summaryrefslogtreecommitdiffstats
path: root/llvm/test/CodeGen/PowerPC/tail-dup-layout.ll
Commit message (Collapse)AuthorAgeFilesLines
* CodeGen: BlockPlacement: Increase tail duplication size for O3.Kyle Butt2017-05-151-3/+94
| | | | | | | | | | | | | | | | | | | | At O3 we are more willing to increase size if we believe it will improve performance. The current threshold for tail-duplication of 2 instructions is conservative, and can be relaxed at O3. Benchmark results: llvm test-suite: 6% improvement in aha, due to duplication of loop latch 3% improvement in hexxagon 2% slowdown in lpbench. Seems related, but couldn't completely diagnose. Internal google benchmark: Produces 4% improvement on internal google protocol buffer serialization benchmarks. Differential-Revision: https://reviews.llvm.org/D32324 llvm-svn: 303084
* Fix trellis layout to avoid mis-identify triangle.Dehao Chen2017-03-231-0/+48
| | | | | | | | | | | | | | | | | | | | | Summary: For the following CFG: A->B B->C A->C If there is another edge B->D, then ABC should not be considered as triangle. Reviewers: davidxl, iteratee Reviewed By: iteratee Subscribers: nemanjai, llvm-commits Differential Revision: https://reviews.llvm.org/D31310 llvm-svn: 298661
* CodeGen: BlockPlacement: Adjust test case so it covers rL297925. NFCKyle Butt2017-03-161-15/+2
| | | | | | | | | I had ajusted the test case before when testing a chain of length 2, and then reverted it with rL296845 when I switched to 3 triangles. After running benchmarks and examining generated code at length 2 I forgot to put the test back. llvm-svn: 298000
* CodeGen: BlockPlacement: Precompute layout for chains of triangles.Kyle Butt2017-03-031-0/+81
| | | | | | | | | | | | | | | | | | | | | | | | | | For chains of triangles with small join blocks that can be tail duplicated, a simple calculation of probabilities is insufficient. Tail duplication can be profitable in 3 different ways for these cases: 1) The post-dominators marked 50% are actually taken 56% (This shrinks with longer chains) 2) The chains are statically correlated. Branch probabilities have a very U-shaped distribution. [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] If the branches in a chain are likely to be from the same side of the distribution as their predecessor, but are independent at runtime, this transformation is profitable. (Because the cost of being wrong is a small fixed cost, unlike the standard triangle layout where the cost of being wrong scales with the # of triangles.) 3) The chains are dynamically correlated. If the probability that a previous branch was taken positively influences whether the next branch will be taken We believe that 2 and 3 are common enough to justify the small margin in 1. The code pre-scans a function's CFG to identify this pattern and marks the edges so that the standard layout algorithm can use the computed results. llvm-svn: 296845
* Codegen: Make chains from trellis-shaped CFGsKyle Butt2017-02-151-26/+352
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lay out trellis-shaped CFGs optimally. A trellis of the shape below: A B |\ /| | \ / | | X | | / \ | |/ \| C D would be laid out A; B->C ; D by the current layout algorithm. Now we identify trellises and lay them out either A->C; B->D or A->D; B->C. This scales with an increasing number of predecessors. A trellis is a a group of 2 or more predecessor blocks that all have the same successors. because of this we can tail duplicate to extend existing trellises. As an example consider the following CFG: B D F H / \ / \ / \ / \ A---C---E---G---Ret Where A,C,E,G are all small (Currently 2 instructions). The CFG preserving layout is then A,B,C,D,E,F,G,H,Ret. The current code will copy C into B, E into D and G into F and yield the layout A,C,B(C),E,D(E),F(G),G,H,ret define void @straight_test(i32 %tag) { entry: br label %test1 test1: ; A %tagbit1 = and i32 %tag, 1 %tagbit1eq0 = icmp eq i32 %tagbit1, 0 br i1 %tagbit1eq0, label %test2, label %optional1 optional1: ; B call void @a() br label %test2 test2: ; C %tagbit2 = and i32 %tag, 2 %tagbit2eq0 = icmp eq i32 %tagbit2, 0 br i1 %tagbit2eq0, label %test3, label %optional2 optional2: ; D call void @b() br label %test3 test3: ; E %tagbit3 = and i32 %tag, 4 %tagbit3eq0 = icmp eq i32 %tagbit3, 0 br i1 %tagbit3eq0, label %test4, label %optional3 optional3: ; F call void @c() br label %test4 test4: ; G %tagbit4 = and i32 %tag, 8 %tagbit4eq0 = icmp eq i32 %tagbit4, 0 br i1 %tagbit4eq0, label %exit, label %optional4 optional4: ; H call void @d() br label %exit exit: ret void } here is the layout after D27742: straight_test: # @straight_test ; ... Prologue elided ; BB#0: # %entry ; A (merged with test1) ; ... More prologue elided mr 30, 3 andi. 3, 30, 1 bc 12, 1, .LBB0_2 ; BB#1: # %test2 ; C rlwinm. 3, 30, 0, 30, 30 beq 0, .LBB0_3 b .LBB0_4 .LBB0_2: # %optional1 ; B (copy of C) bl a nop rlwinm. 3, 30, 0, 30, 30 bne 0, .LBB0_4 .LBB0_3: # %test3 ; E rlwinm. 