| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Outlining from noreturn functions doesn't do the correct thing right now. The
outliner should respect that the caller is marked noreturn. In the event that
we have a noreturn function, and the outlined code is in tail position, the
outliner will not see that the outlined function should be tail called. As a
result, you end up with a regular call containing a return.
Fixing this requires that we check that all candidates live inside noreturn
functions. So, for the sake of correctness, don't outline from noreturn
functions right now.
Add machine-outliner-noreturn.mir to test this.
llvm-svn: 373791
|
|
|
|
|
|
|
| |
https://reviews.llvm.org/rL373600 added an AArch64 testcase in top dir
which should be moved to Codegen dir.
llvm-svn: 373657
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adds support to AArch64FrameLowering to allocate fixed-stack SVE objects.
The focus of this patch is purely to allow the stack frame to
allocate/deallocate space for scalable SVE objects. More dynamic
allocation (at compile-time, i.e. determining placement of SVE objects
on the stack), or resolving frame-index references that include
scalable-sized offsets, are left for subsequent patches.
SVE objects are allocated in the stack frame as a separate region below
the callee-save area, and above the alignment gap. This is done so that
the SVE objects can be accessed directly from the FP at (runtime)
VL-based offsets to benefit from using the VL-scaled addressing modes.
The layout looks as follows:
+-------------+
| stack arg |
+-------------+
| Callee Saves|
| X29, X30 | (if available)
|-------------| <- FP (if available)
| : |
| SVE area |
| : |
+-------------+
|/////////////| alignment gap.
| : |
| Stack objs |
| : |
+-------------+ <- SP after call and frame-setup
SVE and non-SVE stack objects are distinguished using different
StackIDs. The offsets for objects with TargetStackID::SVEVector should be
interpreted as purely scalable offsets within their respective SVE region.
Reviewers: thegameg, rovka, t.p.northover, efriedma, rengolin, greened
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D61437
llvm-svn: 373585
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This patch includes tests for the VecOfBitcastsToInt type added by D68021
Reviewers: c-rhodes, sdesmalen, rovka
Reviewed By: c-rhodes
Subscribers: tschuett, kristof.beyls, hiraditya, rkruppe, psnobl, llvm-commits, cfe-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68023
llvm-svn: 373468
|
|
|
|
|
|
| |
MachineLICM
llvm-svn: 373378
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch implements Machine PostDominator Tree verification and ensures that the verification doesn't fail the in-tree tests.
MPDT verification can be enabled using `verify-machine-dom-info` -- the same flag used by Machine Dominator Tree verification.
Flipping the flag revealed that MachineSink falsely claimed to preserve CFG and MDT/MPDT. This patch fixes that.
Reviewers: arsenm, hliao, rampitec, vpykhtin, grosser
Reviewed By: hliao
Subscribers: wdng, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68235
llvm-svn: 373341
|
|
|
|
|
|
| |
Legalize 16-bit G_SITOFP/G_UITOFP for AMDGPU.
llvm-svn: 373287
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Adds the following two intrinsics:
- int_aarch64_sve_punpkhi
- int_aarch64_sve_punpklo
This patch also contains a fix which allows LLVMHalfElementsVectorType
to forward reference overloadable arguments.
Reviewers: sdesmalen, rovka, rengolin
Reviewed By: sdesmalen
Subscribers: tschuett, kristof.beyls, hiraditya, rkruppe, psnobl, greened, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67830
llvm-svn: 373232
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for lowering variadic musttail calls. To do this, we have
to...
- Detect a musttail call in a variadic function before attempting to lower the
call's formal arguments. This is done in the IRTranslator.
- Compute forwarded registers in `lowerFormalArguments`, and add copies for
those registers.
- Restore the forwarded registers in `lowerTailCall`.
Because there doesn't seem to be any nice way to wrap these up into the outgoing
argument handler, the restore code in `lowerTailCall` is done separately.
Also, irritatingly, you have to make sure that the registers don't overlap with
any passed parameters. Otherwise, the scheduler doesn't know what to do with the
extra copies and asserts.
Add call-translator-variadic-musttail.ll to test this. This is pretty much the
same as the X86 musttail-varargs.ll test. We didn't have as nice of a test to
base this off of, but the idea is the same.
