| Commit message (Collapse) | Author | Age | Files | Lines | 
| | 
| 
| 
|  | 
llvm-svn: 344590
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Summary:
Extend LCSSA so that debug values outside loops are rewritten to
use the PHI nodes that the pass creates.
This fixes PR39019. In that case, we ran LCSSA on a loop that
was later on vectorized, which left us with something like this:
  for.cond.cleanup:
    %add.lcssa = phi i32 [ %add, %for.body ], [ %34, %middle.block ]
    call void @llvm.dbg.value(metadata i32 %add,
    ret i32 %add.lcssa
  for.body:
    %add =
    [...]
    br i1 %exitcond, label %for.cond.cleanup, label %for.body
which later resulted in the debug.value becoming undef when
removing the scalar loop (and the location would have probably
been wrong for the vectorized case otherwise).
As we now may need to query the AvailableVals cache more than
once for a basic block, FindAvailableVals() in SSAUpdaterImpl is
changed so that it updates the cache for blocks that we do not
create a PHI node for, regardless of the block's number of
predecessors. The debug value in the attached IR reproducer
would not be properly rewritten without this.
Debug values residing in blocks where we have not inserted any
PHI nodes are currently left as-is by this patch. I'm not sure
what should be done with those uses.
Reviewers: mattd, aprantl, vsk, probinson
Reviewed By: mattd, aprantl
Subscribers: jmorse, gbedwell, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D53130
llvm-svn: 344589
 | 
| | 
| 
| 
|  | 
llvm-svn: 344588
 | 
| | 
| 
| 
|  | 
llvm-svn: 344587
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
SCEV's transform that turns `{A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>` into
a single AddRec of size `2n+1` with complex combinatorial coefficients can easily
trigger exponential growth of the SCEV (in case if nothing gets folded and simplified).
We tried to restrain this transform using the option `scalar-evolution-max-add-rec-size`,
but its default value seems to be insufficiently small: the test attached to this patch
with default value of this option `16` has a SCEV of >3M symbols (when printed out).
This patch reduces the simplification limit. It is not a cure to combinatorial
explosions, but at least it reduces this corner case to something more or less
reasonable.
Differential Revision: https://reviews.llvm.org/D53282
Reviewed By: sanjoy
llvm-svn: 344584
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Summary:
This adds support for LSDA (exception table) generation for wasm EH.
Wasm EH mostly follows the structure of Itanium-style exception tables,
with one exception: a call site table entry in wasm EH corresponds to
not a call site but a landing pad.
In wasm EH, the VM is responsible for stack unwinding. After an
exception occurs and the stack is unwound, the control flow is
transferred to wasm 'catch' instruction by the VM, after which the
personality function is called from the compiler-generated code. (Refer
to WasmEHPrepare pass for more information on this part.)
This patch:
- Changes wasm.landingpad.index intrinsic to take a token argument, to
make this 1:1 match with a catchpad instruction
- Stores landingpad index info and catch type info MachineFunction in
before instruction selection
- Lowers wasm.lsda intrinsic to an MCSymbol pointing to the start of an
exception table
- Adds WasmException class with overridden methods for table generation
- Adds support for LSDA section in Wasm object writer
Reviewers: dschuff, sbc100, rnk
Subscribers: mgorny, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D52748
llvm-svn: 344575
 | 
| | 
| 
| 
| 
| 
|  | 
These included a bitcast of a load from v4f32 to v2f64, but DAG combine should have already changed the type of the load to remove the cast.
llvm-svn: 344573
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
This commit adds a 'Legacy' prefix to old ORC layers and utilities, and removes
the '2' suffix from the new ORC layers. If you wish to continue using the old
ORC layers you will need to add a 'Legacy' prefix to your classes. If you were
already using the new ORC layers you will need to drop the '2' suffix.
The legacy layers will remain in-tree until the new layers reach feature
parity with them. This will involve adding support for removing code from the
new layers, and ensuring that performance is comperable.
llvm-svn: 344572
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
The new name is a better fit: This class does not actually spawn any new
threads for compilation, it is just safe to call from multiple threads
concurrently.
