| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
| |
llvm-svn: 226490
|
| |
|
|
|
|
|
|
|
| |
Add an assertion in `UniquableMDNode::resolve()` to prevent temporaries
from being resolved (once they're merged back in). Needed to shuffle
order of `resolve()` and `storeDistinctInContext()` to prevent it from
firing.
llvm-svn: 226489
|
| |
|
|
| |
llvm-svn: 226488
|
| |
|
|
| |
llvm-svn: 226487
|
| |
|
|
| |
llvm-svn: 226486
|
| |
|
|
|
|
|
|
|
|
| |
Unify the definitions of `MDNode::isResolved()` and
`UniquableMDNode::isResolved()`. Previously, `UniquableMDNode` could
answer this question more efficiently, but now that RAUW support has
been unified with `MDNodeFwdDecl`, `MDNode` doesn't need any casts to
figure out the answer.
llvm-svn: 226485
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add an `LLVMContext &` to `ReplaceableMetadataImpl`, create a class that
either holds a reference to an `LLVMContext` or owns a
`ReplaceableMetadataImpl`, and use the new class in `MDNode`.
- This saves a pointer in `UniquableMDNode` at the cost of a pointer
in `ValueAsMetadata` (which didn't used to store the `LLVMContext`).
There are far more of the former.
- Unifies RAUW support between `MDNodeFwdDecl` (which is going away,
see r226481) and `UniquableMDNode`.
llvm-svn: 226484
|
| |
|
|
| |
llvm-svn: 226483
|
| |
|
|
|
|
|
|
| |
Change `MDNode::isDistinct()` to only apply to 'distinct' nodes (not
temporaries), and introduce `MDNode::isUniqued()` and
`MDNode::isTemporary()` for the other two possibilities.
llvm-svn: 226482
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
More clearly describe the type of storage used for `Metadata`.
- `Uniqued`: uniqued, stored in the context.
- `Distinct`: distinct, stored in the context.
- `Temporary`: not owned by anyone.
This is the first in a series of commits to fix a design problem with
`MDNodeFwdDecl` that I need to solve for PR22235. While `MDNodeFwdDecl`
works well as a forward declaration, we use `MDNode::getTemporary()` for
more than forward declarations -- we also need to create early versions
of nodes (with fields not filled in) that we'll fill out later (see
`DIBuilder::finalize()` and `CGDebugInfo::finalize()` for examples).
This was a blind spot I had when I introduced `MDNodeFwdDecl` (which
David Blaikie (indirectly) highlighted in an unrelated review [1]).
[1]: http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20150112/252381.html
In general, we need `MDTuple::getTemporary()` to give a temporary tuple
(like `MDNodeFwdDecl`), `MDLocation::getTemporary()` to give a temporary
location, and (the problem at hand) `GenericDebugMDNode::getTemporary()`
to give a temporary generic debug node.
So I need to fold the idea of "temporary" nodes back into
`UniquableMDNode`. (More commits to follow as I refactor.)
llvm-svn: 226481
|
| |
|
|
| |
llvm-svn: 226480
|
| |
|
|
| |
llvm-svn: 226478
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
frontends to use a DIExpression with a DW_OP_deref instead.
This is not only a much more natural place for this informationl; there
is also a technical reason: The FlagIndirectVariable is used to mark a
variable that is turned into a reference by virtue of the calling
convention; this happens for example to aggregate return values.
The inliner, for example, may actually need to undo this indirection to
correctly represent the value in its new context. This is impossible to
implement because the DIVariable can't be safely modified. We can however
safely construct a new DIExpression on the fly.
llvm-svn: 226476
|
| |
|
|
|
|
|
|
|
|
| |
Original patch by Luke Iannini. Minor improvements and test added by
Erik de Castro Lopo.
Differential Revision: http://reviews.llvm.org/D6877
From: Erik de Castro Lopo <erikd@mega-nerd.com>
llvm-svn: 226473
|
| |
|
|
| |
llvm-svn: 226472
|
| |
|
|
|
|
|
|
|
|
|
| |
An assignment will produce a symbol with a given section and offset. There is
no way to represent something like "1 byte after a common symbol".
This matches the behavior of GNU as.
Part of PR22217.
llvm-svn: 226470
|
| |
|
|
|
|
| |
encoding rather than unpredictable
llvm-svn: 226469
|
| |
|
|
| |
llvm-svn: 226468
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
No change in this commit, but clang was changed to also produce trivial comdats when
needed.
Original message:
Don't create new comdats in CodeGen.
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
llvm-svn: 226467
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
and updated.