Differential Revision: https://reviews.llvm.org/D68043
llvm-svn: 373226
|
|
|
|
|
|
|
|
|
|
| |
ISD::SADDO uses the suggested sequence described in the section §2.4 of
the RISCV Spec v2.2. ISD::SSUBO uses the dual approach but checking for
(non-zero) positive.
Differential Revision: https://reviews.llvm.org/D47927
llvm-svn: 373187
|
|
|
|
|
|
| |
We should be disabling inline for minsize, not optsize.
llvm-svn: 373143
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We need to propagate this information from the IR in order to be able to safely
do tail call optimizations on the intrinsics during legalization. Assuming
it's safe to do tail call opt without checking for the marker isn't safe because
the mem libcall may use allocas from the caller.
This adds an extra immediate operand to the end of the intrinsics and fixes the
legalizer to handle it.
Differential Revision: https://reviews.llvm.org/D68151
llvm-svn: 373140
|
|
|
|
|
|
| |
This reverts r373103 (git commit a524e630a793e18e7d5fabc2262781f310eb0279)
llvm-svn: 373116
|
|
|
|
|
|
|
| |
This test fails when machine dominator tree verifier is run.
Needs more investigation, as this is not a new failure.
llvm-svn: 373103
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
-max-jump-table-targets"
This caused severe compile-time regressions, see PR43455.
> Modern processors predict the targets of an indirect branch regardless of
> the size of any jump table used to glean its target address. Moreover,
> branch predictors typically use resources limited by the number of actual
> targets that occur at run time.
>
> This patch changes the semantics of the option `-max-jump-table-size` to limit
> the number of different targets instead of the number of entries in a jump
> table. Thus, it is now renamed to `-max-jump-table-targets`.
>
> Before, when `-max-jump-table-size` was specified, it could happen that
> cluster jump tables could have targets used repeatedly, but each one was
> counted and typically resulted in tables with the same number of entries.
> With this patch, when specifying `-max-jump-table-targets`, tables may have
> different lengths, since the number of unique targets is counted towards the
> limit, but the number of unique targets in tables is the same, but for the
> last one containing the balance of targets.
>
> Differential revision: https://reviews.llvm.org/D60295
llvm-svn: 373060
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can't use short granules with stack instrumentation when targeting older
API levels because the rest of the system won't understand the short granule
tags stored in shadow memory.
Moreover, we need to be able to let old binaries (which won't understand
short granule tags) run on a new system that supports short granule
tags. Such binaries will call the __hwasan_tag_mismatch function when their
outlined checks fail. We can compensate for the binary's lack of support
for short granules by implementing the short granule part of the check in
the __hwasan_tag_mismatch function. Unfortunately we can't do anything about
inline checks, but I don't believe that we can generate these by default on
aarch64, nor did we do so when the ABI was fixed.
A new function, __hwasan_tag_mismatch_v2, is introduced that lets code
targeting the new runtime avoid redoing the short granule check. Because tag
mismatches are rare this isn't important from a performance perspective; the
main benefit is that it introduces a symbol dependency that prevents binaries
targeting the new runtime from running on older (i.e. incompatible) runtimes.
Differential Revision: https://reviews.llvm.org/D68059
llvm-svn: 373035
|
|
|
|
| |
llvm-svn: 373014
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The list of indirect labels should ALWAYS have their blockaddresses as
argument operands to the callbr (but not necessarily the other way
around). Add an invariant that checks this.
The verifier catches a bad test case that was added recently in r368478.
I think that was a simple mistake, and the test was made less strict in
regards to the precise addresses (as those weren't specifically the
point of the test).
This invariant will be used to find a reported bug.
Link: https://www.spinics.net/lists/arm-kernel/msg753473.html
Link: https://github.com/ClangBuiltLinux/linux/issues/649
Reviewers: craig.topper, void, chandlerc
Reviewed By: void
Subscribers: ychen, lebedev.ri, javed.absar, kristof.beyls, hiraditya, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67196
llvm-svn: 372923
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When checking for tail call eligibility, we should use the correct CCAssignFn
for each argument, rather than just checking if the caller/callee is varargs or
not.
