summaryrefslogtreecommitdiffstats
path: root/llvm/test/CodeGen/AMDGPU/cf-loop-on-constant.ll
Commit message (Collapse)AuthorAgeFilesLines
* AMDGPU: Try a lot harder to emit scalar loadsMatt Arsenault2018-06-071-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This has two main components. First, widen widen short constant loads in DAG when they have the correct alignment. This is already done a bit in AMDGPUCodeGenPrepare, since that has access to DivergenceAnalysis. This can't help kernarg loads created in the DAG. Start to use DAG divergence analysis to help this case. The second part is to avoid kernel argument lowering breaking the alignment of short vector elements because calling convention lowering wants to split everything into legal register types. When loading a split type, load the nearest 4-byte aligned segment and shift to get the desired bits. This extra load of the earlier argument piece ends up merging, and the bit extract hopefully folds out. There are a number of improvements and regressions with this, but I think as-is this is a better compromise between several of the worst parts of SelectionDAG. Particularly when i16 is legal, this produces worse code for i8 and i16 element vector kernel arguments. This is partially due to the very weak load merging the DAG does. It only looks for fairly specific combines between pairs of loads which no longer appear. In particular this causes v4i16 loads to be split into 2 components when previously the two halves were merged. Worse, because of the newly introduced shifts, there is a lot more unnecessary vector packing and unpacking code emitted. At least some of this is due to reporting false for isTypeDesirableForOp for i16 as a workaround for the lack of divergence information in the DAG. The cases where this happens it doesn't actually matter, but the relevant code in SimplifyDemandedBits doens't have the context to know to ignore this. The use of the scalar cache is probably more important than the mess of mostly scalar instructions doing this packing and unpacking. Future work can fix this, possibly by making better use of the new DAG divergence information for controlling promotion decisions, or adding another version of shift + trunc + shift combines that doesn't only know about the used types. llvm-svn: 334180
* AMDGPU/SI: Handle infinite loop for the structurizer to work with CFG with ↵Changpeng Fang2018-05-171-1/+2
| | | | | | | | | | | | | | | | | | | infinite loops. Summary: The current StructurizeCFG pass only works for CFG with one exit. AMDGPUUnifyDivergentExitNodes combines multiple "return" blocks and/or "unreachable" blocks to one exit block for the Structurizer to work. However, infinite loop is another kind of special "exit", and if we don't handle it, the case of multiple exits will prevent the structurizer from working. In this work, for each infinite loop, we add a dummy edge to the "return" block, and thus the AMDGPUUnifyDivergentExitNodes pass will work with infinite loops. This will make CFG with infinite loops be structurized. Reviewer: nhaehnle Differential Revision: https://reviews.llvm.org/D46340 llvm-svn: 332625
* [AMDGPU] Fixed incorrect uniform branch conditionTim Renouf2018-01-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | Summary: I had a case where multiple nested uniform ifs resulted in code that did v_cmp comparisons, combining the results with s_and_b64, s_or_b64 and s_xor_b64 and using the resulting mask in s_cbranch_vccnz, without first ensuring that bits for inactive lanes were clear. There was already code for inserting an "s_and_b64 vcc, exec, vcc" to clear bits for inactive lanes in the case that the branch is instruction selected as s_cbranch_scc1 and is then changed to s_cbranch_vccnz in SIFixSGPRCopies. I have added the same code into SILowerControlFlow for the case that the branch is instruction selected as s_cbranch_vccnz. This de-optimizes the code in some cases where the s_and is not needed, because vcc is the result of a v_cmp, or multiple v_cmp instructions combined by s_and/s_or. We should add a pass to re-optimize those cases. Reviewers: arsenm, kzhuravl Subscribers: wdng, yaxunl, t-tye, llvm-commits, dstuttard, timcorringham, nhaehnle Differential Revision: https://reviews.llvm.org/D41292 llvm-svn: 322119
* [CodeGen] Unify MBB reference format in both MIR and debug outputFrancis Visoiu Mistrih2017-12-041-1/+1
| | | | | | | | | | | | | | | | As part of the unification of the debug format and the MIR format, print MBB references as '%bb.5'. The MIR printer prints the IR name of a MBB only for block definitions. * find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g' * find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g' * find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g' * grep -nr 'BB#' and fix Differential Revision: https://reviews.llvm.org/D40422 llvm-svn: 319665
* AMDGPU: Mark all unspecified CC functions in tests as amdgpu_kernelMatt Arsenault2017-03-211-5/+5
| | | | | | | | | | | | Currently the default C calling convention functions are treated the same as compute kernels. Make this explicit so the default calling convention can be changed to a non-kernel. Converted with perl -pi -e 's/define void/define amdgpu_kernel void/' on the relevant test directories (and undoing in one place that actually wanted a non-kernel). llvm-svn: 298444
