| Commit message (Collapse) | Author | Age | Files | Lines | 
| | 
| 
| 
| 
| 
| 
|  | 
Just use REG_SEQUENCE directly, so there are fewer
instructions to need to deal with later.
llvm-svn: 220056
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Patch by Kevin Modzelewski
Reviewers: atrick, ributzka
Reviewed By: ributzka
Subscribers: llvm-commits, reames
Differential Revision: http://reviews.llvm.org/D5634
llvm-svn: 220055
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
When the input to a store instruction was a zero vector, the backend
always selected a normal vector store regardless of the non-temporal
hint. This is fixed by this patch.
This fixes PR19370.
llvm-svn: 220054
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
We should be talking about the number of source elements, not the number of destination elements, given we know at this point that the source and dest element numbers are not the same.
While we're at it, avoid writing to std::vector::end()...
Bug found with random testing and a lot of coffee.
llvm-svn: 220051
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Currently the VSX support enables use of lxvd2x and stxvd2x for 2x64
types, but does not yet use lxvw4x and stxvw4x for 4x32 types.  This
patch adds that support.
As with lxvd2x/stxvd2x, this involves straightforward overriding of
the patterns normally recognized for lvx/stvx, with preference given
to the VSX patterns when VSX is enabled.
In addition, the logic for permitting misaligned memory accesses is
modified so that v4r32 and v4i32 are treated the same as v2f64 and
v2i64 when VSX is enabled.  Finally, the DAG generation for unaligned
loads is changed to just use a normal LOAD (which will become lxvw4x)
on P8 and later hardware, where unaligned loads are preferred over
lvsl/lvx/lvx/vperm.
A number of tests now generate the VSX loads/stores instead of
lvx/stvx, so this patch adds VSX variants to those tests.  I've also
added <4 x float> tests to the vsx.ll test case, and created a
vsx-p8.ll test case to be used for testing code generation for the
P8Vector feature.  For now, that simply tests the unaligned load/store
behavior.
This has been tested along with a temporary patch to enable the VSX
and P8Vector features, with no new regressions encountered with or
without the temporary patch applied.
llvm-svn: 220047
 | 
| | 
| 
| 
| 
| 
|  | 
Reviewed-by: Tom Stellard <tom@stellard.net>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 220045
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
v2: use dyn_cast
    fixup comments
v3: use cast
Reviewed-by: Matt Arsenault <arsenm2@gmail.com>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 220044
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Patch by Bill Seurer; committed on his behalf.
These test cases generate slightly different code sequences when VSX
is activated and thus fail. The update turns off VSX explicitly for
the existing checks and then adds a second set of checks for most of
them that test the VSX instruction output.
llvm-svn: 220019
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
The bug is in ARMConstantIslands::createNewWater where the upper bound of the
new water split point is computed:
// This could point off the end of the block if we've already got constant
// pool entries following this block; only the last one is in the water list.
// Back past any possible branches (allow for a conditional and a maximally
// long unconditional).
if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
  BaseInsertOffset = UserBBI.postOffset() - UPad - 8;
  DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
}
The split point is supposed to be somewhere between the machine instruction that
loads from the constant pool entry and the end of the basic block, before branch
instructions. The code above is fine if the basic block is large enough and
there are a sufficient number of instructions following the machine instruction.
However, if the machine instruction is near the end of the basic block,
BaseInsertOffset can point to the machine instruction or another instruction
that precedes it, and this can lead to convergence failure.
This commit fixes this bug by ensuring BaseInsertOffset is larger than the
offset of the instruction following the constant-loading instruction.
rdar://problem/18581150
llvm-svn: 220015
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Summary:
Backends can use setInsertFencesForAtomic to signal to the middle-end that
montonic is the only memory ordering they can accept for
stores/loads/rmws/cmpxchg. The code lowering those accesses with a stronger
ordering to fences + monotonic accesses is currently living in
SelectionDAGBuilder.cpp. In this patch I propose moving this logic out of it
for several reasons:
- There is lots of redundancy to avoid: extremely similar logic already
  exists in AtomicExpand.
- The current code in SelectionDAGBuilder does not use any target-hooks, it
  does the same transformation for every backend that requires it
- As a result it is plain *unsound*, as it was apparently designed for ARM.
  It happens to mostly work for the other targets because they are extremely
  conservative, but Power for example had to switch to AtomicExpand to be
  able to use lwsync safely (see r218331).