This is important for tail call lowering with varargs. If we don't check it,
then basically any varargs callee with parameters cannot be tail called on
Darwin, for one thing. If the parameters are all guaranteed to be in registers,
this should be entirely safe.
On top of that, not checking for this could potentially make it so that we have
the wrong stack offsets when checking for tail call eligibility.
Also refactor some of the stuff for CCAssignFnForCall and pull it out into a
helper function.
Update call-translator-tail-call.ll to show that we can now correctly tail call
on Darwin. Also add two extra tail call checks. The first verifies that we still
respect the caller's stack size, and the second verifies that we still don't
tail call when a varargs function has a memory argument.
Differential Revision: https://reviews.llvm.org/D67939
llvm-svn: 372897
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Modern processors predict the targets of an indirect branch regardless of
the size of any jump table used to glean its target address. Moreover,
branch predictors typically use resources limited by the number of actual
targets that occur at run time.
This patch changes the semantics of the option `-max-jump-table-size` to limit
the number of different targets instead of the number of entries in a jump
table. Thus, it is now renamed to `-max-jump-table-targets`.
Before, when `-max-jump-table-size` was specified, it could happen that
cluster jump tables could have targets used repeatedly, but each one was
counted and typically resulted in tables with the same number of entries.
With this patch, when specifying `-max-jump-table-targets`, tables may have
different lengths, since the number of unique targets is counted towards the
limit, but the number of unique targets in tables is the same, but for the
last one containing the balance of targets.
Differential revision: https://reviews.llvm.org/D60295
llvm-svn: 372893
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I think we should be able to use shl instead of sshl and ushl for
positive constant shift values, unless I am missing something.
We already have the machinery in place to ensure we only replace
nodes, if the shift value is positive and <= the element width.
This is a generalization of an earlier patch rL372565.
Reviewers: t.p.northover, samparker, dmgreen, anemet
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D67955
llvm-svn: 372824
|
|
|
|
|
|
| |
s16.
llvm-svn: 372812
|
|
|
|
|
|
|
|
|
|
|
|
| |
unsigned.
We were miscompiling switch value comparisons with the wrong signedness, which
shows up when we have things like switch case values with i1 types, which end up
being legalized incorrectly.
Fixes PR43383
llvm-svn: 372675
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Try to generate ushll/sshll for aarch64_neon_ushl/aarch64_neon_sshl,
if their first operand is extended and the second operand is a constant
Also adds a few tests marked with FIXME, where we can further increase
codegen.
Reviewers: t.p.northover, samparker, dmgreen, anemet
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D62308
llvm-svn: 372565
|
|
|
|
|
|
| |
Simple continuation of existing selection support.
llvm-svn: 372467
|
|
|
|
|
|
| |
Just add an extra case to the existing selection logic.
llvm-svn: 372466
|
|
|
|
| |
llvm-svn: 372465
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently always set the HasCalls on MFI during translation and legalization if
we're handling a call or legalizing to a libcall. However, if that call is later
optimized to a tail call then we don't need the flag. The flag being set to true
causes frame lowering to always save and restore FP/LR, which adds unnecessary code.
This change does the same thing as SelectionDAG and ports over some code that scans
instructions after selection, using TargetInstrInfo to determine if target opcodes
are known calls.
Code size geomean improvements on CTMark:
-O0 : 0.1%
-Os : 0.3%
Differential Revision: https://reviews.llvm.org/D67868
llvm-svn: 372443
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Generate pre- and post-indexed forms of ST*G and STGP when possible.
Reviewers: ostannard, vitalybuka
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67741
llvm-svn: 372412
|
|
|
|
|
|
|
|
|
| |
This patch adds the patterns to select the dot product instructions.
Tested on aarch64-linux with make check-all.
Differential Revision: https://reviews.llvm.org/D67645
llvm-svn: 372408
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The insertion of an unconditional branch during FastISel can differ depending on
building with or without debug information. This happens because FastISel::fastEmitBranch
emits an unconditional branch depending on the size of the current basic block
without distinguishing between debug and non-debug instructions.
