summaryrefslogtreecommitdiffstats
path: root/llvm/test/Analysis/BranchProbabilityInfo/loop.ll
Commit message (Collapse)AuthorAgeFilesLines
* [PM] Port Branch Probability Analysis pass to the new pass manager.Xinliang David Li2016-05-051-0/+1
| | | | | | Differential Revision: http://reviews.llvm.org/D19839 llvm-svn: 268601
* Use fixed-point representation for BranchProbability.Cong Hou2015-09-251-76/+76
| | | | | | | | | | | | | | | | | | | | BranchProbability now is represented by its numerator and denominator in uint32_t type. This patch changes this representation into a fixed point that is represented by the numerator in uint32_t type and a constant denominator 1<<31. This is quite similar to the representation of BlockMass in BlockFrequencyInfoImpl.h. There are several pros and cons of this change: Pros: 1. It uses only a half space of the current one. 2. Some operations are much faster like plus, subtraction, comparison, and scaling by an integer. Cons: 1. Constructing a probability using arbitrary numerator and denominator needs additional calculations. 2. It is a little less precise than before as we use a fixed denominator. For example, 1 - 1/3 may not be exactly identical to 1 / 3 (this will lead to many BranchProbability unit test failures). This should not matter when we only use it for branch probability. If we use it like a rational value for some precise calculations we may need another construct like ValueRatio. One important reason for this change is that we propose to store branch probabilities instead of edge weights in MachineBasicBlock. We also want clients to use probability instead of weight when adding successors to a MBB. The current BranchProbability has more space which may be a concern. Differential revision: http://reviews.llvm.org/D12603 llvm-svn: 248633
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-8/+8
| | | | | | | | | | | | | | | | | | | | | | | | load instruction Essentially the same as the GEP change in r230786. A similar migration script can be used to update test cases, though a few more test case improvements/changes were required this time around: (r229269-r229278) import fileinput import sys import re pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)") for line in sys.stdin: sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line)) Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7649 llvm-svn: 230794
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
* Fix a bug in which BranchProbabilityInfo wasn't setting branch weights of ↵Akira Hatanaka2014-04-141-21/+21
| | | | | | | | | | | | basic blocks inside loops correctly. Previously, BranchProbabilityInfo::calcLoopBranchHeuristics would determine the weights of basic blocks inside loops even when it didn't have enough information to estimate the branch probabilities correctly. This patch fixes the function to exit early if it doesn't see any exit edges or back edges and let the later heuristics determine the weights. This fixes PR18705 and <rdar://problem/15991090>. Differential Revision: http://reviews.llvm.org/D3363 llvm-svn: 206194
* Fix the API usage in loop probability heuristics. It was incorrectlyChandler Carruth2011-10-251-0/+365
classifying many edges as exiting which were in fact not. These mainly formed edges into sub-loops. It was also not correctly classifying all returning edges out of loops as leaving the loop. With this match most of the loop heuristics are more rational. Several serious regressions on loop-intesive benchmarks like perlbench's loop tests when built with -enable-block-placement are fixed by these updated heuristics. Unfortunately they in turn uncover some other regressions. There are still several improvemenst that should be made to loop heuristics including trip-count, and early back-edge management. llvm-svn: 142917
OpenPOWER on IntegriCloud