The "Simple" part of the name did not convey much either, so it was
dropped.
llvm-svn: 344567
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
r344558 added an assignment to a TerminatorInst* from
BasicBlock::getTerminatorInst(), but BasicBlock::getTerminatorInst() returns an
Instruction* rather than a TerminatorInst* since r344504 so this fails to
compile.
Changing the variable to an Instruction* should get the bots building again.
llvm-svn: 344566
 | 
| | 
| 
| 
|  | 
llvm-svn: 344565
 | 
| | 
| 
| 
|  | 
llvm-svn: 344564
 | 
| | 
| 
| 
| 
| 
|  | 
EVEX encoded instructions.
llvm-svn: 344563
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Make the code of blockEndsInUnreachable to match the function
blockEndsInUnreachable in CodeGen/BranchFolding.cpp. I also have
added a note to make sure the code of this function will not be
modified unless the back-end version is also modified.
An early return before outlining has been added to avoid
outlining the full function body when the first block in the
function is marked cold.
The static analysis of cold code has been amended to avoid
marking the whole function as cold by back-propagation
because the back-propagation would mark blocks with return
statements as cold.
The patch adds debug statements to help discover these problems.
Differential Revision: https://reviews.llvm.org/D52904
llvm-svn: 344558
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
AARCH64 equivalent to D53257 - uses widening pairwise adds on vXi8 CTPOP to support i16/i32/i64 vectors.
This is a blocker for generic vector CTPOP expansion (P32655) - this will remove the aarch64 diff from D53258.
Differential Revision: https://reviews.llvm.org/D53259
llvm-svn: 344554
 | 
| | 
| 
| 
| 
| 
|  | 
Differential Revision: https://reviews.llvm.org/D53221
llvm-svn: 344552
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Variable updates within the outlined function are invisible to
debuggers. This could be improved by defining a DISubprogram for the
new function. For the moment, simply erase the debug intrinsics instead.
This fixes verifier failures about function-local metadata being used in
the wrong function, seen while testing the hot/cold splitting pass.
rdar://45142482
Differential Revision: https://reviews.llvm.org/D53267
llvm-svn: 344545
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
This is intended to make the backend on par with functionality that was 
added to the IR version of SimplifyDemandedVectorElts in:
rL343727
...and the original motivation is that we need to improve demanded-vector-elements 
in several ways to avoid problems that would be exposed in D51553.
Differential Revision: https://reviews.llvm.org/D52912
llvm-svn: 344541
 | 
| | 
| 
| 
|  | 
llvm-svn: 344534
 | 
| | 
| 
| 
| 
| 
|  | 
The transform doesn't work if the vector constant has undef elements.
llvm-svn: 344532
 | 
| | 
| 
| 
|  | 
llvm-svn: 344528
 | 
| | 
| 
| 
|  | 
llvm-svn: 344525
 | 
| | 
| 
| 
| 
| 
|  | 
This reverts r344519 due to failures in pipeline-parsing test.
llvm-svn: 344524
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Summary:
All the PassBuilder::parse interfaces now return descriptive StringError
instead of a plain bool. It allows to make -passes/aa-pipeline parsing
errors context-specific and thus less confusing.
TODO: ideally we should also make suggestions for misspelled pass names,
but that requires some extensions to PassBuilder.
Reviewed By: philip.pfaffe, chandlerc
Differential Revision: https://reviews.llvm.org/D53246
llvm-svn: 344519
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
When compiling static executable for micromips, CFI symbols
are incorrectly labeled as MICROMIPS, which cause
".eh_frame_hdr refers to overlapping FDEs." error.
This patch does not label CFI symbols as MICROMIPS, and FDEs do not
overlap anymore. This patch also exposes another bug, which is fixed
here: https://reviews.llvm.org/D52985
Differential Revision: https://reviews.llvm.org/D52987
llvm-svn: 344516
 | 
| | 
| 
| 
| 
| 
|  | 
This reverts r344511.
llvm-svn: 344515
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
As I suggested on PR39281, this patch uses PADDL pairwise addition to widen from the vXi8 CTPOP result to the target vector type.