3, 30, 0, 29, 29 beq 0, .LBB0_5 b .LBB0_6 .LBB0_4: # %optional2 ; D (copy of E) bl b nop rlwinm. 3, 30, 0, 29, 29 bne 0, .LBB0_6 .LBB0_5: # %test4 ; G rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 b .LBB0_7 .LBB0_6: # %optional3 ; F (copy of G) bl c nop rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 .LBB0_7: # %optional4 ; H bl d nop .LBB0_8: # %exit ; Ret ld 30, 96(1) # 8-byte Folded Reload addi 1, 1, 112 ld 0, 16(1) mtlr 0 blr The tail-duplication has produced some benefit, but it has also produced a trellis which is not laid out optimally. With this patch, we improve the layouts of such trellises, and decrease the cost calculation for tail-duplication accordingly. This patch produces the layout A,C,E,G,B,D,F,H,Ret. This layout does have back edges, which is a negative, but it has a bigger compensating positive, which is that it handles the case where there are long strings of skipped blocks much better than the original layout. Both layouts handle runs of executed blocks equally well. Branch prediction also improves if there is any correlation between subsequent optional blocks. Here is the resulting concrete layout: straight_test: # @straight_test ; BB#0: # %entry ; A (merged with test1) mr 30, 3 andi. 3, 30, 1 bc 12, 1, .LBB0_4 ; BB#1: # %test2 ; C rlwinm. 3, 30, 0, 30, 30 bne 0, .LBB0_5 .LBB0_2: # %test3 ; E rlwinm. 3, 30, 0, 29, 29 bne 0, .LBB0_6 .LBB0_3: # %test4 ; G rlwinm. 3, 30, 0, 28, 28 bne 0, .LBB0_7 b .LBB0_8 .LBB0_4: # %optional1 ; B (Copy of C) bl a nop rlwinm. 3, 30, 0, 30, 30 beq 0, .LBB0_2 .LBB0_5: # %optional2 ; D (Copy of E) bl b nop rlwinm. 3, 30, 0, 29, 29 beq 0, .LBB0_3 .LBB0_6: # %optional3 ; F (Copy of G) bl c nop rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 .LBB0_7: # %optional4 ; H bl d nop .LBB0_8: # %exit Differential Revision: https://reviews.llvm.org/D28522 llvm-svn: 295223
* Revert "CodeGen: Allow small copyable blocks to "break" the CFG."Kyle Butt2017-01-111-52/+2
| | | | | | | | | This reverts commit ada6595a526d71df04988eb0a4b4fe84df398ded. This needs a simple probability check because there are some cases where it is not profitable. llvm-svn: 291695
* CodeGen: Allow small copyable blocks to "break" the CFG.Kyle Butt2017-01-101-2/+52
| | | | | | | | | | | When choosing the best successor for a block, ordinarily we would have preferred a block that preserves the CFG unless there is a strong probability the other direction. For small blocks that can be duplicated we now skip that requirement as well. Differential revision: https://reviews.llvm.org/D27742 llvm-svn: 291609
* Codegen: Tail-duplicate during placement.Kyle Butt2016-10-111-0/+100
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The tail duplication pass uses an assumed layout when making duplication decisions. This is fine, but passes up duplication opportunities that may arise when blocks are outlined. Because we want the updated CFG to affect subsequent placement decisions, this change must occur during placement. In order to achieve this goal, TailDuplicationPass is split into a utility class, TailDuplicator, and the pass itself. The pass delegates nearly everything to the TailDuplicator object, except for looping over the blocks in a function. This allows the same code to be used for tail duplication in both places. This change, in concert with outlining optional branches, allows triangle shaped code to perform much better, esepecially when the taken/untaken branches are correlated, as it creates a second spine when the tests are small enough. Issue from previous rollback fixed, and a new test was added for that case as well. Issue was worklist/scheduling/taildup issue in layout. Issue from 2nd rollback fixed, with 2 additional tests. Issue was tail merging/loop info/tail-duplication causing issue with loops that share a header block. Issue with early tail-duplication of blocks that branch to a fallthrough predecessor fixed with test case: tail-dup-branch-to-fallthrough.ll Differential revision: https://reviews.llvm.org/D18226 llvm-svn: 283934
* Revert "Codegen: Tail-duplicate during placement."Daniel Jasper2016-10-111-100/+0
| | | | | | | | | This reverts commit r283842. test/CodeGen/X86/tail-dup-repeat.ll causes and llc crash with our internal testing. I'll share a link with you. llvm-svn: 283857
* Codegen: Tail-duplicate during placement.Kyle Butt2016-10-111-0/+100
