| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unlike SelectionDAG, treat this as a normally legalizable operation.
In SelectionDAG this is supposed to only ever formed if it's legal,
but I've found that to be restricting. For AMDGPU this is contextually
legal depending on whether denormal flushing is allowed in the use
function.
Technically we currently treat the denormal mode as a subtarget
feature, so custom lowering could be avoided. However I consider this
to be a defect, and this should be contextually dependent on the
controllable rounding mode of the parent function.
llvm-svn: 371800
|
|
|
|
| |
llvm-svn: 371798
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mir parsing
Summary:
This catches malformed mir files which specify alignment as log2 instead of pow2.
See https://reviews.llvm.org/D65945 for reference,
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: MatzeB, qcolombet, dschuff, arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67433
llvm-svn: 371608
|
|
|
|
|
|
|
|
| |
The scalar f64 patterns don't work yet because they fail on multiple
results from the unused implicit def of scc in the result bit
operation.
llvm-svn: 371542
|
|
|
|
|
|
|
|
|
|
|
| |
f64 doesn't work yet because tablegen currently doesn't handlde
REG_SEQUENCE.
This does regress some multi use VALU fneg cases since now the
immediate remains in an SGPR, and more moves are used for legalizing
the xor. This is a SIFixSGPRCopies deficiency.
llvm-svn: 371540
|
|
|
|
| |
llvm-svn: 371539
|
|
|
|
| |
llvm-svn: 371538
|
|
|
|
| |
llvm-svn: 371536
|
|
|
|
|
|
|
| |
Legalize by casting to a 64-bit constant address. This isn't how the
DAG implements it, but it should.
llvm-svn: 371535
|
|
|
|
|
|
|
|
| |
There's still a lot more to do, but this handles decomposing due to
alignment. I've gotten it to the point where nothing crashes or
infinite loops the legalizer.
llvm-svn: 371533
|
|
|
|
| |
llvm-svn: 371471
|
|
|
|
|
|
|
|
| |
Handle it the same way as G_BUILD_VECTOR_TRUNC. Arguably only
G_BUILD_VECTOR_TRUNC should be legal for this, but G_BUILD_VECTOR will
probably be more convenient in most cases.
llvm-svn: 371440
|
|
|
|
|
|
| |
Also fixes missing SubtargetPredicate on f16 class instructions.
llvm-svn: 371436
|
|
|
|
| |
llvm-svn: 371435
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This enables GlobalISel to handle various intrinsics. The custom node
pattern will be ignored, and the intrinsic will work. This will also
allow SelectionDAG to directly select the intrinsics, but as they are
all custom lowered to the nodes, this ends up leaving dead code in the
table.
Eventually either GlobalISel should add the equivalent of custom nodes
equivalent, or intrinsics should be directly used. These each have
different tradeoffs.
There are a few more to handle, but these are easy to handle
ones. Some others fail for other reasons.
llvm-svn: 371432
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unfortunately MnemonicAlias defines a "Predicates" field just like an
instruction or pattern, with a somewhat different interpretation.
This ends up overriding the intended Predicates set by
PredicateControl on the pseudoinstruction defintions with an empty
list. This allowed incorrectly selecting instructions that should have
been rejected due to the SubtargetPredicate from patterns on the
instruction definition.
This does remove the divergent predicate from the 64-bit shift
patterns, which were already not used for the 32-bit shift, so I'm not
sure what the point was. This also removes a second, redundant copy of
the 64-bit divergent patterns.
llvm-svn: 371427
|
|
|
|
|
|
| |
Handle the simple case that lowers to a constant.
llvm-svn: 371424
|
|
|
|
|
|
|
|
|
|
| |
Treat this as legal on gfx9 since it can use S_PACK_* instructions for
this.
This isn't used by anything yet. The same will probably apply to
16-bit G_BUILD_VECTOR without the trunc.
llvm-svn: 371423
|
|
|
|
|
|
|
| |
A new check for an explicitly atomic MMO is needed to avoid
incorrectly matching pattern for non-atomic loads
llvm-svn: 371418
|
|
|
|
| |
llvm-svn: 371416
|
|
|
|
|
|
| |
There are no scalar extloads.
llvm-svn: 371414
|
|
|
|
|
|
|
| |
Fixes 8-byte, 8-byte aligned LDS loads. 16-byte case still broken due
to not be reported as legal.
llvm-svn: 371413
|
|
|
|
| |
llvm-svn: 371412
|
|
|
|
|
|
|
| |
The pointer is always a VGPR. Also fix hardcoding the pointer size to
64.
llvm-svn: 371411
|
|
|
|
| |
llvm-svn: 371409
|
|
|
|
| |
llvm-svn: 371407
|
|
|
|
| |
llvm-svn: 371253
|
|
|
|
|
|
| |
There should probably be a size only matcher.
llvm-svn: 371155
|
|
|
|
|
|
|
| |
The library currently uses ptrtoint and directly checks the queue ptr
for this, which counts as a pointer capture.
llvm-svn: 371009
|
|
|
|
|
|
| |
Avoids SSA violations in a future patch.
llvm-svn: 371008
|
|
|
|
| |
llvm-svn: 371007
|
|
|
|
| |
llvm-svn: 371006
|
|
|
|
| |
llvm-svn: 370980
|
|
|
|
| |
llvm-svn: 370979
|
|
|
|
|
|
| |
This is mostly for the benefit of patterns which use 16-bit constants.
llvm-svn: 370921
|
|
|
|
| |
llvm-svn: 370402
|
|
|
|
|
|
|
|
|
|
|
| |
This is a special case because one node maps to two different G_
instructions, and the operand order is changed.
