Commit message (Collapse) | Author | Age | Files | Lines | |
---|---|---|---|---|---|
* | CodeGen: BlockPlacement: Don't always tail-duplicate with no other successor. | Kyle Butt | 2017-04-10 | 1 | -2/+2 |
| | | | | | | | | | | The math works out where it can actually be counter-productive. The probability calculations correctly handle the case where the alternative is 0 probability, rely on those calculations. Includes a test case that demonstrates the problem. llvm-svn: 299892 | ||||
* | Codegen: Make chains from trellis-shaped CFGs | Kyle Butt | 2017-02-15 | 1 | -2/+2 |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lay out trellis-shaped CFGs optimally. A trellis of the shape below: A B |\ /| | \ / | | X | | / \ | |/ \| C D would be laid out A; B->C ; D by the current layout algorithm. Now we identify trellises and lay them out either A->C; B->D or A->D; B->C. This scales with an increasing number of predecessors. A trellis is a a group of 2 or more predecessor blocks that all have the same successors. because of this we can tail duplicate to extend existing trellises. As an example consider the following CFG: B D F H / \ / \ / \ / \ A---C---E---G---Ret Where A,C,E,G are all small (Currently 2 instructions). The CFG preserving layout is then A,B,C,D,E,F,G,H,Ret. The current code will copy C into B, E into D and G into F and yield the layout A,C,B(C),E,D(E),F(G),G,H,ret define void @straight_test(i32 %tag) { entry: br label %test1 test1: ; A %tagbit1 = and i32 %tag, 1 %tagbit1eq0 = icmp eq i32 %tagbit1, 0 br i1 %tagbit1eq0, label %test2, label %optional1 optional1: ; B call void @a() br label %test2 test2: ; C %tagbit2 = and i32 %tag, 2 %tagbit2eq0 = icmp eq i32 %tagbit2, 0 br i1 %tagbit2eq0, label %test3, label %optional2 optional2: ; D call void @b() br label %test3 test3: ; E %tagbit3 = and i32 %tag, 4 %tagbit3eq0 = icmp eq i32 %tagbit3, 0 br i1 %tagbit3eq0, label %test4, label %optional3 optional3: ; F call void @c() br label %test4 test4: ; G %tagbit4 = and i32 %tag, 8 %tagbit4eq0 = icmp eq i32 %tagbit4, 0 br i1 %tagbit4eq0, label %exit, label %optional4 optional4: ; H call void @d() br label %exit exit: ret void } here is the layout after D27742: straight_test: # @straight_test ; ... Prologue elided ; BB#0: # %entry ; A (merged with test1) ; ... More prologue elided mr 30, 3 andi. 3, 30, 1 bc 12, 1, .LBB0_2 ; BB#1: # %test2 ; C rlwinm. 3, 30, 0, 30, 30 beq 0, .LBB0_3 b .LBB0_4 .LBB0_2: # %optional1 ; B (copy of C) bl a nop rlwinm. 3, 30, 0, 30, 30 bne 0, .LBB0_4 .LBB0_3: # %test3 ; E rlwinm. 3, 30, 0, 29, 29 beq 0, .LBB0_5 b .LBB0_6 .LBB0_4: # %optional2 ; D (copy of E) bl b nop rlwinm. 3, 30, 0, 29, 29 bne 0, .LBB0_6 .LBB0_5: # %test4 ; G rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 b .LBB0_7 .LBB0_6: # %optional3 ; F (copy of G) bl c nop rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 .LBB0_7: # %optional4 ; H bl d nop .LBB0_8: # %exit ; Ret ld 30, 96(1) # 8-byte Folded Reload addi 1, 1, 112 ld 0, 16(1) mtlr 0 blr The tail-duplication has produced some benefit, but it has also produced a trellis which is not laid out optimally. With this patch, we improve the layouts of such trellises, and decrease the cost calculation for tail-duplication accordingly. This patch produces the layout A,C,E,G,B,D,F,H,Ret. This layout does have back edges, which is a negative, but it has a bigger compensating positive, which is that it handles the case where there are long strings of skipped blocks much better than the original layout. Both layouts handle runs of executed blocks equally well. Branch prediction also improves if there is any correlation between subsequent optional blocks. Here is the resulting concrete layout: straight_test: # @straight_test ; BB#0: # %entry ; A (merged with test1) mr 30, 3 andi. 3, 30, 1 bc 12, 1, .LBB0_4 ; BB#1: # %test2 ; C rlwinm. 3, 30, 0, 30, 30 bne 0, .LBB0_5 .LBB0_2: # %test3 ; E rlwinm. 3, 30, 0, 29, 29 bne 0, .LBB0_6 .LBB0_3: # %test4 ; G rlwinm. 3, 30, 0, 28, 28 bne 0, .LBB0_7 b .LBB0_8 .LBB0_4: # %optional1 ; B (Copy of C) bl a nop rlwinm. 3, 30, 0, 30, 30 beq 0, .LBB0_2 .LBB0_5: # %optional2 ; D (Copy of E) bl b nop rlwinm. 3, 30, 0, 29, 29 beq 0, .LBB0_3 .LBB0_6: # %optional3 ; F (Copy of G) bl c nop rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 .LBB0_7: # %optional4 ; H bl d nop .LBB0_8: # %exit Differential Revision: https://reviews.llvm.org/D28522 llvm-svn: 295223 | ||||
* | Fix testcases failing after r284036 | Krzysztof Parzyszek | 2016-10-12 | 1 | -1/+1 |
| | | | | | | The codegen has changed slightly between my tests and the commit. llvm-svn: 284049 | ||||
