| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
| |
llvm-svn: 300241
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
callsite_location+callee_name
Summary: For iterative SamplePGO, an indirect call can be speculatively promoted to multiple direct calls and get inlined. All these promoted direct calls will share the same callsite location (offset+discriminator). With the current implementation, we cannot distinguish between different promotion candidates and its inlined instance. This patch adds callee_name to the key of the callsite sample map. And added helper functions to get all inlined callee samples for a given callsite location. This helps the profile annotator promote correct targets and inline it before annotation, and ensures all indirect call targets to be annotated correctly.
Reviewers: davidxl, dnovillo
Reviewed By: davidxl
Subscribers: andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31950
llvm-svn: 300240
|
| |
|
|
|
|
| |
state of the bit we would calculate. Also reuse a temporary APInt instead of creating a new one.
llvm-svn: 300239
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In first order recurrences where phi's are used outside the loop,
we should generate an additional vector.extract of the second last element from
the vectorized phi update.
This is because we require the phi itself (which is the value at the second last
iteration of the vector loop) and not the phi's update within the loop.
Also fix the code gen when we just unroll, but don't vectorize.
Fixes PR32396.
Reviewers: mssimpso, mkuper, anemet
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D31979
llvm-svn: 300238
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is effectively a retry of:
https://reviews.llvm.org/rL299851
but now we have tests and an assert to make sure the bug
that was exposed with that attempt will not happen again.
I'll fix the code duplication and missing sibling fold next,
but I want to make this change as small as possible to reduce
risk since I messed it up last time.
This should fix:
https://bugs.llvm.org/show_bug.cgi?id=32524
llvm-svn: 300236
|
| |
|
|
| |
llvm-svn: 300235
|
| |
|
|
| |
llvm-svn: 300233
|
| |
|
|
| |
llvm-svn: 300230
|
| |
|
|
|
|
|
|
|
|
| |
Noticed by inspection while doing attribute work. DAE, InstCombineCalls,
and ArgPromotion have a fair amount of duplicated code for hacking on
call sites, and you can find bugs by comparing them.
Add a test case for this.
llvm-svn: 300229
|
| |
|
|
|
|
|
|
|
| |
In many cases ds operations can be combined even if offsets do not
fit into 8 bit encoding. What it takes is to adjust base address.
Differential Revision: https://reviews.llvm.org/D31993
llvm-svn: 300227
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It's less efficient to produce 'ule' than 'ult' since we know we're going to
canonicalize to 'ult', but we shouldn't have duplicated code for these folds.
As a trade-off, this was a pretty terrible way to make a '2'. :)
if (LHSC == SubOne(RHSC))
AddC = ConstantExpr::getSub(AddOne(RHSC), LHSC);
The next steps are to share the code to fix PR32524 and add the missing 'and'
fold that was left out when PR14708 was fixed:
https://bugs.llvm.org/show_bug.cgi?id=14708
llvm-svn: 300222
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
* Add a bitreverse case in the demanded bits analysis pass.
* Add tests for the bitreverse (and bswap) intrinsic in the
demanded bits pass.
* Add a test case to the BDCE tests: that manipulations to
high-order bits are eliminated once the bits are reversed
and then right-shifted.
Reviewers: mkuper, jmolloy, hfinkel, trentxintong
Reviewed By: jmolloy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31857
llvm-svn: 300215
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The linker needs to be able to determine whether a symbol is text or data to
handle the case of a common being overridden by a strong definition in an
archive. If the archive contains a text member of the same name as the common,
that function is discarded. However, if the archive contains a data member of
the same name, that strong definition overrides the common. This is a behavior
of ld.bfd, which the Qualcomm linker also supports in LTO.
Here's a test case to illustrate:
####
cat > 1.c << \!
int blah;
!
cat > 2.c << \!
int blah() {
return 0;
}
!
cat > 3.c << \!
int blah = 20;
!
clang -c 1.c
clang -c 2.c
clang -c 3.c
ar cr lib.a 2.o 3.o
ld 1.o lib.a -t
####
The correct output is:
1.o
(lib.a)3.o
Thanks to Shankar Easwaran and Hemant Kulkarni for the test case!
Reviewers: mehdi_amini, rafael, pcc, davide
Reviewed By: pcc
Subscribers: davide, llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D31901
llvm-svn: 300205
|
| |
|
|
| |
llvm-svn: 300202
|
| |
|
|
|
|
| |
This reverts commit r296872 now that PR32153 has been fixed.
llvm-svn: 300200
|
| |
|
|
|
|
|
|
| |
Patch by Michael Wu.
Differential Revision: https://reviews.llvm.org/D32000
llvm-svn: 300199
|
| |
|
|
|
|
|
|
|
|
| |
assertion
Patch by Michael Wu.