This mostly enables G_FCMP for AMDPGPU. G_ICMP is still manually
selected for now since it has the SALU and VALU complication to deal
with.
llvm-svn: 370280
|
|
|
|
|
|
|
| |
If the result register already had a register class assigned, the
sources may not have been properly constrained.
llvm-svn: 370150
|
|
|
|
| |
llvm-svn: 370140
|
|
|
|
|
|
|
|
|
| |
Fix typos. Use Hi and Lo prefixes for Or instead of LHS and RHS
to match names of surrounding variables.
Differential Revision: https://reviews.llvm.org/D66587
llvm-svn: 370062
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
new artifacts
Summary:
Currently, Legalizer aborts if it’s unable to legalize artifacts. However, it’s
possible to combine them after processing the rest of the instruction because
the legalization is likely to generate more artifacts that allow ArtifactCombiner
to combine away them.
Instead, move illegal artifacts to another list called RetryList and wait until all of the
instruction in InstList are legalized. After that, check if there is any new artifacts and
try to combine them again if that’s the case. If not, abort. The idea is similar to D59339,
but the approach is a bit different.
This patch fixes the issue described above, but the legalizer still may be unable to handle
some cases depending on when to legalize artifacts. So, in the long run, we probably need
a different legalization strategy that handles this dependency in a better way.
Reviewers: dsanders, aditya_nandakumar, qcolombet, arsenm, aemerson, paquette
Reviewed By: dsanders
Subscribers: jvesely, wdng, nhaehnle, rovka, javed.absar, hiraditya, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65894
llvm-svn: 369805
|
|
|
|
|
|
|
|
| |
The x86 tests are now broken (in paticular add-scalar.ll now hits the
DAG fallback) due to not handling G_UADDO. The DAG x86 backend has a
custom lowering for this, so that will need to be implemented.
llvm-svn: 369673
|
|
|
|
|
|
|
|
| |
This is necessary for handling <3 x s16> on AMDGPU, assuming this
should be handled as 2 separate legalization actions. The alternative
would be for fewerElementsVector to handle 3->2.
llvm-svn: 369547
|
|
|
|
|
|
|
|
| |
source index
https://reviews.llvm.org/D66182
llvm-svn: 368781
|
|
|
|
|
|
| |
https://reviews.llvm.org/D66171
llvm-svn: 368753
|
|
|
|
|
|
| |
Odd sized vectors aren't handled yet.
llvm-svn: 368713
|
|
|
|
| |
llvm-svn: 368709
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Targets often have instructions that can sign-extend certain cases faster
than the equivalent shift-left/arithmetic-shift-right. Such cases can be
identified by matching a shift-left/shift-right pair but there are some
issues with this in the context of combines. For example, suppose you can
sign-extend 8-bit up to 32-bit with a target extend instruction.
%1:_(s32) = G_SHL %0:_(s32), i32 24 # (I've inlined the G_CONSTANT for brevity)
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_ASHR %2:_(s32), i32 1
would reasonably combine to:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 25
which no longer matches the special case. If your shifts and extend are
equal cost, this would break even as a pair of shifts but if your shift is
more expensive than the extend then it's cheaper as:
%2:_(s32) = G_SEXT_INREG %0:_(s32), i32 8
%3:_(s32) = G_ASHR %2:_(s32), i32 1
It's possible to match the shift-pair in ISel and emit an extend and ashr.
However, this is far from the only way to break this shift pair and make
it hard to match the extends. Another example is that with the right
known-zeros, this:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_MUL %2:_(s32), i32 2
can become:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 23
All upstream targets have been configured to lower it to the current
G_SHL,G_ASHR pair but will likely want to make it legal in some cases to
handle their faster cases.
To follow-up: Provide a way to legalize based on the constant. At the
moment, I'm thinking that the best way to achieve this is to provide the
MI in LegalityQuery but that opens the door to breaking core principles
of the legalizer (legality is not context sensitive). That said, it's
worth noting that looking at other instructions and acting on that
information doesn't violate this principle in itself. It's only a
violation if, at the end of legalization, a pass that checks legality
without being able to see the context would say an instruction might not be
legal. That's a fairly subtle distinction so to give a concrete example,
saying %2 in:
%1 = G_CONSTANT 16
%2 = G_SEXT_INREG %0, %1
is legal is in violation of that principle if the legality of %2 depends
on %1 being constant and/or being 16. However, legalizing to either:
%2 = G_SEXT_INREG %0, 16
or:
%1 = G_CONSTANT 16
%2:_(s32) = G_SHL %0, %1
%3:_(s32) = G_ASHR %2, %1
depending on whether %1 is constant and 16 does not violate that principle
since both outputs are genuinely legal.
Reviewers: bogner, aditya_nandakumar, volkan, aemerson, paquette, arsenm
Subscribers: sdardis, jvesely, wdng, nhaehnle, rovka, kristof.beyls, javed.absar, hiraditya, jrtc27, atanasyan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61289
llvm-svn: 368487
|
|
|
|
|
|
|
|
| |
Without context we assume SGPR. Allowing VGPR constants theoretically
helps avoid a copy. This seems to not actually work now, and the
choice isn't based on the use bank.
llvm-svn: 367871
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
AMDGPU sometimes has legal s16 and <2 x s16> operations, but all
registers are really 32-bit. An unmerge destination really should ben
widened to a 32-bit register. If widening a scalarizing vector with a
target size that matches the vector size, bitcast to integer and
extract the relevant bits with shifts.
I'm not sure if this is the right place for this. This could arguably
be part of widenScalar for the result. I also have a growing feeling
that we're missing a bitcast legalize action.
llvm-svn: 367604
|