* | Codegen: Tail-duplicate during placement. | Kyle Butt | 2016-10-11 | 1 | -0/+190 |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The tail duplication pass uses an assumed layout when making duplication decisions. This is fine, but passes up duplication opportunities that may arise when blocks are outlined. Because we want the updated CFG to affect subsequent placement decisions, this change must occur during placement. In order to achieve this goal, TailDuplicationPass is split into a utility class, TailDuplicator, and the pass itself. The pass delegates nearly everything to the TailDuplicator object, except for looping over the blocks in a function. This allows the same code to be used for tail duplication in both places. This change, in concert with outlining optional branches, allows triangle shaped code to perform much better, esepecially when the taken/untaken branches are correlated, as it creates a second spine when the tests are small enough. Issue from previous rollback fixed, and a new test was added for that case as well. Issue was worklist/scheduling/taildup issue in layout. Issue from 2nd rollback fixed, with 2 additional tests. Issue was tail merging/loop info/tail-duplication causing issue with loops that share a header block. Issue with early tail-duplication of blocks that branch to a fallthrough predecessor fixed with test case: tail-dup-branch-to-fallthrough.ll Differential revision: https://reviews.llvm.org/D18226 llvm-svn: 283934 | ||||
* | Revert "Codegen: Tail-duplicate during placement." | Daniel Jasper | 2016-10-11 | 1 | -190/+0 |
| | | | | | | | | | This reverts commit r283842. test/CodeGen/X86/tail-dup-repeat.ll causes and llc crash with our internal testing. I'll share a link with you. llvm-svn: 283857 | ||||
* | Codegen: Tail-duplicate during placement. | Kyle Butt | 2016-10-11 | 1 | -0/+190 |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The tail duplication pass uses an assumed layout when making duplication decisions. This is fine, but passes up duplication opportunities that may arise when blocks are outlined. Because we want the updated CFG to affect subsequent placement decisions, this change must occur during placement. In order to achieve this goal, TailDuplicationPass is split into a utility class, TailDuplicator, and the pass itself. The pass delegates nearly everything to the TailDuplicator object, except for looping over the blocks in a function. This allows the same code to be used for tail duplication in both places. This change, in concert with outlining optional branches, allows triangle shaped code to perform much better, esepecially when the taken/untaken branches are correlated, as it creates a second spine when the tests are small enough. Issue from previous rollback fixed, and a new test was added for that case as well. Issue was worklist/scheduling/taildup issue in layout. Issue from 2nd rollback fixed, with 2 additional tests. Issue was tail merging/loop info/tail-duplication causing issue with loops that share a header block. Issue with early tail-duplication of blocks that branch to a fallthrough predecessor fixed with test case: tail-dup-branch-to-fallthrough.ll Differential revision: https://reviews.llvm.org/D18226 llvm-svn: 283842 | ||||
* | Revert "Codegen: Tail-duplicate during placement." | Kyle Butt | 2016-10-08 | 1 | -190/+0 |
| | | | | | | This reverts commit 71c312652c10f1855b28d06697c08d47e7a243e4. llvm-svn: 283647 | ||||
* | Codegen: Tail-duplicate during placement. | Kyle Butt | 2016-10-07 | 1 | -0/+190 |
The tail duplication pass uses an assumed layout when making duplication decisions. This is fine, but passes up duplication opportunities that may arise when blocks are outlined. Because we want the updated CFG to affect subsequent placement decisions, this change must occur during placement. In order to achieve this goal, TailDuplicationPass is split into a utility class, TailDuplicator, and the pass itself. The pass delegates nearly everything to the TailDuplicator object, except for looping over the blocks in a function. This allows the same code to be used for tail duplication in both places. This change, in concert with outlining optional branches, allows triangle shaped code to perform much better, esepecially when the taken/untaken branches are correlated, as it creates a second spine when the tests are small enough. Issue from previous rollback fixed, and a new test was added for that case as well. Issue was worklist/scheduling/taildup issue in layout. Issue from 2nd rollback fixed, with 2 additional tests. Issue was tail merging/loop info/tail-duplication causing issue with loops that share a header block. Differential revision: https://reviews.llvm.org/D18226 llvm-svn: 283619 |