- Because it produces IR-level fences, it cannot be made sound ! This is noted
  in the C++11 standard (section 29.3, page 1140):
```
Fences cannot, in general, be used to restore sequential consistency for atomic
operations with weaker ordering semantics.
```
It can also be seen by the following example (called IRIW in the litterature):
```
atomic<int> x = y = 0;
int r1, r2, r3, r4;
Thread 0:
  x.store(1);
Thread 1:
  y.store(1);
Thread 2:
  r1 = x.load();
  r2 = y.load();
Thread 3:
  r3 = y.load();
  r4 = x.load();
```
r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all seq_cst.
But if they are lowered to monotonic accesses, no amount of fences can prevent it..
This patch does three things (I could cut it into parts, but then some of them
would not be tested/testable, please tell me if you would prefer that):
- it provides a default implementation for emitLeadingFence/emitTrailingFence in
terms of IR-level fences, that mimic the original logic of SelectionDAGBuilder.
As we saw above, this is unsound, but the best that can be done without knowing
the targets well (and there is a comment warning about this risk).
- it then switches Mips/Sparc/XCore to use AtomicExpand, relying on this default
implementation (that exactly replicates the logic of SelectionDAGBuilder, so no
functional change)
- it finally erase this logic from SelectionDAGBuilder as it is dead-code.
Ideally, each target would define its own override for emitLeading/TrailingFence
using target-specific fences, but I do not know the Sparc/Mips/XCore memory model
well enough to do this, and they appear to be dealing fine with the ARM-inspired
default expansion for now (probably because they are overly conservative, as
Power was). If anyone wants to compile fences more agressively on these
platforms, the long comment should make it clear why he should first override
emitLeading/TrailingFence.
Test Plan: make check-all, no functional change
Reviewers: jfb, t.p.northover
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5474
llvm-svn: 219957
 | 
| | 
| 
| 
| 
| 
|  | 
This was resulting in invalid simplifications of sdiv
llvm-svn: 219953
 | 
| | 
| 
| 
| 
| 
|  | 
These days -std-compile-opts was just a silly alias for -O3.
llvm-svn: 219951
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
When the constant divisor was larger than 32bits, then the optimized code
generated for the AArch64 backend would emit the wrong code, because the shift
was defined as a shift of a 32bit constant '(1<<Lg2(divisor))' and we would
loose the upper 32bits.
This fixes rdar://problem/18678801.
llvm-svn: 219934
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
nodes.
Summary:
In order to support big endian targets for the BuildPairF64 nodes we
just need to swap the low/high pair registers. Additionally, for the
ExtractElementF64 nodes we have to calculate the correct stack offset
with respect to the node's register/operand that we want to extract.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5753
llvm-svn: 219931
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
In AVX512f we support 64x2 and 32x8 inserts via matching them to 32x4 and 64x4
respectively.  These are matched by "Alt" Pat<>'s (Alt stands for alternative
VTs).
Since DQ has native support for these intructions, I peeled off the non-"Alt"
part of the baseclass into vinsert_for_size_no_alt. The DQ instructions are
derived from this multiclass.  The "Alt" Pat<>'s are disabled with DQ.
Fixes <rdar://problem/18426089>
llvm-svn: 219874
 | 
| | 
| 
| 
| 
| 
|  | 
This is in preparation to adding DQ subvector inserts to this testcase.
llvm-svn: 219873
 | 
| | 
| 
| 
| 
| 
|  | 
We're inserting into a 8 wide vector, so the index should be < 8.
llvm-svn: 219872
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
The SelectDS1Addr1Offset complex pattern always tries to store constant
lds pointers in the offset operand and store a zero value in the addr operand.
Since the addr operand does not accept immediates, the zero value
needs to first be copied to a register.
This newly created zero value will not go through normal instruction
selection, so we need to manually insert a V_MOV_B32_e32 in the complex
pattern.
This bug was hidden by the fact that if there was another zero value
in the DAG that had not been selected yet, then the CSE done by the DAG
would use the unselected node for the addr operand rather than the one
that was just created.  This would lead to the zero value being selected
and the DAG automatically inserting a V_MOV_B32_e32 instruction.
llvm-svn: 219848
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
This is mostly a copy of the existing FastISel GEP code, but we have to
duplicate it for AArch64, because otherwise we would bail out even for simple
cases. This is because the standard fastEmit functions don't cover MUL at all
and ADD is lowered very inefficientily.
