| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
| |
Added x86 scalar uadd_with_overflow/usub_with_overflow costs.
Differential Revision: https://reviews.llvm.org/D56907
llvm-svn: 352043
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch replaces the existing LLVMVectorSameWidth matcher with LLVMScalarOrSameVectorWidth.
The matching args must be either scalars or vectors with the same number of elements, but in either case the scalar/element type can differ, specified by LLVMScalarOrSameVectorWidth.
I've updated the _overflow intrinsics to demonstrate this - allowing it to return a i1 or <N x i1> overflow result, matching the scalar/vectorwidth of the other (add/sub/mul) result type.
The masked load/store/gather/scatter intrinsics have also been updated to use this, although as we specify the reference type to be llvm_anyvector_ty we guarantee the mask will be <N x i1> so no change in behaviour
Differential Revision: https://reviews.llvm.org/D57090
llvm-svn: 351957
|
|
|
|
|
|
|
|
| |
First step towards PR40376, this patch adds support for getCmpSelInstrCost to use the (optional) Instruction CmpInst predicate to indicate the type of integer comparison we're performing and alter the costs accordingly.
Differential Revision: https://reviews.llvm.org/D57013
llvm-svn: 351810
|
|
|
|
| |
llvm-svn: 351741
|
|
|
|
|
|
|
|
|
|
| |
Prior to SSE41 (and sometimes on AVX1), vector select has to be performed as a ((X & C)|(Y & ~C)) bit select.
Exposes a couple of issues with the min/max reduction costs (which only go down to SSE42 for some reason).
The increase pre-SSE41 selection costs also prevent a couple of tests from firing any longer, so I've either tweaked the target or added AVX tests as well to the existing SSE2 tests.
llvm-svn: 351685
|
|
|
|
|
|
| |
Typical throughputs: cmpss/cmpps = 1cy and cmpsd/cmppd = 2cy before the Core2 era
llvm-svn: 351684
|
|
|
|
| |
llvm-svn: 351682
|
|
|
|
|
|
| |
SSE2/SSE42/AVX1 targets
llvm-svn: 351681
|
|
|
|
|
|
| |
Also add AVX512 costs at the same time
llvm-svn: 351680
|
|
|
|
|
|
|
|
|
| |
This commit adds some missing intrinsics into the isAlwaysUniform list
for the AMDGPU backend.
Differential Revision: https://reviews.llvm.org/D56845
llvm-svn: 351562
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Related to https://bugs.llvm.org/show_bug.cgi?id=40123.
Rather than scalarizing, expand a vector USUBSAT into UMAX+SUB,
which produces much better code for X86.
Reapplying with updated SLPVectorizer tests.
Differential Revision: https://reviews.llvm.org/D56636
llvm-svn: 351219
|
|
|
|
|
|
|
|
|
| |
compiler identification lines in test-cases.
(Doing so only because it's then easier to search for references which
are actually important and need fixing.)
llvm-svn: 351200
|
|
|
|
|
|
|
|
|
| |
This reverts commit r351125.
I missed test changes in an SLPVectorizer test, due to the cost model
changes. Reverting for now.
llvm-svn: 351129
|
|
|
|
|
|
|
|
|
|
|
| |
Related to https://bugs.llvm.org/show_bug.cgi?id=40123.
Rather than scalarizing, expand a vector USUBSAT into UMAX+SUB,
which produces much better code for X86.
Differential Revision: https://reviews.llvm.org/D56636
llvm-svn: 351125
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes https://bugs.llvm.org/show_bug.cgi?id=40110.
This implements handling of undef operands for integer intrinsics in
ConstantFolding, in particular for the bitcounting intrinsics (ctpop,
cttz, ctlz), the with.overflow intrinsics, the saturating math
intrinsics and the funnel shift intrinsics.
The undef behavior follows what InstSimplify does for the general cas
e of non-constant operands. For the bitcount intrinsics (where
InstSimplify doesn't do undef handling -- there cannot be a combination
of an undef + non-constant operand) I'm using a 0 result if the intrinsic
is defined for zero and undef otherwise.
Differential Revision: https://reviews.llvm.org/D55950
llvm-svn: 350971
|
|
|
|
|
|
|
|
|
| |
The new-pm version of DA is untested. Testing requires a printer, so
add that and use it in the existing DA tests.