This is a blocker for moving more x86 code to generic vector CTPOP expansion (P32655 + D53258) - ARM's vXi64 CTPOP currently expands, which would generate a vXi64 MUL but ARM's custom lowering expands the general MUL case and vectors aren't well handled in LegalizeDAG - improving the CTPOP lowering was a lot easier than fixing the MUL lowering for this one case......
Differential Revision: https://reviews.llvm.org/D53257
llvm-svn: 344512
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
When compiling static executable for micromips, CFI symbols
are incorrectly labeled as MICROMIPS, which cause
".eh_frame_hdr refers to overlapping FDEs." error.
This patch does not label CFI symbols as MICROMIPS, and FDEs do not
overlap anymore. This patch also exposes another bug, which is fixed
here: https://reviews.llvm.org/D52985
Differential Revision: https://reviews.llvm.org/D52987
llvm-svn: 344511
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Removing deficiency of initial implementation of -print-before-all/-after-all
- it was effectively skipping IR printing for all the SCC passes.
Now LazyCallGraph:SCC gets its IR printed.
Reviewed By: skatkov
Differential Revision: https://reviews.llvm.org/D53270
llvm-svn: 344505
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
This removes the primary remaining API producing `TerminatorInst` which
will reduce the rate at which code is introduced trying to use it and
generally make it much easier to remove the remaining APIs across the
codebase.
Also clean up some of the stragglers that the previous mechanical update
of variables missed.
Users of LLVM and out-of-tree code generally will need to update any
explicit variable types to handle this. Replacing `TerminatorInst` with
`Instruction` (or `auto`) almost always works. Most of these edits were
made in prior commits using the perl one-liner:
```
perl -i -ple 's/TerminatorInst(\b.* = .*getTerminator\(\))/Instruction\1/g'
```
This also my break some rare use cases where people overload for both
`Instruction` and `TerminatorInst`, but these should be easily fixed by
removing the `TerminatorInst` overload.
llvm-svn: 344504
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
|  | 
are terminators without relying on the specific `TerminatorInst` type.
This required cleaning up two users of `InstVisitor`s usage of
`TerminatorInst` as well.
llvm-svn: 344503
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
This is the last interesting usage in all of LLVM's headers. The
remaining usages in headers are the core typesystem bits (Core.h,
instruction types, and InstVisitor) and as the return of
`BasicBlock::getTerminator`. The latter is the big remaining API point
that I'll remove after mass updates to user code.
llvm-svn: 344501
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
|  | 
This requires updating a number of .cpp files to adapt to the new API.
I've just systematically updated all uses of `TerminatorInst` within
these files te `Instruction` so thta I won't have to touch them again in
the future.
llvm-svn: 344498
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
|  | 
LLVM APIs. There weren't very many.
We still have the instruction visitor, and APIs with TerminatorInst as
a return type or an output parameter.
llvm-svn: 344494
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
operands
Summary:
TwoAddressInstruction pass typically rewrites
  %1:short = foo %0.sub_lo:long
as
  %1:short = COPY %0.sub_lo:long
  %1:short = foo %1:short
when having tied operands.
If there are extra un-tied operands that uses the same reg and
subreg, such as the second and third inputs to fie here:
  %1:short = fie %0.sub_lo:long, %0.sub_hi:long, %0.sub_lo:long
then there was a bug which replaced the register %0 also for
the un-tied operand, but without changing the subregister indices.
So we used to get:
  %1:short = COPY %0.sub_lo:long
  %1:short = fie %1, %1.sub_hi:short, %1.sub_lo:short
With this fix we instead get:
  %1:short = COPY %0.sub_lo:long
  %1:short = fie %1, %0.sub_hi:long, %1
Reviewers: arsenm, JesperAntonsson, kparzysz, MatzeB
Reviewed By: MatzeB
Subscribers: bjope, kparzysz, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D36224
llvm-svn: 344492
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
|  | 
Renames:
  JITDylib's setFallbackDefinitionGenerator method to setGenerator.
  DynamicLibraryFallbackGenerator class to DynamicLibrarySearchGenerator.