The original commit had a bug in the add emit logic, which has been fixed.
llvm-svn: 219831
 | 
| | 
| 
| 
|  | 
llvm-svn: 219823
 | 
| | 
| 
| 
| 
| 
|  | 
SimplifyDemandedBits would break the other uses of the operand.
llvm-svn: 219819
 | 
| | 
| 
| 
| 
| 
|  | 
This breaks our internal build bots. Reverting it to get the bots green again.
llvm-svn: 219776
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Summary:
Fixes a FIXME in MachineSinking. Instead of using the simple heuristics in
isPostDominatedBy, use the real MachinePostDominatorTree and MachineLoopInfo.
The old heuristics caused instructions to sink unnecessarily, and might create
register pressure.
This is the second try of the fix. The first one (D4814) caused a performance
regression due to failing to sink instructions out of loops (PR21115). This
patch fixes PR21115 by sinking an instruction from a deeper loop to a shallower
one regardless of whether the target block post-dominates the source.
Thanks Alexey Volkov for reporting PR21115! 
Test Plan:
Added a NVPTX codegen test to verify that our change prevents the backend from
over-sinking. It also shows the unnecessary register pressure caused by
over-sinking.
Added an X86 test to verify we can sink instructions out of loops regardless of
the dominance relationship. This test is reduced from Alexey's test in PR21115.
Updated an affected test in X86.
Also ran SPEC CINT2006 and llvm-test-suite for compilation time and runtime
performance. Results are attached separately in the review thread.
Reviewers: Jiangning, resistor, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, bruno, volkalexey, llvm-commits, meheff, eliben, jholewinski
Differential Revision: http://reviews.llvm.org/D5633
llvm-svn: 219773
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Peephole optimization that generates a single conditional branch
for csinc-branch sequences like in the examples below. This is
possible when the csinc sets or clears a register based on a condition
code and the branch checks that register. Also the condition
code may not be modified between the csinc and the original branch.
Examples:
1. Convert csinc w9, wzr, wzr, <CC>;tbnz w9, #0, 0x44
   to b.<invCC>
2. Convert csinc w9, wzr, wzr, <CC>; tbz w9, #0, 0x44
   to b.<CC>
rdar://problem/18506500
llvm-svn: 219742
 | 
| | 
| 
| 
| 
| 
| 
| 
|  | 
Patch to provide shuffle decodes and asm comments for the sse pslldq/psrldq SSE2/AVX2 byte shift instructions.
Differential Revision: http://reviews.llvm.org/D5598
llvm-svn: 219738
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Thumb1 has legitimate reasons for preferring 32-bit alignment of types
i1/i8/i16, since the 16-bit encoding of "add rD, sp, #imm" requires #imm to be
a multiple of 4. However, this is a trade-off betweem code size and RAM usage;
the DataLayout string is not the best place to represent it even if desired.
So this patch removes the extra Thumb requirements, hopefully making ARM and
Thumb completely compatible in this respect.
llvm-svn: 219734
 | 
| | 
| 
| 
| 
| 
| 
| 
|  | 
There's no hard requirement on LLVM to align local variable to 32-bits, so the
Thumb1 frame handling needs to be able to deal with variables that are only
naturally aligned without falling over.
llvm-svn: 219733
 | 
| | 
| 
| 
| 
| 
| 
| 
|  | 
This is mostly a copy of the existing FastISel GEP code, but on AArch64 we bail
out even for simple cases, because the standard fastEmit functions don't cover
MUL and ADD is lowered inefficientily.
llvm-svn: 219726
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Before, ARM and Thumb mode code had different preferred alignments, which could
lead to some rather unexpected results. There's justification for reducing it
from the default 64-bits (wasted space), but I don't think there is for going
below 32-bits.
There's no actual ABI change here, just to reassure people.
llvm-svn: 219719
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Sign-/zero-extend folding depended on the load and the integer extend to be
both selected by FastISel. This cannot always be garantueed and SelectionDAG
might interfer. This commit adds additonal checks to load and integer extend
lowering to catch this.
Related to rdar://problem/18495928.
llvm-svn: 219716
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
|  | 
This effectively reverts revert 219707. After fixing the test to work with
new function name format and renamed intrinsic.
Reviewed-by: Tom Stellard <tom@stellard.net>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 219710
 | 
| | 
| 
| 
| 
| 
| 
| 
|  | 
This reverts commit r219705.