This patch fixes this issue by ignoring debug instructions when getting the size
of the basic block.
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: ormris, aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67703
llvm-svn: 372389
|
|
|
|
|
|
|
|
|
| |
This reverts r372314, reapplying r372285 and the commits which depend
on it (r372286-r372293, and r372296-r372297)
This was missing one switch to getTargetConstant in an untested case.
llvm-svn: 372338
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This broke the Chromium build, causing it to fail with e.g.
fatal error: error in backend: Cannot select: t362: v4i32 = X86ISD::VSHLI t392, Constant:i8<15>
See llvm-commits thread of r372285 for details.
This also reverts r372286, r372287, r372288, r372289, r372290, r372291,
r372292, r372293, r372296, and r372297, which seemed to depend on the
main commit.
> Encode them directly as an imm argument to G_INTRINSIC*.
>
> Since now intrinsics can now define what parameters are required to be
> immediates, avoid using registers for them. Intrinsics could
> potentially want a constant that isn't a legal register type. Also,
> since G_CONSTANT is subject to CSE and legalization, transforms could
> potentially obscure the value (and create extra work for the
> selector). The register bank of a G_CONSTANT is also meaningful, so
> this could throw off future folding and legalization logic for AMDGPU.
>
> This will be much more convenient to work with than needing to call
> getConstantVRegVal and checking if it may have failed for every
> constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
> immarg operands, many of which need inspection during lowering. Having
> to find the value in a register is going to add a lot of boilerplate
> and waste compile time.
>
> SelectionDAG has always provided TargetConstant for constants which
> should not be legalized or materialized in a register. The distinction
> between Constant and TargetConstant was somewhat fuzzy, and there was
> no automatic way to force usage of TargetConstant for certain
> intrinsic parameters. They were both ultimately ConstantSDNode, and it
> was inconsistently used. It was quite easy to mis-select an
> instruction requiring an immediate. For SelectionDAG, start emitting
> TargetConstant for these arguments, and using timm to match them.
>
> Most of the work here is to cleanup target handling of constants. Some
> targets process intrinsics through intermediate custom nodes, which
> need to preserve TargetConstant usage to match the intrinsic
> expectation. Pattern inputs now need to distinguish whether a constant
> is merely compatible with an operand or whether it is mandatory.
>
> The GlobalISelEmitter needs to treat timm as a special case of a leaf
> node, simlar to MachineBasicBlock operands. This should also enable
> handling of patterns for some G_* instructions with immediates, like
> G_FENCE or G_EXTRACT.
>
> This does include a workaround for a crash in GlobalISelEmitter when
> ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372314
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Encode them directly as an imm argument to G_INTRINSIC*.
Since now intrinsics can now define what parameters are required to be
immediates, avoid using registers for them. Intrinsics could
potentially want a constant that isn't a legal register type. Also,
since G_CONSTANT is subject to CSE and legalization, transforms could
potentially obscure the value (and create extra work for the
selector). The register bank of a G_CONSTANT is also meaningful, so
this could throw off future folding and legalization logic for AMDGPU.
This will be much more convenient to work with than needing to call
getConstantVRegVal and checking if it may have failed for every
constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
immarg operands, many of which need inspection during lowering. Having
to find the value in a register is going to add a lot of boilerplate
and waste compile time.
SelectionDAG has always provided TargetConstant for constants which
should not be legalized or materialized in a register. The distinction
between Constant and TargetConstant was somewhat fuzzy, and there was
no automatic way to force usage of TargetConstant for certain
intrinsic parameters. They were both ultimately ConstantSDNode, and it
was inconsistently used. It was quite easy to mis-select an
instruction requiring an immediate. For SelectionDAG, start emitting
TargetConstant for these arguments, and using timm to match them.
Most of the work here is to cleanup target handling of constants. Some
targets process intrinsics through intermediate custom nodes, which
need to preserve TargetConstant usage to match the intrinsic
expectation. Pattern inputs now need to distinguish whether a constant
is merely compatible with an operand or whether it is mandatory.
The GlobalISelEmitter needs to treat timm as a special case of a leaf
node, simlar to MachineBasicBlock operands. This should also enable
handling of patterns for some G_* instructions with immediates, like
G_FENCE or G_EXTRACT.