  ReexportsFallbackDefinitionGenerator to ReexportsGenerator.
llvm-svn: 344489
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
Summary:
I've noticed that the bitcasts we introduce for these make computeKnownBits and computeNumSignBits not work well in LegalizeVectorOps. LegalizeVectorOps legalizes bottom up while LegalizeDAG legalizes top down. The bottom up strategy for LegalizeVectorOps means operands are legalized before their uses. So we promote and/or/xor before we legalize the operands that use them making computeKnownBits/computeNumSignBits in places like LowerTruncate suboptimal. I looked at changing LegalizeVectorOps to be top down as well, but that was more disruptive and caused some regressions. I also looked at just moving promotion of binops to LegalizeDAG, but that had a few issues one around matching AND,ANDN,OR into VSELECT because I had to create ANDN as vXi64, but the other nodes hadn't legalized yet, I didn't look too hard at fixing that.
This patch seems to produce better results overall than my other attempts. We now form broadcasts of constants better in some cases. For at least some of them the AND was being introduced in LegalizeDAG, promoted to vXi64, and the BUILD_VECTOR was also legalized there. I think we got bad ordering of that. Now the promotion is out of the legalizer so we handle this better.
In the longer term I think we really should evaluate whether we should be doing this promotion at all. It's really there to reduce isel pattern count, but I'm wondering if we'd be better served just eating the pattern cost or doing C++ based isel for vector and/or/xor in X86ISelDAGToDAG. The masked and/or/xor will definitely be difficult in patterns if a bitcast gets between the vselect and the and/or/xor node. That becomes a lot of permutations to cover.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53107
llvm-svn: 344487
 | 
| | 
| 
| 
| 
| 
| 
| 
|  | 
X86AsmPrinter::EmitInstruction.
We use this instruction to broadcast a single 64-bit value to a v2i64/v2f64 vector.
llvm-svn: 344486
 | 
| | 
| 
| 
| 
| 
| 
| 
|  | 
Landing this as a separate part of https://reviews.llvm.org/D50480, being a
seemingly unrelated change ([LV] Vectorizing loops of arbitrary trip count
without remainder under opt for size).
llvm-svn: 344483
 | 
| | 
| 
| 
| 
| 
| 
| 
|  | 
shuffle lowering
Extends D53148 from v4f64 now that we have test coverage for v16i16/v32i8 shuffles.
llvm-svn: 344481
 | 
| | 
| 
| 
| 
| 
| 
| 
|  | 
The final stage of CTPOP expansion (v = (v * 0x01010101...) >> (Len - 8)) is completely pointless for the byte (Len = 8) case as it reduces to (v = (v * 0x01...) >> 0), but annoyingly this doesn't always get optimized away. 
Found while investigating generic vector CTPOP expansion (PR32655).
llvm-svn: 344477
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
This is part of the missing IR-level folding noted in D52912.
This should be ok as a canonicalization because the new shuffle mask can't
be any more complicated than the existing shuffle mask. If there's some 
target where the shorter vector shuffle is not legal, it should just end up 
expanding to something like the pair of shuffles that we're starting with here.
Differential Revision: https://reviews.llvm.org/D53037
llvm-svn: 344476
 | 
| | 
| 
| 
|  | 
llvm-svn: 344475
 | 
| | 
| 
| 
|  | 
llvm-svn: 344473
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
interleave-group
The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.
Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53011
llvm-svn: 344472
 | 
| | 
| 
| 
|  | 
llvm-svn: 344471
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
extracting f64 and storing.
Summary: This is similar to what D52528 did for loads. It should match what generic type legalization does in 64-bit mode where it uses a v2i64 cast and an i64 store.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53173
llvm-svn: 344470
 | 
| | 
| 
| 
|  | 
llvm-svn: 344468
 | 
| | 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
|  | 
This adds two arguments to the main ExecutionSession::lookup method:
MatchNonExportedInJD, and MatchNonExported. These control whether and where
hidden symbols should be matched when searching a list of JITDylibs.
A similar effect could have been achieved by filtering search results, but
this would have involved materializing symbol definitions (since materialization
is triggered on lookup) only to throw the results away, among other issues.
llvm-svn: 344467
 |