Differential Revision: https://reviews.llvm.org/D56386
llvm-svn: 350624
|
|
|
|
|
|
| |
Adjusts a comment in this test to verify commit access.
llvm-svn: 350569
|
|
|
|
|
|
|
|
| |
Noticed in D56011 - handle the case that scalar fp ops are quicker on P3 than P4
Add the other costs so that we're not relying on the default "is legal/custom" cost logic.
llvm-svn: 350403
|
|
|
|
|
|
| |
causing code size performance regressions.
llvm-svn: 350402
|
|
|
|
| |
llvm-svn: 350401
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GetPointerBaseWithConstantOffset include this code, where ByteOffset
and GEPOffset are both of type llvm::APInt :
ByteOffset += GEPOffset.getSExtValue();
The problem with this line is that getSExtValue() returns an int64_t, but
the += matches an overload for uint64_t. The problem is that the resulting
APInt is no longer considered to be signed. That in turn causes assertion
failures later on if the relevant pointer type is > 64 bits in width and
the GEPOffset was negative.
Changing it to
ByteOffset += GEPOffset.sextOrTrunc(ByteOffset.getBitWidth());
resolves the issue and explicitly performs the sign-extending
or truncation. Additionally, instead of asserting later if the result
is > 64 bits, it breaks out of the loop in that case.
See also
https://reviews.llvm.org/D24729
https://reviews.llvm.org/D24772
This commit must be merged after D38662 in order for the test to pass.
Patch by Michael Ferguson <mpfergu@gmail.com>.
Reviewers: reames, sanjoy, hfinkel
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D38501
llvm-svn: 350395
|
|
|
|
|
|
| |
We were only testing costs for legal source vector element counts
llvm-svn: 350323
|
|
|
|
|
|
| |
Costs for real SSE2 instructions
llvm-svn: 350295
|
|
|
|
| |
llvm-svn: 350293
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Motivated by the discussion in D38499, this patch updates BasicAA to support
arbitrary pointer sizes by switching most remaining non-APInt calculations to
use APInt. The size of these APInts is set to the maximum pointer size (maximum
over all address spaces described by the data layout string).
Most of this translation is straightforward, but this patch contains a fix for
a bug that revealed itself during this translation process. In order for
test/Analysis/BasicAA/gep-and-alias.ll to pass, which is run with 32-bit
pointers, the intermediate calculations must be performed using 64-bit
integers. This is because, as noted in the patch, when GetLinearExpression
decomposes an expression into C1*V+C2, and we then multiply this by Scale, and
distribute, to get (C1*Scale)*V + C2*Scale, it can be the case that, even
through C1*V+C2 does not overflow for relevant values of V, (C2*Scale) can
overflow. If this happens, later logic will draw invalid conclusions from the
(base) offset value. Thus, when initially applying the APInt conversion,
because the maximum pointer size in this test is 32 bits, it started failing.
Suspicious, I created a 64-bit version of this test (included here), and that
failed (miscompiled) on trunk for a similar reason (the multiplication can
overflow).
After fixing this overflow bug, the first test case (at least) in
Analysis/BasicAA/q.bad.ll started failing. This is also a 32-bit test, and was
relying on having 64-bit intermediate values to have BasicAA return an accurate
result. In order to fix this problem, and because I believe that it is not
uncommon to use i64 indexing expressions in 32-bit code (especially portable
code using int64_t), it seems reasonable to always use at least 64-bit
integers. In this way, we won't regress our analysis capabilities (and there's
a command-line option added, so experimenting with this should be easy).
As pointed out by Eli during the review, there are other potential overflow
conditions that this patch does not address. Fixing those is left to follow-up
work.
Patch by me with contributions from Michael Ferguson (mferguson@cray.com).
Differential Revision: https://reviews.llvm.org/D38662
llvm-svn: 350220
|
|
|
|
|
|
|
| |
Move constant folding tests into ConstantFolding/bitcount.ll and drop
various tests in other places. Add coverage for undefs.
llvm-svn: 349806
|
|
|
|
| |
llvm-svn: 349803
|
|
|
|
| |
llvm-svn: 349802
|
|
|
|
|
|
| |
Split each test into a separate function.
llvm-svn: 349801
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The current llvm.mem.parallel_loop_access metadata has a problem in that
it uses LoopIDs. LoopID unfortunately is not loop identifier. It is
neither unique (there's even a regression test assigning the some LoopID
to multiple loops; can otherwise happen if passes such as LoopVersioning
make copies of entire loops) nor persistent (every time a property is
removed/added from a LoopID's MDNode, it will also receive a new LoopID;
this happens e.g. when calling Loop::setLoopAlreadyUnrolled()).
Since most loop transformation passes change the loop attributes (even
if it just to mark that a loop should not be processed again as
llvm.loop.isvectorized does, for the versioned and unversioned loop),
the parallel access information is lost for any subsequent pass.
This patch unlinks LoopIDs and parallel accesses.
llvm.mem.parallel_loop_access metadata on instruction is replaced by
llvm.access.group metadata. llvm.access.group points to a distinct
MDNode with no operands (avoiding the problem to ever need to add/remove
operands), called "access group". Alternatively, it can point to a list
of access groups. The LoopID then has an attribute
llvm.loop.parallel_accesses with all the access groups that are parallel
(no dependencies carries by this loop).