This does include a workaround for a crash in GlobalISelEmitter when
ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372285
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since we now lower most tail calls, it makes sense to support musttail.
Instead of always falling back to SelectionDAG, only fall back when a musttail
call was not able to be emitted as a tail call. Once we can handle most
incoming and outgoing arguments, we can change this to a `report_fatal_error`
like in ISelLowering.
Remove the assert that we don't have varargs and a musttail, and replace it
with a return false. Implementing this requires that we implement
`saveVarArgRegisters` from AArch64ISelLowering, which is an entirely different
patch.
Add GlobalISel lines to vararg-tallcall.ll to make sure that we produce correct
code. Right now we only fall back, but eventually this will be relevant.
Differential Revision: https://reviews.llvm.org/D67681
llvm-svn: 372273
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
AArch64 GlobalISel doesn't support MachO's large code model, so this patch
adds a check for that combination before implicitly enabling it.
Reviewers: paquette
Subscribers: kristof.beyls, ributzka, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67724
llvm-svn: 372256
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This reverts commit r372204.
This change causes build bot failures under msan:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/35236/steps/check-llvm%20msan/logs/stdio:
```
FAIL: LLVM :: DebugInfo/AArch64/asan-stack-vars.mir (19531 of 33579)
******************** TEST 'LLVM :: DebugInfo/AArch64/asan-stack-vars.mir' FAILED ********************
Script:
--
: 'RUN: at line 1'; /b/sanitizer-x86_64-linux-fast/build/llvm_build_msan/bin/llc -O0 -start-before=livedebugvalues -filetype=obj -o - /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/DebugInfo/AArch64/asan-stack-vars.mir | /b/sanitizer-x86_64-linux-fast/build/llvm_build_msan/bin/llvm-dwarfdump -v - | /b/sanitizer-x86_64-linux-fast/build/llvm_build_msan/bin/FileCheck /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/DebugInfo/AArch64/asan-stack-vars.mir
--
Exit Code: 2
Command Output (stderr):
--
==62894==WARNING: MemorySanitizer: use-of-uninitialized-value
#0 0xdfcafb in llvm::AArch64FrameLowering::resolveFrameOffsetReference(llvm::MachineFunction const&, int, bool, unsigned int&, bool, bool) const /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp:1658:3
#1 0xdfae8a in resolveFrameIndexReference /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp:1580:10
#2 0xdfae8a in llvm::AArch64FrameLowering::getFrameIndexReference(llvm::MachineFunction const&, int, unsigned int&) const /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp:1536
#3 0x46642c1 in (anonymous namespace)::LiveDebugValues::extractSpillBaseRegAndOffset(llvm::MachineInstr const&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/CodeGen/LiveDebugValues.cpp:582:21
#4 0x4647cb3 in transferSpillOrRestoreInst /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/CodeGen/LiveDebugValues.cpp:883:11
#5 0x4647cb3 in process /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/CodeGen/LiveDebugValues.cpp:1079
#6 0x4647cb3 in (anonymous namespace)::LiveDebugValues::ExtendRanges(llvm::MachineFunction&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/CodeGen/LiveDebugValues.cpp:1361
#7 0x463ac0e in (anonymous namespace)::LiveDebugValues::runOnMachineFunction(llvm::MachineFunction&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/CodeGen/LiveDebugValues.cpp:1415:18
#8 0x4854ef0 in llvm::MachineFunctionPass::runOnFunction(llvm::Function&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/CodeGen/MachineFunctionPass.cpp:73:13
#9 0x53b0b01 in llvm::FPPassManager::runOnFunction(llvm::Function&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/IR/LegacyPassManager.cpp:1648:27
#10 0x53b15f6 in llvm::FPPassManager::runOnModule(llvm::Module&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/IR/LegacyPassManager.cpp:1685:16
#11 0x53b298d in runOnModule /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/IR/LegacyPassManager.cpp:1750:27
#12 0x53b298d in llvm::legacy::PassManagerImpl::run(llvm::Module&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/IR/LegacyPassManager.cpp:1863
#13 0x905f21 in compileModule(char**, llvm::LLVMContext&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/tools/llc/llc.cpp:601:8
#14 0x8fdc4e in main /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/tools/llc/llc.cpp:355:22
#15 0x7f67673632e0 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x202e0)
#16 0x882369 in _start (/b/sanitizer-x86_64-linux-fast/build/llvm_build_msan/bin/llc+0x882369)
MemorySanitizer: use-of-uninitialized-value /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp:1658:3 in llvm::AArch64FrameLowering::resolveFrameOffsetReference(llvm::MachineFunction const&, int, bool, unsigned int&, bool, bool) const
Exiting
error: -: The file was not recognized as a valid object file
FileCheck error: '-' is empty.