* Codegen: Make chains from trellis-shaped CFGsKyle Butt2017-02-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lay out trellis-shaped CFGs optimally. A trellis of the shape below: A B |\ /| | \ / | | X | | / \ | |/ \| C D would be laid out A; B->C ; D by the current layout algorithm. Now we identify trellises and lay them out either A->C; B->D or A->D; B->C. This scales with an increasing number of predecessors. A trellis is a a group of 2 or more predecessor blocks that all have the same successors. because of this we can tail duplicate to extend existing trellises. As an example consider the following CFG: B D F H / \ / \ / \ / \ A---C---E---G---Ret Where A,C,E,G are all small (Currently 2 instructions). The CFG preserving layout is then A,B,C,D,E,F,G,H,Ret. The current code will copy C into B, E into D and G into F and yield the layout A,C,B(C),E,D(E),F(G),G,H,ret define void @straight_test(i32 %tag) { entry: br label %test1 test1: ; A %tagbit1 = and i32 %tag, 1 %tagbit1eq0 = icmp eq i32 %tagbit1, 0 br i1 %tagbit1eq0, label %test2, label %optional1 optional1: ; B call void @a() br label %test2 test2: ; C %tagbit2 = and i32 %tag, 2 %tagbit2eq0 = icmp eq i32 %tagbit2, 0 br i1 %tagbit2eq0, label %test3, label %optional2 optional2: ; D call void @b() br label %test3 test3: ; E %tagbit3 = and i32 %tag, 4 %tagbit3eq0 = icmp eq i32 %tagbit3, 0 br i1 %tagbit3eq0, label %test4, label %optional3 optional3: ; F call void @c() br label %test4 test4: ; G %tagbit4 = and i32 %tag, 8 %tagbit4eq0 = icmp eq i32 %tagbit4, 0 br i1 %tagbit4eq0, label %exit, label %optional4 optional4: ; H call void @d() br label %exit exit: ret void } here is the layout after D27742: straight_test: # @straight_test ; ... Prologue elided ; BB#0: # %entry ; A (merged with test1) ; ... More prologue elided mr 30, 3 andi. 3, 30, 1 bc 12, 1, .LBB0_2 ; BB#1: # %test2 ; C rlwinm. 3, 30, 0, 30, 30 beq 0, .LBB0_3 b .LBB0_4 .LBB0_2: # %optional1 ; B (copy of C) bl a nop rlwinm. 3, 30, 0, 30, 30 bne 0, .LBB0_4 .LBB0_3: # %test3 ; E rlwinm. 3, 30, 0, 29, 29 beq 0, .LBB0_5 b .LBB0_6 .LBB0_4: # %optional2 ; D (copy of E) bl b nop rlwinm. 3, 30, 0, 29, 29 bne 0, .LBB0_6 .LBB0_5: # %test4 ; G rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 b .LBB0_7 .LBB0_6: # %optional3 ; F (copy of G) bl c nop rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 .LBB0_7: # %optional4 ; H bl d nop .LBB0_8: # %exit ; Ret ld 30, 96(1) # 8-byte Folded Reload addi 1, 1, 112 ld 0, 16(1) mtlr 0 blr The tail-duplication has produced some benefit, but it has also produced a trellis which is not laid out optimally. With this patch, we improve the layouts of such trellises, and decrease the cost calculation for tail-duplication accordingly. This patch produces the layout A,C,E,G,B,D,F,H,Ret. This layout does have back edges, which is a negative, but it has a bigger compensating positive, which is that it handles the case where there are long strings of skipped blocks much better than the original layout. Both layouts handle runs of executed blocks equally well. Branch prediction also improves if there is any correlation between subsequent optional blocks. Here is the resulting concrete layout: straight_test: # @straight_test ; BB#0: # %entry ; A (merged with test1) mr 30, 3 andi. 3, 30, 1 bc 12, 1, .LBB0_4 ; BB#1: # %test2 ; C rlwinm. 3, 30, 0, 30, 30 bne 0, .LBB0_5 .LBB0_2: # %test3 ; E rlwinm. 3, 30, 0, 29, 29 bne 0, .LBB0_6 .LBB0_3: # %test4 ; G rlwinm. 3, 30, 0, 28, 28 bne 0, .LBB0_7 b .LBB0_8 .LBB0_4: # %optional1 ; B (Copy of C) bl a nop rlwinm. 3, 30, 0, 30, 30 beq 0, .LBB0_2 .LBB0_5: # %optional2 ; D (Copy of E) bl b nop rlwinm. 3, 30, 0, 29, 29 beq 0, .LBB0_3 .LBB0_6: # %optional3 ; F (Copy of G) bl c nop rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 .LBB0_7: # %optional4 ; H bl d nop .LBB0_8: # %exit Differential Revision: https://reviews.llvm.org/D28522 llvm-svn: 295223
* AMDGPU/SI: Avoid moving PHIs to VALU when phi values are defined in scalar ↵Tom Stellard2016-11-291-0/+3
| | | | | | | | | | | | branches Reviewers: arsenm Subscribers: arsenm, llvm-commits, kzhuravl Differential Revision: https://reviews.llvm.org/D23417 llvm-svn: 288095
* AMDGPU: Remove unnecessary and on conditional branchMatt Arsenault2016-11-071-1/+0
| | | | | | | The comment explaining why this was necessary is incorrect in its description of v_cmp's behavior for inactive workitems. llvm-svn: 286134
* AMDGPU: Use unsigned compare for eq/neMatt Arsenault2016-09-301-1/+1
| | | | | | | | | | For some reason there are both of these available, except for scalar 64-bit compares which only has u64. I'm not sure why there are both (I'm guessing it's for the one bit inputs we don't use), but for consistency always using the unsigned one. llvm-svn: 282832
* AMDGPU: Un-xfail and add testsMatt Arsenault2016-06-241-0/+121
Un XFAIL a few tests plus a few more I had lying around in my tree, which seem to all work now but I don't see tests that quite test the same things. llvm-svn: 273655
OpenPOWER on IntegriCloud