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The tail duplication pass uses an assumed layout when making duplication decisions. This is fine, but passes up duplication opportunities that may arise when blocks are outlined. Because we want the updated CFG to affect subsequent placement decisions, this change must occur during placement. In order to achieve this goal, TailDuplicationPass is split into a utility class, TailDuplicator, and the pass itself. The pass delegates nearly everything to the TailDuplicator object, except for looping over the blocks in a function. This allows the same code to be used for tail duplication in both places. This change, in concert with outlining optional branches, allows triangle shaped code to perform much better, esepecially when the taken/untaken branches are correlated, as it creates a second spine when the tests are small enough. Issue from previous rollback fixed, and a new test was added for that case as well. Issue was worklist/scheduling/taildup issue in layout. Issue from 2nd rollback fixed, with 2 additional tests. Issue was tail merging/loop info/tail-duplication causing issue with loops that share a header block. Issue with early tail-duplication of blocks that branch to a fallthrough predecessor fixed with test case: tail-dup-branch-to-fallthrough.ll Differential revision: https://reviews.llvm.org/D18226 llvm-svn: 283842
* Revert "Codegen: Tail-duplicate during placement."Kyle Butt2016-10-081-100/+0
| | | | | | This reverts commit 71c312652c10f1855b28d06697c08d47e7a243e4. llvm-svn: 283647
* Codegen: Tail-duplicate during placement.Kyle Butt2016-10-071-0/+100
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The tail duplication pass uses an assumed layout when making duplication decisions. This is fine, but passes up duplication opportunities that may arise when blocks are outlined. Because we want the updated CFG to affect subsequent placement decisions, this change must occur during placement. In order to achieve this goal, TailDuplicationPass is split into a utility class, TailDuplicator, and the pass itself. The pass delegates nearly everything to the TailDuplicator object, except for looping over the blocks in a function. This allows the same code to be used for tail duplication in both places. This change, in concert with outlining optional branches, allows triangle shaped code to perform much better, esepecially when the taken/untaken branches are correlated, as it creates a second spine when the tests are small enough. Issue from previous rollback fixed, and a new test was added for that case as well. Issue was worklist/scheduling/taildup issue in layout. Issue from 2nd rollback fixed, with 2 additional tests. Issue was tail merging/loop info/tail-duplication causing issue with loops that share a header block. Differential revision: https://reviews.llvm.org/D18226 llvm-svn: 283619
* Revert "Codegen: Tail-duplicate during placement."Kyle Butt2016-10-051-100/+0
| | | | | | | | | | This reverts commit 062ace9764953e9769142c1099281a345f9b6bdc. Issue with loop info and block removal revealed by polly. I have a fix for this issue already in another patch, I'll re-roll this together with that fix, and a test case. llvm-svn: 283292
* Codegen: Tail-duplicate during placement.Kyle Butt2016-10-041-0/+100
| | | | | | | | | | | | | | | | | | | | | | | | | | The tail duplication pass uses an assumed layout when making duplication decisions. This is fine, but passes up duplication opportunities that may arise when blocks are outlined. Because we want the updated CFG to affect subsequent placement decisions, this change must occur during placement. In order to achieve this goal, TailDuplicationPass is split into a utility class, TailDuplicator, and the pass itself. The pass delegates nearly everything to the TailDuplicator object, except for looping over the blocks in a function. This allows the same code to be used for tail duplication in both places. This change, in concert with outlining optional branches, allows triangle shaped code to perform much better, esepecially when the taken/untaken branches are correlated, as it creates a second spine when the tests are small enough. Issue from previous rollback fixed, and a new test was added for that case as well. Differential revision: https://reviews.llvm.org/D18226 llvm-svn: 283274
* Revert "Codegen: Tail-duplicate during placement."Kyle Butt2016-10-041-100/+0
| | | | | | | | This reverts commit ff234efbe23528e4f4c80c78057b920a51f434b2. Causing crashes on aarch64 build. llvm-svn: 283172
* Codegen: Tail-duplicate during placement.Kyle Butt2016-10-041-0/+100
The tail duplication pass uses an assumed layout when making duplication decisions. This is fine, but passes up duplication opportunities that may arise when blocks are outlined. Because we want the updated CFG to affect subsequent placement decisions, this change must occur during placement. In order to achieve this goal, TailDuplicationPass is split into a utility class, TailDuplicator, and the pass itself. The pass delegates nearly everything to the TailDuplicator object, except for looping over the blocks in a function. This allows the same code to be used for tail duplication in both places. This change, in concert with outlining optional branches, allows triangle shaped code to perform much better, esepecially when the taken/untaken branches are correlated, as it creates a second spine when the tests are small enough. llvm-svn: 283164
OpenPOWER on IntegriCloud