FileCheck command line: /b/sanitizer-x86_64-linux-fast/build/llvm_build_msan/bin/FileCheck /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/DebugInfo/AArch64/asan-stack-vars.mir
```
Reviewers: bkramer
Reviewed By: bkramer
Subscribers: sdardis, aprantl, kristof.beyls, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67710
llvm-svn: 372228
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes a bug exposed by D65653 where a subsequent invocation
of `determineCalleeSaves` ends up with a different size for the callee
save area, leading to different frame-offsets in debug information.
In the invocation by PEI, `determineCalleeSaves` tries to determine
whether it needs to spill an extra callee-saved register to get an
emergency spill slot. To do this, it calls 'estimateStackSize' and
manually adds the size of the callee-saves to this. PEI then allocates
the spill objects for the callee saves and the remaining frame layout
is calculated accordingly.
A second invocation in LiveDebugValues causes estimateStackSize to return
the size of the stack frame including the callee-saves. Given that the
size of the callee-saves is added to this, these callee-saves are counted
twice, which leads `determineCalleeSaves` to believe the stack has
become big enough to require spilling an extra callee-save as emergency
spillslot. It then updates CalleeSavedStackSize with a larger value.
Since CalleeSavedStackSize is used in the calculation of the frame
offset in getFrameIndexReference, this leads to incorrect offsets for
variables/locals when this information is recalculated after PEI.
Reviewers: omjavaid, eli.friedman, thegameg, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D66935
llvm-svn: 372204
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for `-tailcallopt` tail calls to CallLowering. This
piggy-backs off the changes from D67577, since doing it without a bit of
refactoring gets extremely ugly.
Support is basically ported from AArch64ISelLowering. The main difference here
is that tail calls in `-tailcallopt` change the ABI, so there's some extra
bookkeeping for the stack.
Show that we are correctly lowering these by updating tail-call.ll.
Also show that we don't do anything strange in general by updating
fastcc-reserved.ll, which passes `-tailcallopt`, but doesn't emit any tail
calls.
Differential Revision: https://reviews.llvm.org/D67580
llvm-svn: 372177
|
|
|
|
|
|
|
|
|
|
|
| |
r371901 was overeager and widenScalarDst() and the like in the legalizer
attempt to increment the insert point given in order to add new instructions
after the currently legalizing inst. In cases where the insertion point is not
exactly the current instruction, then callers need to de-compensate for the
behaviour by decrementing the insertion iterator before calling them. It's not
a nice state of affairs, for now just undo the problematic parts of the change.
llvm-svn: 372050
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Adds the following inline asm constraints for SVE:
- Upl: One of the low eight SVE predicate registers, P0 to P7 inclusive
- Upa: SVE predicate register with full range, P0 to P15
Reviewers: t.p.northover, sdesmalen, rovka, momchil.velikov, cameron.mcinally, greened, rengolin
Reviewed By: rovka
Subscribers: javed.absar, tschuett, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66524
llvm-svn: 371967
|
|
|
|
|
|
|
|
|
| |
After our previous machinecombiner exercises (rL371321, rL371818, rL371833), we
were still missing a few FP16 FMA patterns.
Differential Revision: https://reviews.llvm.org/D67576
llvm-svn: 371960
|
|
|
|
|
|
|
|
|
|
| |
For some reason we sometimes insert new instructions one instruction before
the first non-PHI when legalizing. This can result in having non-PHI
instructions before PHIs, which mean that PHI elimination doesn't catch them.
