !{metadata !3} !3 = metadata !{} turns into this: define @foo(i32 %v) { call void @llvm.foo(metadata i32 %v, metadata !0) call void @llvm.foo(metadata i32 7, metadata !0) call void @llvm.foo(metadata i32* @global, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{!3}, metadata !0) ret void, !bar !2 } !0 = !{!2} !1 = !{i32* @global} !2 = !{!3} !3 = !{} I wrote an upgrade script that handled almost all of the tests in llvm and many of the tests in cfe (even handling many `CHECK` lines). I've attached it (or will attach it in a moment if you're speedy) to PR21532 to help everyone update their out-of-tree testcases. This is part of PR21532. llvm-svn: 224257
* Revert "Revert "DI: Fold constant arguments into a single MDString""Duncan P. N. Exon Smith2014-10-031-12/+12
| | | | | | | | | | | | | | | | | | | | | | This reverts commit r218918, effectively reapplying r218914 after fixing an Ocaml bindings test and an Asan crash. The root cause of the latter was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a PR to investigate who requires the loose check (and why). Original commit message follows. -- This patch addresses the first stage of PR17891 by folding constant arguments together into a single MDString. Integers are stringified and a `\0` character is used as a separator. Part of PR17891. Note: I've attached my testcases upgrade scripts to the PR. If I've just broken your out-of-tree testcases, they might help. llvm-svn: 219010
* Revert "DI: Fold constant arguments into a single MDString"Duncan P. N. Exon Smith2014-10-021-12/+12
| | | | | | This reverts commit r218914 while I investigate some bots. llvm-svn: 218918
* DI: Fold constant arguments into a single MDStringDuncan P. N. Exon Smith2014-10-021-12/+12
| | | | | | | | | | | | | This patch addresses the first stage of PR17891 by folding constant arguments together into a single MDString. Integers are stringified and a `\0` character is used as a separator. Part of PR17891. Note: I've attached my testcases upgrade scripts to the PR. If I've just broken your out-of-tree testcases, they might help. llvm-svn: 218914
* Move the complex address expression out of DIVariable and into an extraAdrian Prantl2014-10-011-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. llvm-svn: 218787
* Revert r218778 while investigating buldbot breakage.Adrian Prantl2014-10-011-5/+5
| | | | | | "Move the complex address expression out of DIVariable and into an extra" llvm-svn: 218782
* Move the complex address expression out of DIVariable and into an extraAdrian Prantl2014-10-011-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! llvm-svn: 218778
* DebugInfo: Following up to r209677, refactor local variable emission to ↵David Blaikie2014-06-131-1/+2
| | | | | | | | | | | | | | | | delay the choice between emitting the definition attributes or using DW_AT_abstract_definition This doesn't fix the abstract variable handling yet, but it introduces a similar delay mechanism as was added for subprograms, causing DW_AT_location to be reordered to the beginning of the attribute list for local variables, and fixes all the test fallout for that. A subsequent commit will remove the abstract variable handling in DbgVariable and just do the abstract variable lookup at module end to ensure that abstract variables introduced after their concrete counterparts are appropriately referenced by the concrete variable. llvm-svn: 210943
* This reapplies r207235 with an additional bugfixes caught by the msanAdrian Prantl2014-04-251-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | buildbot - do not insert debug intrinsics before phi nodes. Debug info for optimized code: Support variables that are on the stack and described by DBG_VALUEs during their lifetime. Previously, when a variable was at a FrameIndex for any part of its lifetime, this would shadow all other DBG_VALUEs and only a single fbreg location would be emitted, which in fact is only valid for a small range and not the entire lexical scope of the variable. The included dbg-value-const-byref testcase demonstrates this. This patch fixes this by Local - emitting dbg.value intrinsics for allocas that are passed by reference - dropping all dbg.declares (they are now fully lowered to dbg.values) SelectionDAG - renamed constructors for SDDbgValue for better readability. - fix UserValue::match() to handle indirect values correctly - not inserting an MMI table entries for dbg.values that describe allocas. - lowering dbg.values that describe allocas into *indirect* DBG_VALUEs. CodeGenPrepare - leaving dbg.values for an alloca were they are (see comment) Other - regenerated/updated instcombine.ll testcase and included source rdar://problem/16679879 http://reviews.llvm.org/D3374 llvm-svn: 207269
* Revert "This reapplies r207130 with an additional testcase+and a missing ↵Adrian Prantl2014-04-251-5/+0