Differential Revision: https://reviews.llvm.org/D31999
llvm-svn: 300198
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Instructions CALLSEQ_START..CALLSEQ_END and their target dependent
counterparts keep data like frame size, stack adjustment etc. These
data are accessed by getOperand using hard coded indices. It is
error prone way. This change implements the access by special methods,
which improve readability and allow changing data representation without
massive changes of index values.
Differential Revision: https://reviews.llvm.org/D31953
llvm-svn: 300196
|
| |
|
|
|
|
|
|
|
| |
Throughout the effort of automatically generating the X86 memory folding tables these missing information were encountered.
This is a preparation work for a future patch including the automation of these tables.
Differential Revision: https://reviews.llvm.org/D31714
llvm-svn: 300190
|
| |
|
|
|
|
| |
This addresses post commit review comments for r300039.
llvm-svn: 300188
|
| |
|
|
|
|
|
|
| |
convention. NFC
Differential Revision: https://reviews.llvm.org/D31743
llvm-svn: 300184
|
| |
|
|
|
|
|
|
|
|
|
| |
Refactoring InnerLoopVectorizer's vectorizeBlockInLoop() to provide
vectorizeInstruction(). Aligning DeadInstructions with its only user.
Facilitates driving the transformation by VPlan - follows
https://reviews.llvm.org/D28975 and its tentative breakdown.
Differential Revision: https://reviews.llvm.org/D31997
llvm-svn: 300183
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
APInt is currently implemented with an unsigned BitWidth field first and then a uint_64/pointer union. Due to the 64-bit size of the union there is a hole after the bitwidth.
Putting the union first allows the class to be packed. Making it 12 bytes instead of 16 bytes. An APSInt goes from 20 bytes to 16 bytes.
This shows a 4k reduction on the size of the opt binary on my local x86-64 build. So this enables some other improvement to the code as well.
Reviewers: dblaikie, RKSimon, hans, davide
Reviewed By: davide
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D32001
llvm-svn: 300171
|
| |
|
|
|
|
| |
full 'word' by introducing tcAddPart. Use this to support tcIncrement, operator++ and operator+=(uint64_t). Do the same for subtract. NFCI.
llvm-svn: 300169
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch allows Error and Expected types to be passed to and returned from
RPC functions.
Serializers and deserializers for custom error types (types deriving from the
ErrorInfo class template) can be registered with the SerializationTraits for
a given channel type (see registerStringError in RPCSerialization.h for an
example), allowing a given custom type to be sent/received. Unregistered types
will be serialized/deserialized as StringErrors using the custom type's log
message as the error string.
llvm-svn: 300167
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a magic header file supported by the build system that provides a
single definition, LLVM_REVISION, containing an LLVM revision identifier,
if available. This functionality previously lived in the LTO library, but
I am moving it out to lib/Support because I want to also start using it in
lib/Object to create the IR symbol table.
This change also fixes a bug where LLVM_REVISION was never actually being
used in lib/LTO because the macro HAS_LLVM_REVISION was never defined (it
was misspelled as HAVE_SVN_VERSION_INC in lib/LTO/CMakeLists.txt, and was
only being defined in a non-existent file Version.cpp).
I also changed the code to use "git rev-parse --git-dir" to locate the .git
directory, instead of looking for it in the LLVM source root directory,
which makes this compatible with monorepos as well as git worktrees.
Differential Revision: https://reviews.llvm.org/D31985
llvm-svn: 300160
|
| |
|
|
| |
llvm-svn: 300157
|
| |
|
|
| |
llvm-svn: 300155
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This seems like a much more natural API, based on Derek Schuff's
comments on r300015. It further hides the implementation detail of
AttributeList that function attributes come last and appear at index
~0U, which is easy for the user to screw up. git diff says it saves code
as well: 97 insertions(+), 137 deletions(-)
This also makes it easier to change the implementation, which I want to
do next.
llvm-svn: 300153
|
| |
|
|
|
|
| |
This typedef used to be conditional based on whether rvalue references were supported. Looks like it got left behind when we switched to always having rvalue references with c++11. I don't think it provides any value now.
llvm-svn: 300146
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
```
Compiling Attributes.cpp ...
../../../Attributes.cpp: In member function 'std::__1::pair<unsigned int, llvm::Optional<unsigned int> > llvm::AttributeSet::getAllocSizeArgs() const':
../../../Attributes.cpp:542:69: error: operands to ?: have different types 'std::__1::pair<unsigned int, llvm::Optional<unsigned int> >' and 'std::__1::pair<int, int>'
return SetNode ? SetNode->getAllocSizeArgs() : std::make_pair(0, 0);
^
../../../Attributes.cpp:543:1: error: control reaches end of non-void function [-Werror=return-type]
}
^
```
Differential Revision: https://reviews.llvm.org/D31981
llvm-svn: 300143
|
| |
|
|
|
|
|
|
| |
branch issue.