This may appear to remove handling for things like alias analysis when
splitting critical edges here, but in fact no callers of SplitEdge
relied on this. Similarly, all of them wanted to preserve LCSSA if there
was any update of the loop info. That makes the interface much simpler.
With this, all of BasicBlockUtils.h is free of Pass arguments and
prepared for the new pass manager. This is tho majority of utilities
that relied on pass arguments.
llvm-svn: 226459
|
| |
|
|
|
|
|
|
|
| |
while refactoring this API for the new pass manager.
No functionality changed here, the code didn't actually support this
option.
llvm-svn: 226457
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
APIs and replace it and numerous booleans with an option struct.
The critical edge splitting API has a really large surface of flags and
so it seems worth burning a small option struct / builder. This struct
can be constructed with the various preserved analyses and then flags
can be flipped in a builder style.
The various users are now responsible for directly passing along their
analysis information. This should be enough for the critical edge
splitting to work cleanly with the new pass manager as well.
This API is still pretty crufty and could be cleaned up a lot, but I've
focused on this change just threading an option struct rather than
a pass through the API.
llvm-svn: 226456
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
we can while splitting critical edges.
The only code which called this and didn't require simplified loops to
be preserved is polly, and the code behaves correctly there anyways.
Without this change, it becomes really hard to share this code with the
new pass manager where things like preserving loop simplify form don't
make any sense.
If anyone discovers this code behaving incorrectly, what it *should* be
testing for is whether the loops it needs to be in simplified form are
in fact in that form. It should always be trying to preserve that form
when it exists.
llvm-svn: 226443
|
| |
|
|
|
|
|
|
| |
In case of blocks with many memory-accessing instructions, alias checking can take lot of time
(because calculating the memory dependencies has quadratic complexity).
I chose a limit which resulted in no changes when running the benchmarks.
llvm-svn: 226439
|
| |
|
|
|
|
|
|
|
|
| |
We don't need to exclude patchpoints from the implicit r2 dependence in
FastISel because it is added as an implicit operand and, thus, should not
confuse that StackMap code.
By inspection / no test case.
llvm-svn: 226434
|
| |
|
|
|
|
|
|
|
|
| |
source and dest are local
This fixes PR21792.
Differential Revision: http://reviews.llvm.org/D6823
llvm-svn: 226433
|
| |
|
|
|
|
|
|
|
|
|
| |
Our PPC64 ELF V2 call lowering logic added r2 as an operand to all direct call
instructions in order to represent the dependency on the TOC base pointer
value. Restricting this to ELF V2, however, does not seem to make sense: calls
under ELF V1 have the same dependence, and indirect calls have an r2 dependence
just as direct ones. Make sure the dependence is noted for all calls under both
ELF V1 and ELF V2.
llvm-svn: 226432
|
| |
|
|
|
|
| |
kind instead of a 32-bit immediate. This better aligns with the emitted instruction. It also matches SSE and AVX1 equivalents. Also add auto upgrade support.
llvm-svn: 226430
|
| |
|
|
|
|
|
|
|
|
| |
SplitLandingPadPredecessors and remove the Pass argument from its
interface.
Another step to the utilities being usable with both old and new pass
managers.
llvm-svn: 226426
|
| |
|
|
| |
llvm-svn: 226416
|
| |
|
|
| |
llvm-svn: 226414
|
| |
|
|
|
|
|
|
|
|
|
| |
Instructions that have high-order TOC relocations always carry R2 as their base
register, so it does not matter whether we take the register from the
instruction or just hard-code it in PPCAsmPrinter. In the future, however, we
might want to apply these relocations to instructions using a different
register, so taking the register from the instruction is a better thing to do.
No change in functionality here, however.
llvm-svn: 226403
|
| |
|
|
|
|
|
| |
So we don't forget, once we support FPR <-> GPR moves on the P8, we'll likely
want to re-visit this part of the calling convention.
llvm-svn: 226401
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The default calling convention specified by the PPC64 ELF (V1 and V2) ABI is
designed to work with both prototyped and non-prototyped/varargs functions. As
a result, GPRs and stack space are allocated for every argument, even those
that are passed in floating-point or vector registers.
GlobalOpt::OptimizeFunctions will transform local non-varargs functions (that
do not have their address taken) to use the 'fast' calling convention.
When functions are using the 'fast' calling convention, don't allocate GPRs for
arguments passed in other types of registers, and don't allocate stack space for
arguments passed in registers. Other changes for the fast calling convention
may be added in the future.
llvm-svn: 226399
|
| |
|
|
|
|
|
|
|
|
|
| |
rather than relying on the pass object.