| | | | | | | | check for" This reverts commit 207235 to investigate msan buildbot breakage. llvm-svn: 207250
* This reapplies r207130 with an additional testcase+and a missing check forAdrian Prantl2014-04-251-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | AllocaInst that was missing in one location. Debug info for optimized code: Support variables that are on the stack and described by DBG_VALUEs during their lifetime. Previously, when a variable was at a FrameIndex for any part of its lifetime, this would shadow all other DBG_VALUEs and only a single fbreg location would be emitted, which in fact is only valid for a small range and not the entire lexical scope of the variable. The included dbg-value-const-byref testcase demonstrates this. This patch fixes this by Local - emitting dbg.value intrinsics for allocas that are passed by reference - dropping all dbg.declares (they are now fully lowered to dbg.values) SelectionDAG - renamed constructors for SDDbgValue for better readability. - fix UserValue::match() to handle indirect values correctly - not inserting an MMI table entries for dbg.values that describe allocas. - lowering dbg.values that describe allocas into *indirect* DBG_VALUEs. CodeGenPrepare - leaving dbg.values for an alloca were they are (see comment) Other - regenerated/updated instcombine.ll testcase and included source rdar://problem/16679879 http://reviews.llvm.org/D3374 llvm-svn: 207235
* Revert "This reapplies r207130 with an additional testcase+and a missing ↵Adrian Prantl2014-04-251-5/+0
| | | | | | | | check for" Typo in testcase. llvm-svn: 207166
* This reapplies r207130 with an additional testcase+and a missing check forAdrian Prantl2014-04-251-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | AllocaInst that was missing in one location. Debug info for optimized code: Support variables that are on the stack and described by DBG_VALUEs during their lifetime. Previously, when a variable was at a FrameIndex for any part of its lifetime, this would shadow all other DBG_VALUEs and only a single fbreg location would be emitted, which in fact is only valid for a small range and not the entire lexical scope of the variable. The included dbg-value-const-byref testcase demonstrates this. This patch fixes this by Local - emitting dbg.value intrinsics for allocas that are passed by reference - dropping all dbg.declares (they are now fully lowered to dbg.values) SelectionDAG - renamed constructors for SDDbgValue for better readability. - fix UserValue::match() to handle indirect values correctly - not inserting an MMI table entries for dbg.values that describe allocas. - lowering dbg.values that describe allocas into *indirect* DBG_VALUEs. CodeGenPrepare - leaving dbg.values for an alloca were they are (see comment) Other - regenerated/updated instcombine.ll testcase and included source rdar://problem/16679879 http://reviews.llvm.org/D3374 llvm-svn: 207165
* Revert "Debug info for optimized code: Support variables that are on the ↵Adrian Prantl2014-04-251-5/+0
| | | | | | | | stack and" This reverts commit 207130 for buildbot breakage. llvm-svn: 207162
* Debug info for optimized code: Support variables that are on the stack andAdrian Prantl2014-04-241-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | described by DBG_VALUEs during their lifetime. Previously, when a variable was at a FrameIndex for any part of its lifetime, this would shadow all other DBG_VALUEs and only a single fbreg location would be emitted, which in fact is only valid for a small range and not the entire lexical scope of the variable. The included dbg-value-const-byref testcase demonstrates this. This patch fixes this by Local - emitting dbg.value intrinsics for allocas that are passed by reference - dropping all dbg.declares (they are now fully lowered to dbg.values) SelectionDAG - renamed constructors for SDDbgValue for better readability. - fix UserValue::match() to handle indirect values correctly - not inserting an MMI table entries for dbg.values that describe allocas. - lowering dbg.values that describe allocas into *indirect* DBG_VALUEs. CodeGenPrepare - leaving dbg.values for an alloca were they are (see comment) Other - regenerated/updated instcombine-intrinsics testcase and included source rdar://problem/16679879 http://reviews.llvm.org/D3374 llvm-svn: 207130
* Debug info: Store the DIVariable in DebugLocEntry also for constants,Adrian Prantl2014-04-111-4/+4
| | | | | | | | so DwarfDebug::emitDebugLocEntry can emit them with the correct signedness. rdar://problem/15928306 llvm-svn: 206042
* Fix some doc and comment typosAlp Toker2014-04-091-1/+1
| | | | llvm-svn: 205899
* DwarfDebug: Prevent DebugLocEntry merging from coalescing two differentAdrian Prantl2014-04-011-0/+100
constants into only the first one. rdar://14874886. llvm-svn: 205357
OpenPOWER on IntegriCloud