Differential Revision: http://reviews.llvm.org/D31350
llvm-svn: 300142
|
| |
|
|
| |
llvm-svn: 300139
|
| |
|
|
| |
llvm-svn: 300137
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Improve performance of argument list parsing with large numbers of IDs and
large numbers of arguments, by tracking a conservative range of indexes within
the argument list that might contain an argument with each ID. In the worst
case (when the first and last argument with a given ID are at the opposite ends
of the argument list), this still results in a linear-time walk of the list,
but it helps substantially in the common case where each ID occurs only once,
or a few times close together in the list.
This gives a ~10x speedup to clang's `test/Driver/response-file.c`, which
constructs a very large set of command line arguments and feeds them to the
clang driver.
Differential Revision: https://reviews.llvm.org/D30130
llvm-svn: 300135
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In a followup patch I intend to introduce an additional dumping
mode which dumps a graphical representation of a class's layout.
In preparation for this, the text-based layout printer needs to
be split out from the graphical layout printer, and both need
to be able to use the same code for printing the intro and outro
of a class's definition (e.g. base class list, etc).
This patch does so, and in the process introduces a skeleton
definition for the graphical printer, while currently making
the graphical printer just print nothing.
NFC
llvm-svn: 300134
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously the dumping of class definitions was very primitive,
and it made it hard to do more than the most trivial of output
formats when dumping. As such, we would only dump one line for
each field, and then dump non-layout items like nested types
and enums.
With this patch, we do a complete analysis of the object
hierarchy including aggregate types, bases, virtual bases,
vftable analysis, etc. The only immediately visible effects
of this are that a) we can now dump a line for the vfptr where
before we would treat that as padding, and b) we now don't
treat virtual bases that come at the end of a class as padding
since we have a more detailed analysis of the class's storage
usage.
In subsequent patches, we should be able to use this analysis
to display a complete graphical view of a class's layout including
recursing arbitrarily deep into an object's base class / aggregate
member hierarchy.
llvm-svn: 300133
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
The test fails on Darwin because Fuzzer::DeathCallback (which calls
DumpCurrentUnit("crash-")) is called before DumpCurrentUnit("oom-") is
called in Fuzzer::RssLimitCallback. DeathCallback is transitively called
from __sanitizer_print_memory_profile.
This should fix the fuzzer bot that has been failing for a while:
http://lab.llvm.org:8080/green/job/libFuzzer/
llvm-svn: 300127
|
| |
|
|
|
|
|
|
| |
anything.
Should give a small compile time improvement.
llvm-svn: 300125
|
| |
|
|
|
|
|
|
| |
instruction.
Previously it tried to call SimplifyInstruction which doesn't know anything about alloca so defers to constant folding which also doesn't do anything with alloca. This results in wasted cycles making calls that won't do anything. Given the frequency with which this function is called this time adds up.
llvm-svn: 300118
|
| |
|
|
|
|
| |
Delete following conditional that is always true as a result.
llvm-svn: 300117
|
| |
|
|
|
|
|
| |
Insert a VReg_1 virtual register so the i1 workaround pass
can handle it.
llvm-svn: 300113
|
| |
|
|
|
|
|
|
|
| |
If workgroup size is known inform llvm about range returned by local
id and local size queries.
Differential Revision: https://reviews.llvm.org/D31804
llvm-svn: 300102
|
| |
|
|
|
|
|
|
|
|
| |
functions. NFCI.
This will make it easier to teach this code about the string table.
Differential Revision: https://reviews.llvm.org/D31828
llvm-svn: 300099
|
| |
|
|
|
|
|
|
| |
known bits using the LHS/RHS known bits it already acquired without recursing back into computeKnownBits.
This replicates the known bits and constant creation code from the single use case for these instructions and adds it here. The computeKnownBits and constant creation code for other instructions is now in the default case of the opcode switch.
llvm-svn: 300094
|
| |
|
|
|
|
|
|
| |
bits on both sides are known to be zero into a constant 0.
We already handled a superset check that included the known ones too and folded to a constant that may include ones. But it can also handle the case of no ones.
llvm-svn: 300093
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
As discussed in:
https://bugs.llvm.org/show_bug.cgi?id=32486
...the canonicalization of vector select to shufflevector does not hold up
when undef elements are present in the condition vector.
Try to make the undef handling clear in the code and the LangRef.
Differential Revision: https://reviews.llvm.org/D31980
llvm-svn: 300092
|
| |
|
|
|
|
| |
copies when bit width is larger than 64-bits.
llvm-svn: 300091
|
| |
|
|
|
|
|
|
|
| |
The use of a DenseMap in precomputeTriangleChains does not cause
non-determinism, even though it is iterated over, as the only thing the
iteration does is to insert entries into a new DenseMap, which is not iterated.
Comment only change.
llvm-svn: 300088
|
| |
|
|
|
|
| |
cascaded ifs on opcode. NFC
llvm-svn: 300085
|