This intentionally avoid any kind of "ID". Loops that are clones/have
their attributes modifies retain the llvm.loop.parallel_accesses
attribute. Access instructions that a cloned point to the same access
group. It is not necessary for each access to have it's own "ID" MDNode,
but those memory access instructions with the same behavior can be
grouped together.
The behavior of llvm.mem.parallel_loop_access is not changed by this
patch, but should be considered deprecated.
Differential Revision: https://reviews.llvm.org/D52116
llvm-svn: 349725
|
|
|
|
|
|
|
|
|
|
|
|
| |
arithmetic or min/max reduction
This is split from D55452 with the correct patch this time.
Pairwise reductions require two shuffles on every level but the last. On the last level the two shuffles are <1, u, u, u...> and <0, u, u, u...>, but <0, u, u, u...> will be dropped by InstCombine/DAGCombine as being an identity shuffle.
Differential Revision: https://reviews.llvm.org/D55615
llvm-svn: 349072
|
|
|
|
|
|
|
|
|
| |
Attribute 'dso_local' generated in bitcode from compiling
original C file but isn't needed.
Differential Revision: https://reviews.llvm.org/D55521
llvm-svn: 348835
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
reduction.
Summary: The comment says we need 3 extracts and a select at the end. But didn't we just account for the select in the vector cost above. Aren't we just extracting the single element after taking the min/max in the vector register?
Reviewers: RKSimon, spatel, ABataev
Reviewed By: RKSimon
Subscribers: javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D55480
llvm-svn: 348739
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
getArithmeticReductionCost/getMinMaxReductionCost
We were overcounting the number of arithmetic operations needed at each level before we reach a legal type. We were using the full vector type for that level, but we are going to split the input vector at that level in half. So the effective arithmetic operation cost at that level is half the width.
So for example on 8i32 on an sse target. Were were calculating the cost of an 8i32 op which is likely 2 for basic integer. Then after the loop we count 2 more v4i32 ops. For a total arith cost of 4. But if you look at the assembly there would only be 3 arithmetic ops.
There are still more bugs in this code that I'm going to work on next. The non pairwise code shouldn't count extract subvectors in the loop. There are no extracts, the types are split in registers. For pairwise we need to use 2 two src permute shuffles.
Differential Revision: https://reviews.llvm.org/D55397
llvm-svn: 348621
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
DemandedBits and BDCE currently only support scalar integers. This
patch extends them to also handle vector integer operations. In this
case bits are not tracked for individual vector elements, instead a
bit is demanded if it is demanded for any of the elements. This matches
the behavior of computeKnownBits in ValueTracking and
SimplifyDemandedBits in InstCombine.
Unlike the previous iteration of this patch, getDemandedBits() can now
again be called on arbirary (sized) instructions, even if they don't
have integer or vector of integer type. (For vector types the size of the
returned mask will now be the scalar size in bits though.)
The added LoopVectorize test case shows a case which triggered an
assertion failure with the previous attempt, because getDemandedBits()
was called on a pointer-typed instruction.
Differential Revision: https://reviews.llvm.org/D55297
llvm-svn: 348602
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In some cases different alignments for function might be used to save
space e.g. thumb mode with -Oz will try to use 2 byte function
alignment. Similar patch that fixed this in other areas exists here
https://reviews.llvm.org/D46110
This was approved previously https://reviews.llvm.org/D55115 (r348215)
but when committed it caused failures on the sanitizer buildbots when
building llvm with clang (containing this patch). This is now fixed
because I've added a check to see if getting the parent module returns
null if it does then set the alignment to 0.
Differential Revision: https://reviews.llvm.org/D55115
llvm-svn: 348571
|
|
|
|
|
|
|
| |
This reverts commit r348549. Causing assertion failures during
clang build.
llvm-svn: 348558
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
DemandedBits and BDCE currently only support scalar integers. This
patch extends them to also handle vector integer operations. In this
case bits are not tracked for individual vector elements, instead a
bit is demanded if it is demanded for any of the elements. This matches
the behavior of computeKnownBits in ValueTracking and
SimplifyDemandedBits in InstCombine.
The getDemandedBits() method can now only be called on instructions that
have integer or vector of integer type. Previously it could be called on
any sized instruction (even if it was not particularly useful). The size
of the return value is now always the scalar size in bits (while
previously it was the type size in bits).