This one is a bit annoying, but will pay off. First, supporting this one
will make the next one much easier, and for utilities like LoopSimplify,
this is moving them (slowly) closer to not having to pass the pass
object around throughout their APIs.
llvm-svn: 226396
|
| |
|
|
|
|
|
|
|
| |
interface, removing Pass from its interface.
This also makes those analyses optional so that passes which don't even
preserve these (or use them) can skip the logic entirely.
llvm-svn: 226394
|
| |
|
|
|
|
|
|
|
| |
optionally updated by MergeBlockIntoPredecessors.
No functionality changed, just refactoring to clear the way for the new
pass manager.
llvm-svn: 226392
|
| |
|
|
|
|
|
|
| |
Instead of querying the pass every where we need to, do that once and
cache a pointer in the pass object. This is both simpler and I'm about
to add yet another place where we need to dig out that pointer.
llvm-svn: 226391
|
| |
|
|
|
|
|
|
|
|
|
|
| |
accepting a Pass and querying it for analyses.
This is necessary to allow the utilities to work both with the old and
new pass managers, and I also think this makes the interface much more
clear and helps the reader know what analyses the utility can actually
handle. I plan to repeat this process iteratively to clean up all the
pass utilities.
llvm-svn: 226386
|
| |
|
|
|
|
|
|
|
|
|
|
| |
cleaner to derive from the generic base.
Thise removes a ton of boiler plate code and somewhat strange and
pointless indirections. It also remove a bunch of the previously needed
friend declarations. To fully remove these, I also lifted the verify
logic into the generic LoopInfoBase, which seems good anyways -- it is
generic and useful logic even for the machine side.
llvm-svn: 226385
|
| |
|
|
|
|
|
|
|
| |
unused variables in a no-asserts build.
I've fixed this by putting the entire loop behind an #ifndef as it
contains nothing other than asserts.
llvm-svn: 226377
|
| |
|
|
|
|
|
|
|
| |
This was dead even before I refactored how we initialized it, but my
refactoring made it trivially dead and it is now caught by a Clang
warning. This fixes the warning and should clean up the -Werror bot
failures (sorry!).
llvm-svn: 226376
|
| |
|
|
|
|
|
|
|
|
| |
a LoopInfoWrapperPass to wire the object up to the legacy pass manager.
This switches all the clients of LoopInfo over and paves the way to port
LoopInfo to the new pass manager. No functionality change is intended
with this iteration.
llvm-svn: 226373
|
| |
|
|
|
|
|
|
|
|
| |
R11's status is the same under both the PPC64 ELF V1 and V2 ABIs: it is
reserved for use as an "environment pointer" for compilation models that
require such a thing. We don't, we also don't need a second scratch register,
and because we support only "local" patchpoint call targets, we might as well
let R11 be used for anyregcc patchpoints.
llvm-svn: 226369
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Loading 2 2x32-bit float vectors into the bottom half of a 256-bit vector
produced suboptimal code in AVX2 mode with certain IR combinations.
In particular, the IR optimizer folded 2f32 + 2f32 -> 4f32, 4f32 + 4f32
(undef) -> 8f32 into a 2f32 + 2f32 -> 8f32, which seems more canonical,
but then mysteriously generated rather bad code; the movq/movhpd combination
didn't match.
The problem lay in the BUILD_VECTOR optimization path. The 2f32 inputs
would get promoted to 4f32 by the type legalizer, eventually resulting
in a BUILD_VECTOR on two 4f32 into an 8f32. The BUILD_VECTOR then, recognizing
these were both half the output size, concatted them and then produced
a shuffle. However, the resulting concat + shuffle was more complex than
it should be; in the case where the upper half of the output is undef, we
probably want to generate shuffle + concat instead.
This enhancement causes the vector_shuffle combine step to recognize this
suboptimal pattern and correct it. I included it there instead of in BUILD_VECTOR
in case the same suboptimal pattern occurs for other reasons.
This results in the optimizer correctly producing the optimal movq + movhpd
sequence for all three variations on this IR, even with AVX2.
I've included a test case.
Radar link: rdar://problem/19287012
Fix for PR 21943.
From: Fiona Glaser <fglaser@apple.com>
llvm-svn: 226360
|
| |
|
|
| |
llvm-svn: 226358
|
| |
|
|
| |
llvm-svn: 226356
|
| |
|
|
| |
llvm-svn: 226353
|
| |
|
|
| |
llvm-svn: 226352
|
| |
|
|
|
|
|
|
|
|
|
| |
- Consistenly put comments above the function declaration, not the
definition. To achieve this some duplicate comments got merged and
some comment parts describing implementation details got moved into their
functions.
- Consistently use doxygen comments above functions.
- Do not use doxygen comments inside functions.
llvm-svn: 226351
|