CodeGen/R600/work-item-intrinsics.ll was failing on linux.
llvm-svn: 219707
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
v2: Add SI lowering
    Add test
v3: Place work dimensions after the kernel arguments.
v4: Calculate offset while lowering arguments
v5: rebase
v6: change prefix to AMDGPU
Reviewed-by: Tom Stellard <tom@stellard.net>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 219705
 | 
| | 
| 
| 
| 
| 
| 
| 
|  | 
Use 0 as the base address for a constant address, so if
we have a constant address we can save moves and form
read2/write2s.
llvm-svn: 219698
 | 
| | 
| 
| 
| 
| 
|  | 
workaround
llvm-svn: 219684
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
e.g Currently we'll generate following instructions if the immediate is too wide:
    MOV  X0, WideImmediate
    ADD  X1, BaseReg, X0
    LDR  X2, [X1, 0]
    Using [Base+XReg] addressing mode can save one ADD as following:
    MOV  X0, WideImmediate
    LDR  X2, [BaseReg, X0]
    Differential Revision: http://reviews.llvm.org/D5477
llvm-svn: 219665
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Summary: Test by Robert Lougher!
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5745
llvm-svn: 219617
 | 
| | 
| 
| 
| 
| 
|  | 
Patch by Matthew Wahab.
llvm-svn: 219606
 | 
| | 
| 
| 
| 
| 
|  | 
test/CodeGen/Mips/Fast-ISel/icmpa.ll.
llvm-svn: 219605
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Some early revisions of the Cortex-A53 have an erratum (835769) whereby it is
possible for a 64-bit multiply-accumulate instruction in AArch64 state to
generate an incorrect result.  The details are quite complex and hard to
determine statically, since branches in the code may exist in some
 circumstances, but all cases end with a memory (load, store, or prefetch)
instruction followed immediately by the multiply-accumulate operation.
The safest work-around for this issue is to make the compiler avoid emitting
multiply-accumulate instructions immediately after memory instructions and the
simplest way to do this is to insert a NOP.
This patch implements such work-around in the backend, enabled via the option
-aarch64-fix-cortex-a53-835769.
The work-around code generation is not enabled by default.
llvm-svn: 219603
 | 
| | 
| 
| 
| 
| 
|  | 
It broke i686 selfhosting.
llvm-svn: 219595
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
This patch improves support for commutative instructions in the x86 memory folding implementation by attempting to fold a commuted version of the instruction if the original folding fails - if that folding fails as well the instruction is 're-commuted' back to its original order before returning.
This mainly helps the stack inliner better fold reloads of 3 (or more) operand instructions (VEX encoded SSE etc.) but by performing this in the lowest foldMemoryOperandImpl implementation it also replaces the X86InstrInfo::optimizeLoadInstr version and is now used by FastISel too.
Differential Revision: http://reviews.llvm.org/D5701
llvm-svn: 219584
 | 
| | 
| 
| 
|  | 
llvm-svn: 219581
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Summary: Implement the most basic form of conditional branches in Mips fast-isel.
Test Plan:
br1.ll
run 4 flavors of test-suite. mips32 r1/r2 and at -O0/O2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits, rfuhler
Differential Revision: http://reviews.llvm.org/D5583
llvm-svn: 219556
 | 
| | 
| 
| 
| 
| 
| 
|  | 
Match SC by using offset/offset0/offset1 and printing
in decimal.
llvm-svn: 219537
 | 
| | 
| 
| 
|  | 
llvm-svn: 219536
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Currently this only functions to match simple cases
where ds_read2_* / ds_write2_* instructions can be used.
In the future it might match some of the other weird
load patterns, such as direct to LDS loads.
Currently enabled only with a subtarget feature to enable
easier testing.
llvm-svn: 219533
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Summary: Expand SelectCmp to handle floating point compare
Test Plan:
fpcmpa.ll
run 4 flavors of test-suite, mips32 r1/r2 O0/O2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits, rfuhler
Differential Revision: http://reviews.llvm.org/D5567
llvm-svn: 219530
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Summary: implement SelectCmp (integer compare ) in mips fast-isel
Test Plan:
icmpa.ll
also ran 4 test-suite flavors mips32 r1/r2 O0/O2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits, rfuhler, mcrosier
Differential Revision: http://reviews.llvm.org/D5566
llvm-svn: 219518
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Fixes a logic error in the MachineScheduler found by Steve Montgomery (and
confirmed by Andy). This has gone unfixed for months because the fix has been
found to introduce some small performance regressions. However, Andy has
recommended that, at this point, we fix this to avoid further dependence on the
incorrect behavior (and then follow-up separately on any regressions), and I
agree.
Fixes PR18883.
llvm-svn: 219512
 |