Differential Revision: https://reviews.llvm.org/D67570
llvm-svn: 371901
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Because memory intrinsics are handled differently than other calls, we need to
check them for tail call eligiblity in the legalizer. This allows us to still
inline them when it's beneficial to do so, but also tail call when possible.
This adds simple tail calling support for when the intrinsic is followed by a
return.
It ports the attribute checks from `TargetLowering::isInTailCallPosition` into
a similarly-named function in LegalizerHelper.cpp. The target-specific
`isUsedByReturnOnly` hook is not ported here.
Update tailcall-mem-intrinsics.ll to show that GlobalISel can now tail call
memory intrinsics.
Update legalize-memcpy-et-al.mir to have a case where we don't tail call.
Differential Revision: https://reviews.llvm.org/D67566
llvm-svn: 371893
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for tail calling callees with varargs, equivalent to how it
is done in AArch64ISelLowering.
This only works for sibling calls, and does not add the necessary support for
musttail with varargs. (See r345641 for equivalent ISelLowering support.) This
should be implemented when we stop falling back on musttail.
Update call-translator-tail-call.ll to show that we can now tail call varargs.
Differential Revision: https://reviews.llvm.org/D67518
llvm-svn: 371868
|
|
|
|
|
|
|
|
| |
Follow up of rL371321 that added FMA FP16 patterns. This adds more tests
for @llvm.fma.f16. This probably shows we miss one fmsub optimisation
opportunity, which I will look into.
llvm-svn: 371833
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Swiftself uses a callee-saved register. We can tail call when the register used
in the caller and callee is the same.
This behaviour is equivalent to that in `TargetLowering::parametersInCSRMatch`.
Update call-translator-tail-call.ll to verify that we can do this. When we
support inline assembly, we can write a check similar to the one in the
general swiftself.ll. For now, we need to verify that we get the correct COPY
instruction after call lowering.
Differential Revision: https://reviews.llvm.org/D67511
llvm-svn: 371788
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for lowering sibling calls with outgoing arguments.
e.g
```
define void @foo(i32 %a)
```
Support is ported from AArch64ISelLowering's `isEligibleForTailCallOptimization`.
The only thing that is missing is a full port of
`TargetLowering::parametersInCSRMatch`. So, if we're using swiftself,
we'll never tail call.
- Rename `analyzeCallResult` to `analyzeArgInfo`, since the function is now used
for both outgoing and incoming arguments
- Teach `OutgoingArgHandler` about tail calls. Tail calls use frame indices for
stack arguments.
- Teach `lowerFormalArguments` to set the bytes in the caller's stack argument
area. This is used later to check if the tail call's parameters will fit on
the caller's stack.
- Add `areCalleeOutgoingArgsTailCallable` to perform the eligibility check on
the callee's outgoing arguments.
For testing:
- Update call-translator-tail-call to verify that we can now tail call with
outgoing arguments, use G_FRAME_INDEX for stack arguments, and respect the
size of the caller's stack
- Remove GISel-specific check lines from speculation-hardening.ll, since GISel
now tail calls like the other selectors
- Add a GISel test line to tailcall-string-rvo.ll since we can tail call in that
test now
- Add a GISel test line to tailcall_misched_graph.ll since we tail call there
now. Add specific check lines for GISel, since the debug output from the
machine-scheduler differs with GlobalISel. The dependency still holds, but
the output comes out in a different order.
Differential Revision: https://reviews.llvm.org/D67471
llvm-svn: 371780
|
|
|
|
|
|
|
|
| |
This is the main CodeGen patch to support the arm64_32 watchOS ABI in LLVM.
FastISel is mostly disabled for now since it would generate incorrect code for
ILP32.
llvm-svn: 371722
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
stack.
First we were asserting that the ValNo of a VA was the wrong value. It doesn't actually
make a difference for us in CallLowering but fix that anyway to silence the assert.
The bigger issue was that after fixing the assert we were generating invalid MIR
because the merging/unmerging of values split across multiple registers wasn't
also implemented for memory locs. This happens when we run out of registers and
have to pass the split types like i128 -> i64 x 2 on the stack. This is do-able, but
for now just fall back.
llvm-svn: 371693
|