Differential Revision: https://reviews.llvm.org/D55297
llvm-svn: 348549
|
|
|
|
|
|
|
|
| |
reduction intrinsic tests as it appears to be unnecessary. NFC
I think this has something to do with matching reductions from extractelement, binops, and shuffles. But we're not matching here.
llvm-svn: 348340
|
|
|
|
|
|
| |
types. NFC
llvm-svn: 348339
|
|
|
|
|
|
| |
Causing failures on ubsan buildbot boxes.
llvm-svn: 348230
|
|
|
|
|
|
|
|
|
|
|
| |
In some cases different alignments for function might be used to save
space e.g. thumb mode with -Oz will try to use 2 byte function
alignment. Similar patch that fixed this in other areas exists here
https://reviews.llvm.org/D46110
Differential Revision: https://reviews.llvm.org/D55115
llvm-svn: 348215
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A loaded value with multiple users compared with 0 will become a load and
test single instruction. The load is not folded in this case (multiple
users), but the compare instruction is eliminated.
This patch returns 0 cost for the icmp in these cases.
Review: Ulrich Weigand
https://reviews.llvm.org/D55111
llvm-svn: 348141
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix ScalarEvolution/solve-quadratic.ll test to account for __func__
output listing the complete function prototype rather than just its
name, as it does on NetBSD.
Example Linux output:
GetQuadraticEquation: addrec coeff bw: 4
GetQuadraticEquation: equation -2x^2 + -2x + -4, coeff bw: 5, multiplied by 2
Example NetBSD output:
llvm::Optional<std::tuple<llvm::APInt, llvm::APInt, llvm::APInt, llvm::APInt, unsigned int> > GetQuadraticEquation(const llvm::SCEVAddRecExpr*): addrec coeff bw: 4
llvm::Optional<std::tuple<llvm::APInt, llvm::APInt, llvm::APInt, llvm::APInt, unsigned int> > GetQuadraticEquation(const llvm::SCEVAddRecExpr*): equation -2x^2 + -2x + -4, coeff bw: 5, multiplied by 2
Differential Revision: https://reviews.llvm.org/D55162
llvm-svn: 348096
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(REAPPLIED)
We were adding the entire scalarization extraction cost for reductions, which returns the total cost of extracting every element of a vector type.
For reductions we don't need to do this - we just need to extract the 0'th element after the reduction pattern has completed.
Fixes PR37731
Rebased and reapplied after being reverted in rL347541 due to PR39774 - which was fixed by D54955/rL347759 and D55017/rL347997
Differential Revision: https://reviews.llvm.org/D54585
llvm-svn: 348076
|
|
|
|
|
|
| |
interleave/strided load/store cost model tests.
llvm-svn: 348056
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is patch #3 of the new DivergenceAnalysis
<https://lists.llvm.org/pipermail/llvm-dev/2018-May/123606.html>
The GPUDivergenceAnalysis is intended to eventually supersede the existing
LegacyDivergenceAnalysis. The existing LegacyDivergenceAnalysis produces
incorrect results on unstructured Control-Flow Graphs:
<https://bugs.llvm.org/show_bug.cgi?id=37185>
This patch adds the option -use-gpu-divergence-analysis to the
LegacyDivergenceAnalysis to turn it into a transparent wrapper for the
GPUDivergenceAnalysis.
Reviewers: nhaehnle
Reviewed By: nhaehnle
Subscribers: jholewinski, jvesely, jfb, llvm-commits, alex-t, sameerds, arsenm, nhaehnle
Differential Revision: https://reviews.llvm.org/D53493
llvm-svn: 348048
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Three minor changes to these extra costs:
* For ICmp instructions, instead of adding 2 all the time for extending each
operand, this is only done if that operand is neither a load or an
immediate.
* The operands extension costs for divides removed, because we now use a high
cost already for the divide (20).
* The costs for lhsr/ashr extra costs removed as this did not seem useful.
Review: Ulrich Weigand
https://reviews.llvm.org/D55053
llvm-svn: 347961
|
|
|
|
|
|
|
|
|
|
|
|
| |
AVX512 is enabled, but 512-bit vectors aren't legal.
Unlike most cost model functions this code makes a lot of table lookups without using the results from getTypeLegalizationCost. This means 512-bit vectors can be looked up even when the type isn't legal.
This patch adds a check around the two tables that contain 512-bit types to make sure that neither of the types would be split by type legalization. Meaning 512 bit types are illegal. I wanted to write this in a somewhat generic way that uses type legalization query hooks. But if prefered, I can switch to just using is512BitVector and the subtarget feature.
Differential Revision: https://reviews.llvm.org/D54984
llvm-svn: 347786
|
|
|
|
|
|
|
|
|
|
| |
This fixes some of scalarization costs reported for sext/zext using avx512bw. This does not fix all scalarization costs being reported. Just the worst.
I've restricted this only to combinations of types that are legal with avx512bw like v32i1/v64i1/v32i16/v64i8 and conversions between vXi1 and vXi8/vXi16 with legal vXi8/vXi16 result types.
Differential Revision: https://reviews.llvm.org/D54979
llvm-svn: 347785
|